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The Jacobi Method

We decompose
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TIteration: | z**Y = D™Y(L 4+ U)z®™ + D7 | or | Dz**+Y = (L 4+ U)2® + b

e Solution: Easy, since we need to solve a linear system of equations with
diagonal coeflicient matrix
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e Convergence: The Jacobi method if guaranteed to converge when A is
diagonally dominant by rows.

e Complexity: Each iteration has a cost associated with:

1. Solving Dz(**1) = ¢ which requires n divisions.

2. Computing = (L 4 U)z™® + b which requires as many additions
and multiplications as non-zero entries in A (worst case O(n?), but
could be O(n) for sparse matrices).



e Stopping criteria: ||b— Az || < ¢ or ||z*+tD) — 2F)|| < ¢.
There are three forms of this algorithm we will see, for different purposes:
1. Matrix form (for proofs) Dz*+1) = (L + U)z®) + b.

2. Algorithm form (without in-place update). Each row of Dz**1) = (L +
U)z®) 4 b can be written as:
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1: 20 « initial guess
2: for k =1... < max iterations > do

3: fori=1...ndo

& 2 o (bi — Xt az‘jxgk))
5: end for

6 check for convergence

7: end for

3. In-place algorithm (replaces x with a better estimate)

1: x < initial guess
2: for £k =1... < max iterations > do

3: fori=1...ndo

4 x?ew — 0% (bl — Zj;éi aija:;k)>
5 end for

6: T "W

7 check for convergence

8: end for

The Gauss-Seidel Method
We again employ the decomposition A =D — L — U

Ar = b
=(D-L-U)x = b
=(D—-Lx = Ux+b



At this point, we place z(*t1) on the left hand side and z(*) on the right hand
side

(D — L)z =yz® 4+ (1)

The benefit of the Gauss-Seidel method (1) over Jacobi is the improved conver-
gence, which is guaranteed not only for diagonally dominant matrices, but also
for symmetric and positive definite matrices.

In terms of complexity, each iteration of (1) amounts to solving a lower
triangular system via forward substitution, i.e., incurs a cost O(k), where k is
the number of non-zero entries in A. Once again, form (1) is useful for proofs,
while the pseudo code version is given as:

e Without in-place update

29 « initial guess
: for k=1... < max iterations > do
fori=1...ndo
mgkﬂ) A % (bi - Ej<i“ij$§'k+l) - Ej»aijmg‘k))
end for
check for convergence
end for
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e In-place update

1: x < initial guess

2: for k = 1... < max iterations > do
3: fori=1...ndo
1
4: xp e — b= Y a2 =y ai;
! A4 ’ Z R Z R
1<t 71>
5 end for
6 T 4 "W
7 check for convergence
8: end for

Compare the above in-place update with that for Jacobi



1: x < initial guess
2: for k = 1... < max iterations > do

3: fori=1...ndo

4: x?ew < i bz — Za”x(k)
A5 — J

J#i

5 end for

6 T "W

7 check for convergence

8: end for

The real difference in performance is that Gauss-Seidel is generally serial
in nature (although parallel variants exist), while Jacobi is highly parallel.

Overdetermined systems

So far, we considered linear systems Az = b with the same number of equations
and unknowns (i.e., A € R"*™). In the case where A € R™*" with m > n (more
equations than unknowns) the existence of a true solution is not guaranteed,
in this case we look for the “best possible” substitute for a solution. Before
analyzing what that means, let’s look at how such problems arise.

As an example, in an experiment, we measure the pressure of a gas in a
closed container, as a function of the temperature. From physics,

)
pV = nRg(T + 459.67)
5nRik 5nRR - 459.67
= T = =
Sp o= T+ a=ot A=

What are a and 87 Experimentally, the measurements should ideally lie on a
straight line y = ¢y + ¢, but do not, due to measurement error: if we have n

measurement pairs (z1,91), ..., (n, yn) we would have wanted:
y1 = arr + < z1 1 Y1
Yy2 = azz + <o x2 1 [ C1 ] Y2
= . = .
. CO
Yn = C1Tn + Co Tn 1 Yn

Here, A, x2T2x1 = bnx1 is a rectangular system. We cannot hope to find a true
solution to this system. Instead, lets try to find an “approximate” solution, such
that Az ~ b. Lets look at the residual of this “interpolation”. The residual of
the approximation of each data point is:

ri =y — f(zi) =y —azi —c



If we write the vector of all residuals:

1 Y1 — €171 — Co N T 1
T2 Y2 — 12 — Co Y2 z2 1 e
r = = = — =b— Ax
Co
Tn Yn — C1Tpn — Cp Yn T 1

Although we can’t find an x such that Az = b (thus, » = 0), we can at least try
to make r small.
As another example, consider the problem of finding the best parabola

f(z) = caz? + c12 + ¢ that fits measurements (z1,41), - ., (Tn, yn). We would
like

f(z) = T3 + 171 + o R a2 1 n
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Once again, we would like to make r = b — Az as small as possible.

How do we quantify r being small? = using a norm! We could ask that
[I7ll1, [Ir]|2 or ||r]|eo be as small as possible. Any of these norms would be intu-
itive to consider for minimization (especially 1- and oco-norms are very intuitive).
However, we typically use the 2-norm for this purpose, because its the easiest
to work with in this problem!

Definition: The least squares solution of the overdetermined system Ax ~ b is
the vector = that minimizes ||r||s = ||b — Az||2.

Define Q(z) = Q(x1,72,...,2,) = ||b — Ax||3 where x = (1,...,7,) and
A e R™"™ b e R™ (m > n). The least squares solution is the set of values
X1, .., T, that minimize Q(x1, 2, ..., Tn)!
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If z1 ..., 2, are those that minimize @, then:
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in order to guarantee a minimum.
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Thus,
0Q/0x1 = 0 = [ATr]; = 0
2Q)dxs = 0 = [ATr]s = 0
Ny
0Q/0x, = 0 = [ATr], = 0

Since r = b — Ax, we have:

0=ATr=AT(b— Az) = ATb— AT Az = | AT Az = ATD

The system above is called the normal equations system; it is a square system
that has as solution the least-squares approximation of Az ~ b



