CS412: Lecture #22

Mridul Aanjaneya
April 14, 2015

Simpson’s rule

This is a slightly more complicated algorithm, but the accuracy gains are so
attractive that it has become somewhat of a golden standard for numerical
integration. It is based on (piecewise) quadratic interpolation. Specifically,
consider three equally spaced z-values:

T1,To =x1 + h,x3 =21 + 2h

with associated y-values, y; = f(x;), i = 1,2,3. We will approximate f(x) in
[x1, 23] with a quadratic p(x) = cow® + c1x + ¢o that interpolates the three data
points (z1,y1), (z2,y2), (x3,y3). Using Lagrange interpolation:
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and p(x) = y1l1(z) + yala(x) + ysls(z). We then proceed to approximate
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After some easy (yet tedious) analytic integration using the previous formulas,
we get:



Thus,
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This is Simpson’s rule and is commonly written as:
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In order to define the respective composite rule, we use a partitioning:

a=20<T1 <To<...<Xop_1<Top, =20

This time we define each interval Dy = [zak, Zakt2], and
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and the composite rule Ismp = Z;é 1}, simp becomes:
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In order to estimate the local error, we again try to use the formula for the inter-
polation error of passing a quadratic p*) () through (zox, f(z21)), (Tarr1, f(Tort1)),

(T2r+2, [(T2n+2))-
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And with this we are at a dead end! We cannot simply remove the absolute
value in the expression (%) since it changes sign in [xo, Zog+2]. Even if we break
up this integral in sub-intervals, we will at best show that Simpson’s rule is 3rd
order accurate, where in fact it is even more, i.e., 4th order accurate!

To achieve our goal, we will use a different (and more general) type of analysis.
It is possible to show that:

Theorem 1. If an integration rule integrates exactly any polynomial up to
degree (d — 1), then the global error is O(h?) or better, i.e., the rule is at least
d-order accurate.

Methodology: We will test Simpson’s rule on monomials f(z) = 2¢, d =
0,1,2,...

o f(z)=1:
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Thus, Simpson’s rule is 4th order accurate, i.e.,

€k local < O(h5)
ek global < O(h*)



Assessing order of accuracy in integration rules

Theorem 2. If an integration rule integrates exactly any polynomial up to
degree (d — 1), then the global error is O(h?) or better, i.e., the rule is at least
d-order accurate.

Methodology:

e Test the integration rule on monomials of degree 0,1,2,. .., i.e., on f(z) =

1, f(x) =z, f(x) =22, ...

o If f(x) = x% is the 1st test function that is not integrated exactly, the
order of accuracy is equal to d.

Example: Trapezoidal rule I = f: f(x)dx ~ %ﬂt(b)(b —a).

e flx)=1:

Livap = %(b —a) = (b—a) = exact!
o f(z)=1=x

Lirap = GT—H)(I) —a)= % - a; = exact!
. () =a?
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Thus, trapezoidal rule is 2nd order accurate!



