Solving $Ax = b$:

- Without pivoting:

 \[Ax = L \underbrace{Ux = b}_{=y} \]

 1. Solve $Ly = b$ through forward substitution.
 2. Solve $Ux = y$ through back substitution to obtain the solution x.

 Note that if we have multiple systems $Ax_i = b_i$, we only need to incur the cost of computing an LU decomposition of A once.

- With pivoting:

 \[Ax = b \iff PAx = Pb \]

 1. Solve $Ly = Pb$ using forward substitution.
 2. Solve $Ux = y$ using backward substitution to obtain the solution x.

 Note that switching two rows twice puts the rows back, so P is its own inverse. Also note that P is an orthogonal matrix, i.e., $P^{-1} = P^T$, so in general $P^{-1} = P^T = P$. The process shown above is called partial pivoting because it switches rows to always get the largest diagonal element. This is in contrast to full pivoting (see below) which can switch both rows and columns to obtain the largest diagonal element. Partial pivoting gives $A = LU$ where $U = M_{n-1}P_{n-1} \cdots M_1 P_1 A$ and $L = P_1 L_1 \cdots P_{n-1} L_{n-1}$ where U is upper triangular, but L is a permutation of a lower triangular matrix. It turns out that we can write L as $L = P_1 \cdots P_{n-1} \underbrace{L_1^P \cdots L_{n-1}^P}_{L_k^P}$ where each $L_k^P = I + (P_{n-1} \cdots P_{k+1} m_k) e_k^T$ has the same form as L_k. Thus, we can write $PA = L^P U$ where $L^P = L_1^P \cdots L_{n-1}^P$ is lower triangular and $P = P_{n-1} \cdots P_1$ is the total permutation matrix.

Full pivoting

In this case, when we are in the kth step of the Gaussian Elimination/LU procedure, we pick the pivot element among the entire $(n-k+1) \times (n-k+1)$ lower rightmost submatrix of A. For example, if $k = 2$ and $Ax = b$
\[
\begin{bmatrix}
1 & 2 & 5 & -1 \\
0 & 0 & 3 & 1 \\
0 & 4 & 1 & -8 \\
0 & -6 & 0 & 3
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix}
=
\begin{bmatrix}
4 \\
7 \\
8 \\
2
\end{bmatrix}
\]

In this case, we can bring \((-8)\) to the pivot position \(a_{22}\) by permuting both rows 2 – 3 and columns 2 – 4. Naturally, we will respectively swap rows 2 – 3 of the RHS, and rows 2 – 4 of the vector of unknowns. Thus, the equivalent system becomes

\[
\begin{bmatrix}
1 & -1 & 5 & 2 \\
0 & -8 & 1 & 4 \\
0 & 1 & 3 & 0 \\
0 & 3 & 0 & -6
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_4 \\
x_3 \\
x_2
\end{bmatrix}
=
\begin{bmatrix}
4 \\
8 \\
7 \\
2
\end{bmatrix}
\]

This process is encoded in the \(LU\) factorization using two permutation matrices \(P\) and \(Q\) such that \([PAQ = LU]\). The solution is then computed via

\[
Ax = b \Rightarrow PAQ^T x = Pb \Rightarrow (LU)(Q^T x) = Pb
\]

1. Solve \(Ly = Pb\) using forward substitution.
2. Solve \(Uz = y\) using back substitution.
3. Finally, \(Q^T x = z \Rightarrow QQ^T x = Qz \Rightarrow x = Qz\) gives the solution!

To summarize:

- **Partial pivoting** permutes rows, such that the pivot element in the \(k\)th iteration is the largest number in the \((n - k + 1)\) lower entries of the \(k\)th column. It is written, in the context of \(LU\) decomposition as

\[
PA = LU \quad (P = \text{permutation})
\]

- **Full pivoting** selects the pivot element in the \(k\)th iteration as the largest element of the \((n - k + 1) \times (n - k + 1)\) lower rightmost sub-matrix of \(A\). It operates by permuting rows and columns and leads to an \(LU\) decomposition of

\[
PAQ = LU
\]

However, there are certain categories of matrices for which we can safely use Gaussian elimination or \(LU\) decomposition without the need for pivoting (i.e., the pivot elements will never be problematically small).
Definition: A matrix A is called $diagonally$ $dominant$ by $columns$ if the magnitude of every diagonal element is larger than the sum of the magnitudes of all other entries in the same column, i.e., for every $i = 1, 2, \ldots, n$ we have

$$|a_{ii}| > \sum_{j \neq i} |a_{ji}|$$

If the diagonal element exceeds in magnitude the sum of magnitudes of all other elements in its row, i.e., for every $i = 1, 2, \ldots, n$ we have

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|$$

then the matrix is called $diagonally$ $dominant$ by $rows$.

Definition: A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is called $positive$ $definite$ (in short SPD for “symmetric positive definite”), if for any $x \in \mathbb{R}^n, x \neq 0$ we have $x^T Ax > 0$. If for any $x \in \mathbb{R}^n, x \neq 0$ we have $x^T Ax \geq 0$, the matrix is called positive semi-definite. If the respective properties are $x^T Ax < 0$ (or $x^T Ax \leq 0$) the matrix is called negative (semi) definite.

Definition: The kth $leading$ $principal$ $minor$ of a matrix $A \in \mathbb{R}^{n \times n}$ is the determinant of the top-leftmost $k \times k$ sub-matrix of A. Thus, if we denote this minor by M_k:

$$M_1 = |a_{11}|, \quad M_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \quad \ldots \quad M_k = \begin{vmatrix} a_{11} & \cdots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \cdots & a_{kk} \end{vmatrix}$$

Theorem 1. If all leading principal minors (i.e., for $k = 1, 2, 3, \ldots, n$) of the symmetric matrix A are positive, then A is positive definite. If $M_k < 0$ for $k = odd$ and $M_k > 0$ for $k = even$, then A is negative definite.

Theorem 2. Pivoting is not necessary when A is diagonally dominant by columns, or symmetric and positive (or negative) definite.

These “special” classes of matrices (which appear quite often in engineering and applied sciences) not only make LU decomposition more robust, but also open some additional possibilities for solving $Ax = b$.

Iterative methods for linear systems

The general idea is similar to the philosophy of iterative methods we saw for nonlinear equations, i.e., we proceed as follows:
• We write a (matrix) equation

\[x = Tx + c \]

in such a way that this equation is equivalent to \(Ax = b \).

• We start with an initial guess \(x^{(0)} \) for the solution of \(Ax = b \).

• We iterate

\[x^{(k+1)} = Tx^{(k)} + c \]

• If properly designed the sequence \(x^{(0)}, x^{(1)}, \ldots, x^{(k)}, \ldots \) converges to \(x^* \), which satisfies \(x^* = Tx^* + c \) and consequently \(Ax^* = b \).

The Jacobi Method

We decompose

\[
A = D - L - U
\]

\[
\text{diagonal} \quad \text{lower triangular} \quad \text{upper triangular}
\]

\[
Ax = b
\]

\[
\Rightarrow (D - L - U)x = b
\]

\[
\Rightarrow Dx = (L + U)x + b
\]

\[
\Rightarrow x = D^{-1}(L + U)x + D^{-1}b
\]

\[
(x = Tx + c)
\]

Iteration:

\[
x^{(k+1)} = D^{-1}(L + U)x^{(k)} + D^{-1}b \quad \text{or} \quad Dx^{(k+1)} = (L + U)x^{(k)} + b
\]