
CS412: Lecture #17

Mridul Aanjaneya

March 19, 2015

Solving linear systems of equations

Consider a lower triangular matrix L:

L =


l11 0 0 . . . 0
l21 l22 0 . . . 0
l31 l32 l33 . . . 0
...

...
ln1 lnn


A procedure similar to that for upper triangular systems can be followed to
solve Lx = b. The overall complexity is again O(n2).

Algorithm 1 Forward substitution for Lx = b:

1: for j = 1 . . . n do
2: if ljj = 0 then
3: return. . matrix is singular
4: end if
5: xj ← bj/ljj
6: for i = j + 1 . . . n do
7: bi ← bi − lijxj

8: end for
9: end for

The forward and backward substitution processes can be used to solve a
non-triangular system by virtue of the following factorization property.

Theorem 1. If A is an n×n matrix, it can be (generally) written as a product:

A = LU

where L is a lower triangular matrix and U is an upper triangular matrix.
Furthermore, it is possible to construct L such that all diagonal elements lii = 1.

1

Algorithm 2 LU factorization by Gaussian Elimination

1: for k = 1 . . . n− 1 do
2: if akk = 0 then
3: return.
4: end if
5: for i = k + 1 . . . n do
6: aik ← aik/akk
7: end for
8: for j = k + 1 . . . n do
9: for i = k + 1 . . . n do

10: aij ← aij − aikakj
11: end for
12: end for
13: end for

Note that this algorithm executes in-place, i.e., the matrix A is replaced by
its LU factorization, in compact form. More specifically, this algorithm produces
a factorization A = LU , where:

L =



1
l21 1 O
l31 l32 1
l41 l42 l43 1
...

...
...

. . .

ln1 nn2 ln3 . . . ln,n−1 1


, U =


u11 u12 u13 . . . u1n

u22 u23 . . . u2n

u33 . . . u3n

O
. . . un−1,n

unn


After the in-place factorization algorithm completes, A is replaced by the fol-
lowing “‘compacted” encoding of L and U together:

A =


u11 u12 u13 . . . u1n

l21 u22 u23 . . . u2n

l31 l32 u33 . . . u3n

...
...

...
. . .

...
ln1 ln2 . . . ln−1,n unn


Here is a slightly different algorithm for Gaussian Elimination via elimination
matrices. Define the basis vector ek as:

ek =



0
...
0
1
0
...
0


2

where the 1 is in the kth row and the length of ek is n. In order to perform
Gaussian Elimination on the kth column ak of A, we define the n×n elimination
matrix Mk = I −mke

T
k where

mk =
1

akk
·



0
...
0

ak+1,k

...
an,k


Mk adds multiples of row k to the rows > k in order to create 0’s. As an
example, for ak = (2, 4,−2)T

M1ak =

 1 0 0
−2 1 0
1 0 1

 2
4
−2

 =

 2
0
0


Similarly,

M2ak =

 1 0 0
0 1 0
0 1/2 1

 2
4
−2

 =

 2
4
0


The inverse of an elimination matrix is defined as Lk = M−1

k = I + mke
T
k . For

example,

L1 = M−1
1 =

 1 0 0
2 1 0
−1 0 1

 , and L2 = M−1
2 =

 1 0 0
0 1 0
0 −1/2 1


The algorithm now proceeds as follows. Consider the example:

 2 4 −2
4 9 −3
−2 −3 7

 x1

x2

x3

 =

 2
8
10


First, we eliminate the lower triangular portion of A one column at a time using
Mk to get U = Mn−1 . . .M1A. Note that we also carry out the operations on
b to get a new system of equations M − 2M1Ax = M2M1b or Ux = M2M1b
which can be solved for via back substitution.

M1A =

 1 0 0
−2 1 0
1 0 1

 2 4 −2
4 9 −3
−2 −3 7

 =

 2 4 −2
0 1 1
0 1 5


3

M1b =

 1 0 0
−2 1 0
1 0 1

 2
8
10

 =

 2
4
12



M2M1A =

 1 0 0
0 1 0
0 −1 1

 2 4 −2
0 1 1
0 1 5

 =

 2 4 −2
0 1 1
0 0 4



M2M1b =

 1 0 0
0 1 0
0 −1 1

 2
4
12

 =

 2
4
8


Finally, solve the following system via back substitution.

 2 4 −2
0 1 1
0 0 4

 x
y
z

 =

 2
4
8


Note that using the fact that the L matrices are inverses of the M matrices allows
us to write LU = (L1 . . . Ln−1)(Mn−1 . . .M1A) = A where L = L1 . . . Ln−1 can
be formed trivially from the Mk to obtain:

L = L1L2 =

 1 0 0
2 1 0
−1 0 1

 1 0 0
0 1 0
0 1 1

 =

 1 0 0
2 1 0
−1 1 1


And thus, although we never needed it to solve the equations, the LU factor-
ization of A is

A =

 2 4 −2
4 9 −3
−2 −3 7

 =

 1 0 0
2 1 0
−1 1 1

 2 4 −2
0 1 1
0 0 4

 = LU

Existence/Uniqueness and pivoting

When computing the LU factorization, the algorithm will halt if the diagonal
element akk = 0. This can be avoided by swapping rows of A prior to computing
the LU factorization. This is done to always select the largest akk from the
equations that follow. As an example, consider the matrix A and the action of
the permutation matrix P on it.

4

A =


1 2 5 −1
0 0 3 1
0 4 1 −2
0 −6 0 3

 , P =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 , PA =


1 2 5 −1
0 −6 0 3
0 4 1 −2
0 0 3 1


This is pivoting: the pivot akk is selected to be non-zero. In this process, we
can guarantee uniqueness and existence of LU :

Theorem 2. If P is a permutation matrix such that all pivots in the Gaussian
Elimination of PA are non-zero, and lii = 1, then the LU factorization exists
and is unique!

PA = LU

5

