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Overdetermined Systems

Definition: The least squares solution of the overdetermined system Ax ≈ b is
the vector x that minimizes ||r||2 = ||b−Ax||2.

Define Q(x) = Q(x1, x2, . . . , xn) = ||b − Ax||22 where x = (x1, . . . , xn) and
A ∈ Rm×n, b ∈ Rm (m > n). The least squares solution is the set of values
x1, . . . , xn that minimize Q(x1, x2, . . . , xn)!

Q(x1, . . . , xn) = ||b−Ax||22 = ||r||22 =

m∑
i=1

r2i

r = b−Ax⇒ ri = bi − (Ax)i ⇒ ri = bi −
∑

aijxj

⇒ Q(x1, . . . , xn) =

m∑
i=1

bi −
n∑

j=1

aijxj

2

If x1 . . . , xn are those that minimize Q, then:

∂Q

∂x1
= 0,

∂Q

∂x2
= 0, . . . ,

∂Q

∂xn
= 0

in order to guarantee a minimum.
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∂Q

∂xk
=

∂

∂xk

 m∑
i=1

bi −
n∑

j=1

aijxj

2


=

m∑
i=1

∂

∂xk

bi −
n∑

j=1

aijxj

2

=

m∑
i=1

2

bi −
n∑

j=1

aijxj


︸ ︷︷ ︸

ri

∂

∂xk

bi −
n∑

j=1

aijxj



=

m∑
i=1

−2riaik = −2

m∑
i=1

[AT ]kiri = −2[AT r]k = 0

⇒ [AT r]k = 0

Thus,

∂Q/∂x1 = 0 ⇒ [AT r]1 = 0
∂Q/∂x2 = 0 ⇒ [AT r]2 = 0

...
∂Q/∂xn = 0 ⇒ [AT r]n = 0

⇒ AT r = 0

Since r = b−Ax, we have:

0 = AT r = AT (b−Ax) = AT b−ATAx⇒ ATAx = AT b

The system above is called the normal equations system; it is a square system
that has as solution the least-squares approximation of Ax ≈ b

AT
n×mAm×n︸ ︷︷ ︸

n×n

xn×1︸ ︷︷ ︸
n×1

= AT
n×mbm×1︸ ︷︷ ︸

n×1

The normal equations always have a solution (with the simple condition that
the columns of A have to be linearly independent - usually true).

Problem: The condition number of ATA is the square of that of A (if A was
square itself!).

QR factorization

An alternative method that does not suffer from this problematic conditioning
is QR factorization.
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Definition: An n× n matrix Q is called orthonormal if and only if

QTQ = QQT = I

Theorem 1. Let A ∈ Rm×n (m > n) have linearly independent columns. Then
a decomposition A = QR exists, such that Q ∈ Rm×m is orthonormal and
R ∈ Rm×n is upper triangular, i.e.,

R =

(
R̂
O

)
where R̂ is an n × n upper triangular matrix. Additionally, given that A has
linearly independent columns, all diagonal elements rii 6= 0.

Now, let us write

Q =
[
Q̂ Q?

]
where Q̂ ∈ Rm×n contains the first n columns of Q and Q? ∈ Rm×(m−n) contains
the last (m− n) columns. Respectively, we write:

R =

(
R̂
O

)
where R̂ ∈ Rn×n (and upper triangular) contains the first n rows of R. R̂ is
also non-singular because it has linearly independent columns.

We can verify the following:

Q̂T Q̂ = In×n (although Q̂Q̂T 6= Im×m!)

Proof.

[Q̂T Q̂]ij =

m∑
k=1

[Q̂T ]ik[Q̂]kj

=

m∑
k=1

[Q̂]ki[Q̂]kj =

m∑
k=1

[Q]ki[Q]kj

= [QTQ]ij = [Im×m]ij

The factorization A = Q̂R̂ is the so-called economy size QR factorization.
Once we have Q̂ and R̂ computed, we observe that the normal equations can be
written as:
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ATAx = AT b

⇒ R̂T Q̂T Q̂︸ ︷︷ ︸
=Im×m

R̂ = R̂T Q̂T b

⇒ R̂T R̂ = R̂T Q̂T b

⇒ R̂x = Q̂T b (1)

The last equality follows because R̂ is invertible.

Benefit: We can show that cond(ATA) = [cond(R̂)]2, thus equation (1) is much
better conditioned than the normal equations system!

Numerical Integration

We seek an algorithm to approximate the definite integral:

I =

∫ b

a

f(x)dx

or, the area below the graph of y = f(x). Of course, in the fortuitous case where
we know a function F (x) (the anti-derivative of f), such that F ′(x) = f(x), we
can write:

∫ b

a

f(x)dx = F (b)− F (a)

For example, arctan(x)′ = 1/(1 + x2), thus

∫ b

a

dx

1 + x2
= arctan(b)− arctan(a)

However, this is not a practical algorithm, since:

• The anti-derivative is not generally known.

• Often, the anti-derivative may be significantly more expensive to evaluate
than f(x) itself. For example, compare f(x) = 1/(1 + x2) (easy) with
F (x) = arctan(x) (expensive).

Our general solution methodology will be as follows:

• Subdivide the interval of integration using the n + 1 points {xi}ni=0 with

a = x0 < x1 < x2 < . . . < xn−1 < xn = b
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• In each interval [xi, xi+1], approximate f(x) with some simpler function,
say a polynomial Pi(x) which is easy to integrate. Approximate

Ii =

∫ xi+1

xi

f(x)dx ≈
∫ xi+1

xi

Pi(x)dx

• Compute the integral

I =

∫ b

a

f(x)dx =

n−1∑
i=0

Ii ≈
n−1∑
i=0

∫ xi+1

xi

Pi(x)dx

Example: The rectangle rule: at each interval [xi, xi+1] use the approximation
Pi(x) = f(xi) (the left end point!)

xi+1xi x0 x1 . . . xn

Thus, we approximate:

Ii =

∫ xi+1

xi

f(x)dx ≈
∫ xi+1

xi

f(xi)dx = f(xi)(xi+1 − xi)

In the case where xi+1 − xi = h = constant, we can write

I =

∫ b

a

f(x)dx =

n−1∑
i=0

Ii ≈
n−1∑
i=0

f(xi) · h =
b− a

n

n−1∑
i=0

f(xi)

As in the case of interpolation, we can assess the error incurred by this approx-
imation. There are two errors we actually focus on:

• The local error |
∫ xi+1

xi
(f(x)− Pi(x))| at each subinterval [xi, xi+1].

• The global error for the entire integral
∫ b

a
f(x)dx.
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