
CS412: Lecture #19

Mridul Aanjaneya

March 26, 2015

The Jacobi Method

We decompose

A = D︸︷︷︸
diagonal

− L︸︷︷︸
lower triangular

− U︸︷︷︸
upper triangular

Ax = b

⇒ (D − L− U)x = b

⇒ Dx = (L+ U)x+ b

⇒ x = D−1(L+ U)︸ ︷︷ ︸
T

x+D−1b︸ ︷︷ ︸
c

(x = Tx+ c)

Iteration: x(k+1) = D−1(L+ U)x(k) +D−1b or Dx(k+1) = (L+ U)x(k) + b

• Solution: Easy, since we need to solve a linear system of equations with
diagonal coefficient matrix


d1

d2
. . .

dn



x
(k+1)
1

x
(k+1)
2

...

x
(k+1)
n

 =


c1
c2
...
cn

⇒ x
(k+1)
i =

ci
di

• Convergence: The Jacobi method if guaranteed to converge when A is
diagonally dominant by rows.

• Complexity: Each iteration has a cost associated with:

1. Solving Dx(k+1) = c which requires n divisions.

2. Computing x = (L + U)x(k) + b which requires as many additions
and multiplications as non-zero entries in A (worst case O(n2), but
could be O(n) for sparse matrices).

1

• Stopping criteria: ||b−Ax(k)|| < ε or ||x(k+1) − x(k)|| < ε.

There are three forms of this algorithm we will see, for different purposes:

1. Matrix form (for proofs) Dx(k+1) = (L+ U)x(k) + b.

2. Algorithm form (without in-place update). Each row of Dx(k+1) = (L +
U)x(k) + b can be written as:

aiix
(k+1)
i = bi −

∑
j 6=i

aijx
(k)
j

⇒ x
(k+1)
i =

1

aii

bi −∑
j 6=i

aijx
(k)
j



1: x(0) ← initial guess
2: for k = 1 . . . < max iterations > do
3: for i = 1 . . . n do
4: x

(k+1)
i ← 1

aii

(
bi −

∑
j 6=i aijx

(k)
j

)
5: end for
6: check for convergence
7: end for

3. In-place algorithm (replaces x with a better estimate)

1: x← initial guess
2: for k = 1 . . . < max iterations > do
3: for i = 1 . . . n do
4: xnewi ← 1

aii

(
bi −

∑
j 6=i aijx

(k)
j

)
5: end for
6: x← xnew

7: check for convergence
8: end for

The Gauss-Seidel Method

We again employ the decomposition A = D − L− U

Ax = b

⇒ (D − L− U)x = b

⇒ (D − L)x = Ux+ b

2

At this point, we place x(k+1) on the left hand side and x(k) on the right hand
side

(D − L)x(k+1) = Ux(k) + b (1)

The benefit of the Gauss-Seidel method (1) over Jacobi is the improved conver-
gence, which is guaranteed not only for diagonally dominant matrices, but also
for symmetric and positive definite matrices.

In terms of complexity, each iteration of (1) amounts to solving a lower
triangular system via forward substitution, i.e., incurs a cost O(k), where k is
the number of non-zero entries in A. Once again, form (1) is useful for proofs,
while the pseudo code version is given as:

• Without in-place update

1: x(0) ← initial guess
2: for k = 1 . . . < max iterations > do
3: for i = 1 . . . n do
4: x

(k+1)
i ← 1

aii

(
bi −

∑
j<i aijx

(k+1)
j −

∑
j>i aijx

(k)
j

)
5: end for
6: check for convergence
7: end for

• In-place update

1: x← initial guess
2: for k = 1 . . . < max iterations > do
3: for i = 1 . . . n do

4: xnewi ← 1

aii

bi −∑
j<i

aijx
new
j −

∑
j>i

aijxj


5: end for
6: x← xnew

7: check for convergence
8: end for

Compare the above in-place update with that for Jacobi

3

1: x← initial guess
2: for k = 1 . . . < max iterations > do
3: for i = 1 . . . n do

4: xnewi ← 1

aii

bi −∑
j 6=i

aijx
(k)
j


5: end for
6: x← xnew

7: check for convergence
8: end for

The real difference in performance is that Gauss-Seidel is generally serial
in nature (although parallel variants exist), while Jacobi is highly parallel.

Overdetermined systems

So far, we considered linear systems Ax = b with the same number of equations
and unknowns (i.e., A ∈ Rn×n). In the case where A ∈ Rm×n, withm > n (more
equations than unknowns) the existence of a true solution is not guaranteed,
in this case we look for the “best possible” substitute for a solution. Before
analyzing what that means, let’s look at how such problems arise.

As an example, in an experiment, we measure the pressure of a gas in a
closed container, as a function of the temperature. From physics,

pV = nR
5

9
(T + 459.67)

⇒ p = αT + β, α =
5nR

9V
, β =

5nR · 459.67

9V

What are α and β? Experimentally, the measurements should ideally lie on a
straight line y = c1x+ c0, but do not, due to measurement error: if we have n
measurement pairs (x1, y1), . . . , (xn, yn) we would have wanted:

y1 = c1x1 + c0
y2 = c1x2 + c0

...
yn = c1xn + c0

⇒

x1 1
x2 1
...
xn 1


[
c1
c0

]
=


y1
y2
...
yn


Here, An×2x2×1 = bn×1 is a rectangular system. We cannot hope to find a true
solution to this system. Instead, lets try to find an “approximate” solution, such
that Ax ≈ b. Lets look at the residual of this “interpolation”. The residual of
the approximation of each data point is:

ri = yi − f(xi) = yi − c1xi − c0

4

If we write the vector of all residuals:

r =


r1
r2
...
rn

 =


y1 − c1x1 − c0
y2 − c1x2 − c0

...
yn − c1xn − c0

 =


y1
y2
...
yn

−

x1 1
x2 1
...
xn 1


[
c1
c0

]
= b−Ax

Although we can’t find an x such that Ax = b (thus, r = 0), we can at least try
to make r small.

As another example, consider the problem of finding the best parabola
f(x) = c2x

2 + c1x+ c0 that fits measurements (x1, y1), . . . , (xn, yn). We would
like

f(x1) ≈ y1
f(x2) ≈ y2

...
f(xn) ≈ yn

 =

c2x
2
1 + c1x1 + c0 ≈ y1

c2x
2
2 + c1x2 + c0 ≈ y2

...
c2x

2
n + c1xn + c0 ≈ yn

⇒

x21 x1 1
x22 x2 1

...
x2n xn 1


︸ ︷︷ ︸

A

 c2
c1
c0


︸ ︷︷ ︸

x

≈


y1
y2
...
yn


︸ ︷︷ ︸

b

Once again, we would like to make r = b−Ax as small as possible.
How do we quantify r being small? ⇒ using a norm! We could ask that

||r||1, ||r||2 or ||r||∞ be as small as possible. Any of these norms would be intu-
itive to consider for minimization (especially 1- and∞-norms are very intuitive).
However, we typically use the 2-norm for this purpose, because its the easiest
to work with in this problem!

Definition: The least squares solution of the overdetermined system Ax ≈ b is
the vector x that minimizes ||r||2 = ||b−Ax||2.

Define Q(x) = Q(x1, x2, . . . , xn) = ||b − Ax||22 where x = (x1, . . . , xn) and
A ∈ Rm×n, b ∈ Rm (m > n). The least squares solution is the set of values
x1, . . . , xn that minimize Q(x1, x2, . . . , xn)!

Q(x1, . . . , xn) = ||b−Ax||22 = ||r||22 =

m∑
i=1

r2i

r = b−Ax⇒ ri = bi − (Ax)i ⇒ ri = bi −
∑

aijxj

⇒ Q(x1, . . . , xn) =

m∑
i=1

bi − n∑
j=1

aijxj

2

If x1 . . . , xn are those that minimize Q, then:

5

∂Q

∂x1
= 0,

∂Q

∂x2
= 0, . . . ,

∂Q

∂xn
= 0

in order to guarantee a minimum.

∂Q

∂xk
=

∂

∂xk

 m∑
i=1

bi − n∑
j=1

aijxj

2


=

m∑
i=1

∂

∂xk

bi − n∑
j=1

aijxj

2

=

m∑
i=1

2

bi − n∑
j=1

aijxj


︸ ︷︷ ︸

ri

∂

∂xk

bi − n∑
j=1

aijxj



=

m∑
i=1

−2riaik = −2

m∑
i=1

[AT]kiri = −2[AT r]k = 0

⇒ [AT r]k = 0

Thus,

∂Q/∂x1 = 0 ⇒ [AT r]1 = 0
∂Q/∂x2 = 0 ⇒ [AT r]2 = 0

...
∂Q/∂xn = 0 ⇒ [AT r]n = 0

⇒ AT r = 0

Since r = b−Ax, we have:

0 = AT r = AT (b−Ax) = AT b−ATAx⇒ ATAx = AT b

The system above is called the normal equations system; it is a square system
that has as solution the least-squares approximation of Ax ≈ b

6

