
CS412: Lecture #3

Mridul Aanjaneya

January 27, 2015

Machine ε (epsilon)

A concept that is useful in quantifying the error caused by rounding or trunca-
tion is the notion of the machine ε (epsilon). There are a number of (slightly dif-
ferent) definitions in the literature, depending on whether truncation or round-
ing is used, specific rounding rules, etc. Here, we will define the machine ε as
the smallest positive machine number, such that

1 + ε 6= 1 (on the computer)

Why isn’t the above inequality always true, for any ε > 0? The reason is that
when subject to the computer precision limitations, some numbers are “too
small” to affect the result of an operation, e.g.

1 = 1. 000 . . . 000︸ ︷︷ ︸
23 digits

×20

2−25 = 0. 000 . . . 000︸ ︷︷ ︸
23 digits

01× 20

1 + 2−25 = 1. 000 . . . 000︸ ︷︷ ︸
23 digits

01× 20

When rounding (or truncating) the last number to 23 binary significant digits
corresponding to single precision, the result would be exactly the same as the
representation of the number x = 1! Thus, on the computer we have, in fact,
1 + 2−25 = 1, and consequently 2−25 is smaller than the machine epsilon. We
can see that the smallest positive number that would actually achieve 1 + ε 6= 1
with single precision machine numbers is ε = 2−24 (and we are even relying
a “round upwards” convention for tie breaking to come up with a value this
small), which will be called the machine ε in this case. For double precision,
the machine ε is 2−53.

The significance of the machine ε is that it provides an upper bound for
the relative error of representing any number to the precision available on the
computer; thus, if q > 0 is the intended numerical quantity, and q̂ is the closest
machine-precision approximation, then

(1− ε)q ≤ q̂ ≤ (1 + ε)q

1



where ε is the machine epsilon for the degree of precision used; a similar expres-
sion holds for q < 0.

Solving nonlinear equations

We turn our attention to the first major focus topic of our class: techniques
for solving nonlinear equations. In an earlier lecture, we actually addressed
one common nonlinear equation, the quadratic equation ax2 + bx + c = 0, and
discussed the potential hazards of using the seemingly straightforward quadratic
solution formula. We will start our discussion with an even simpler nonlinear
equation:

x2 − a = 0, a > 0

The solution is obvious, x = ±
√
a (presuming, of course, that we have a sub-

routine at our disposal that computes square roots). Let us, however, consider
a different approach:

• Start with x0 = <initial guess>

• Iterate the sequence

xk+1 =
x2k + a

2xk
(1)

We can show (and we will via examples) that this method is quite effective at
generating remarkably good approximations of

√
a after just a few iterations.

Let us, however, attempt to analyze this process from a theoretical standpoint.
If we assume that the sequence x0, x1, x2, . . . defined by this method has a

limit, how does that limit relate to the problem at hand? Assume limk→∞ = A.
Then, taking limits on equation (1) gives

lim
k→∞

xk+1 = lim
k→∞

x2k + a

2xk
⇒ A =

A2 + a

2A
⇒ 2A2 = A2 + a⇒ A2 = a⇒ A = ±

√
a

Thus, if the iteration converges, the limit is the solution of the nonlinear equation
x2 − a = 0. The second question is whether it may be possible to guarantee
that the described iteration will converge. For this, we manipulate equation (1)
as follows

xk+1 =
x2k + a

2xk
⇒ xk+1 −

√
a =

x2k + a

2xk
−
√
a =

x2k − 2xk
√
a+ a

2xk
=

[xk −
√
a]2

2xk

If we denote by ek = xk−
√
a the error (or discrepancy) from the exact solution

of the approximate value xk, the previous equation reads

ek+1 =
e2k

2xk
=

e2k
2(ek +

√
a)

(2)

2



For example, if we were approximating the square root of a = 2, and at some
point we had ek = 10−3, the previous equation would suggest that ek+1 < 10−6.
One more application of this equation would yield ek+2 < 10−12. Thus we
see that, provided the iteration starts close enough to the solution, we not
only converge to the desired value, but actually double the number of correct
significant digits in each iteration. We defer the detailed proof until after we
have introduced the more general method.

Newton’s method

This example is a special case of an algorithm for solving nonlinear equations
known as Newton’s method (also called the Newton-Raphson method). The
general idea is as follows: if we “zoom” close enough to any smooth function,
its graph looks more and more like a straight line (specifically, the tangent
line to the curve). Newton’s method suggests: if after k iterations we have

x

f(x)

approximated the solution of f(x) = 0 (a general nonlinear equation) as xk,
then:

• Form the tangent line at (xk, f(xk)).

• Select xk+1 as the intersection of the tangent line with the horizontal axis
(y = 0).

If (xn, yn) = (xn, f(xn)), the tangent line to the plot of f(x) at (xn, yn) is:

y − yn = λ(x− xn), where λ = f ′(xn) is the slope

3



x0x1 x2

y1 = f(x1)

y2 = f(x2)

y0 = f(x0)
Tangent line

y = f(xk) + f ′(xk)(x− xk)

Thus, the tangent line has equation y − yn = f ′(xn)(x − xn). Setting y = 0
gives

−f(xn) = f ′(xn)(x− xn)⇒ x = xn −
f(xn)

f ′(xn)
= xn+1

Ultimately, Newton’s method reduces to:

xn+1 = xn −
f(xn)

f ′(xn)
(3)

Our previous example (square root of a) is just an application of Newton’s
method to the nonlinear equation f(x) = x2 − a = 0. Applying equation (3)

4



gives:

xk+1 = xk −
f(xk)

f ′(xk)
= xk −

x2k − a
2xk

=
2x2k − x2k + a

2xk
=
x2k + a

2xk

which is the same iteration we considered previously.
A few comments about Newton’s method:

• It requires the function f(x) to be not only continuous, but differentiable
as well. We will later see variants that do not explicitly require knowledge
of f ′. This would be an important consideration if the formula for f ′(x)
is significantly more complex and expensive to evaluate than f(x), or if
we simply do not possess an analytic expression for f ′ (this could be the
case if f(x) is not given to us via an explicit formula, but only defined via
a black-box computer function that computes the value).

• If we ever have an approximation xk with f ′(xk) ≈ 0, we should expect
problems, especially if we are not close to a solution (we would be nearly
dividing by zero). In such cases, the tangent line is almost (or exactly)
horizontal. Thus, the next iterate can be a very remote value and conver-
gence may be far from guaranteed.

xk
proper solution

xk+1

Fixed point iteration

Newton’s method is in itself a special case of a broader category of methods
for solving nonlinear equations called fixed point iteration methods. Generally,

5



if f(x) = 0 is the nonlinear equation we seek to solve, a fixed point iteration
method proceeds as follows:

• Start with x0 = <initial guess>.

• Iterate the sequence

xk+1 = g(xk)

where g(x) is a properly designed function for this purpose. Note that
g(x) is related, but otherwise different than f(x).

Following this method, we construct the sequence x0, x1, x2, . . . , xk, . . . hoping
that it will converge to a solution of f(x) = 0. The following questions arise at
this point:

1. If this sequence converges, does it converge to a solution of f(x) = 0?

2. Is this iteration guaranteed to converge?

3. How fast does this iteration converge?

4. (Of practical concern) When do we stop iterating and declare that we have
obtained an acceptable approximation?

We start by addressing the first question: if the sequence {xk} does converge,
can we ensure that it will converge to a solution of f(x) = 0? Taking limits on
xk+1 = g(xk), and assuming that

1. limk→∞ xk = a, and

2. the function g is continuous,

gives

lim
k→∞

xk+1 = lim
k→∞

g(xk)⇒ a = g(a)

The simplest way to guarantee that a is a solution to f(x) = 0 (in other words,
f(a) = 0) is if we construct g(x) such that

x = g(x) is mathematically equivalent to f(x) = 0

There are many ways to make this happen, e.g.,

f(x) = 0⇔ x+ f(x) = x⇔ x = g(x), where g(x) ≡ x+ f(x)

or

f(x) = 0⇔ e−xf(x) = 0⇔ e−xf(x) + x2 = x2 ⇔ e−xf(x) + x2

x
= x⇔

6



⇔ g(x) = x where g(x) ≡ e−xf(x) + x2

x

or

f(x) = 0⇔ − f(x)

f ′(x)
= 0⇔ x− f(x)

f ′(x)
= x⇔ g(x) = x, where g(x) ≡ x− f(x)

f ′(x)

The last example is exactly Newton’s method; substituting the definition of
g(x) above into the iteration xk+1 = g(xk) yields the familiar Newton update
equation. Thus, we know that if fixed point iteration converges, it will be to a
solution of f(x) = 0.

7


