
CS412: Lecture #2

Mridul Aanjaneya

January 22, 2015

Order notation

We say that

f(n) = O(g(n))

read as “f is big-oh of g” or “f is of order g” if there is a positive constant C
such that

|f(n)| ≤ C|g(n)|

for all n sufficiently large. For example,

2n3 + 3n2 + n = O(n3)

because as n becomes large, the terms of order lower than n3 become relatively
insignificant. For an accurate estimate, we are interested in the behavior as
some quantity h, such as a “step size” or “mesh spacing” becomes very small.
We say that

f(h) = O(g(h))

if there is a positive constant C such that

|f(h)| ≤ C|g(h)|

for all h sufficiently small. For example,

1

1− h
= 1 + h+ h2 + h3 + . . . = 1 + h+O(h2)

because as h becomes small, the omitted terms beyond h2 become relatively
insignificant. Note that the two definitions are equivalent if h = 1/n.

1

x (decimal notation) x (scientific notation)
2012 2.012× 103

412 4.12× 102

3.14 3.14× 100

0.000789 7.89× 10−4

0.2091 2.091× 10−1

How are numbers stored on the computer?

First, we shall review the concept of “scientific notation”, which will give us some
helpful insights. For any decimal number x (we assume that x is a terminating
decimal number, with finite non-zero digits) we can write

x = a× 10b, where 1 ≤ |a| < 10

Exception: When x = 0, we simply set a = b = 0. For example:
Every decimal (or Base 10) number can be written as

akak−1 . . . a2a1a0.a−1a−2a−3 . . . a−m =

k∑
i=−m

ai10i

For example

x a3 a2 a1 a0. a−1 a−2 a−3

3.14 3 1 4
0.037 3 7
2012 2 0 1 2

Binary (Base 2) fractional numbers can be written as

bkbk−1 . . . b2b1b0.b−1b−2b−3 . . . b−m =

k∑
i=−m

bi2
i

where every digit bi is now only allowed to equal 0 or 1. For example

• 5.75 = 4 + 1 + 0.5 + 0.25 = 1× 22 + 1× 20 + 1× 2−1 + 1× 2−2 = 101.11(2)

• 17.5 = 16 + 1 + 0.5 = 1× 24 + 1× 20 + 1× 2−1 = 10001.1(2)

Note that certain numbers that are finite (terminating) decimals actually are
periodic in binary, e.g.

0.4(10) = 0.01100110011 . . .(2) = 0.0110011(2) (1)

2

Machine numbers

This is an abbreviation for binary floating point numbers. The numbers stored
on the computer are essentially binary numbers, in scientific notation x = ±a×
2b. Here, a is called the mantissa and b the exponent. We also follow the
convention that 1 ≤ a < 2; the idea is that for any number x, we can always
divide it by an appropriate power of 2, such that the result will be within [1, 2).
For example:

x = 5(10) = 1.25(10) × 22 = 1.01(2) × 22

Thus, a machine number is stored as:

x = ±1.a1a2 . . . ak−1ak × 2b

• In single precision we store k = 23 binary digits, and the exponent b ranges
between −126 ≤ b ≤ 127. The largest number we can thus represent is
(2− 2−23)× 2127 ≈ 3.4× 1038.

• In double precision we store k = 52 binary digits, and the exponent b
ranges between −1022 ≤ b ≤ 1023. The largest number we can thus
represent is (2− 2−52)× 21023 ≈ 1.8× 10308.

In other words, single precision provides 23 binary significant digits. In order to
translate it to familiar decimal terms we note that 210 ≈ 103, thus 10 binary sig-
nificant digits are roughly equivalent to 3 decimal significant digits. Using this,
we can say that single precision provides approximately 7 decimal significant
digits, while double precision offers slightly more than 15.

Absolute and relative error

As discussed in the previous lecture, all computations on a computer are approx-
imate by nature, due to limited precision on the computer. As a consequence,
we have to tolerate some amount of error in our computation. In order to better
understand errors in computation, we use the absolute and relative error mea-
sures. Let q denote the exact (analytic) quantity that we expect out of a given
computation, and q̂ denote the (likely compromised) value actually generated
by the computer.

The absolute error is e = |q − q̂|. This is useful when we want to frame the
result within a certain interval, since e ≤ δ implies q ∈ [q̂ − δ, q̂ + δ].

The relative error is e = |q − q̂|/|q|. The result may be expressed as a
percentile and is useful when we want to assess the error relative to the value of
the exact quantity. For example, an absolute value of 10−3 may be insignificant
when the intended value of q is in the order of 106, but would be very severe if
q ≈ 10−2.

3

Rounding and truncation

When storing a number on the computer, if the number happens to contain more
digits than it is possible to represent via a machine number, an approximation
is made via rounding or truncation. When using truncated results, the machine
number is constructed by simply discarding significant digits that cannot be
stored; rounding approximates a quantity with the closest machine-precision
number. For example, when approximating π = 3.14159265 . . . to 4 decimal
significant digits, truncation would give π ≈ 3.1415 while the rounded result
would be π ≈ 3.1416. Rounding and truncation are similarly defined for binary
numbers, for example, x = 0.1011011101110 . . .(2) would be approximated to 5
binary significant digits as x ≈ 0.10110(2) using truncation, and x ≈ 0.10111(2)
when rounded.

4

