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Polynomial Interpolation

A commonly used approach is to use a properly crafted polynomial function
f@)=Pu(z) =ag+ a1z + asx? + ..+ an_12" 7t 4 apa”

to interpolate the points (zo,yo), - - -, (Zk, Yx). Some benefits:

e Polynomials are relatively simple to evaluate. They can be evaluated
very efficiently using Horner’s method, also known as nested evaluation or
synthetic division:

Pn(x) = ag + x(a1 + z(az + 2(. .. (an-1 + za,) ...)))
which requires only n additions and n multiplications. For example,

1—dx+52% - 22% 4+ 32* = 1+ 2(—4 + 2(5 + 2(~2 + 3z)))

e We can easily compute derivatives P;,, P/ if desired.

e Reasonably established procedure to determine the coefficients a;.

e Polynomial approximations are familiar from, e.g., Taylor series.
And some disadvantages:

e Fitting polynomials can be problematic, when

1. We have many data points (i.e., k is large), or

2. Some of the samples are too close together (i.e., |z; — x;| is small).

In the interest of simplicity (and for some other reasons), we try to find the most
basic, yet adequate, P, (z) that interpolates (xo,%o),- - ., (zk, yx). For example,

e If k¥ = 0 (only one data sample), a 0-degree polynomial (i.e., a constant
function) will be adequate.
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e If k =1, we have two points (zg,yo) and (x1,y1). A O-degree polynomial
Po(x) = ag will not always be able to pass through both points (unless
Yo = Y1), but a 1-degree polynomial P;(z) = ag + a1z always can.
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These are not the only polynomials that accomplish the task, e.g., when k& = 0,
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The problem with using a degree higher than the minimum necessary is that:

e More than 1 solution becomes available, with the “right” one being un-
clear.

e Wildly varying curves become permissible, producing questionable ap-
proximations.

In fact, we can show that using a polynomial P, (x) of degree n is the best
choice when interpolating n+ 1 points. In this case, the following properties are
assured:

e Existence: Such a polynomial always exists (assuming that all the x;’s
are different! It would be impossible for a function to pass through 2
points on the same vertical line). We will show this later, by explicitly
constructing such a function. For now, we can at least show that such a
task would have been impossible (in general) if we were only allowed to
use degree-(n — 1) polynomials. In fact, consider the points

(0,90 =0), (x1,y1 =0),. .., (Tn-1,Yn-1 = 0), (Tn,yn = 1)

Thus, if a degree-(n — 1) polynomial was able to interpolate these points,
we would have:

Pr-1(x0) =Pn-i(z1) =... =Pr_1(zn—1) =0

Prn—1(x) can only equal zero at ezactly n — 1 locations unless it is the
zero polynomial. Since P,_1(z) is zero at n locations, we conclude that
Pn—1(z) = 0. This is a contradiction as Pp,_1(z,) # 0!

e Uniqueness: We can sketch a proof by contradiction. Assume that
Pn(z) =po+p1T + ... + D"
On(z) =q +qr+...+ gu2"
both interpolate every (z;,y;), i.e., Pn(z;) = OQn(x;) = y;, forall 0 < i < n.
Define another n-degree polynomial
Rn(z) = Pp(x) — Qun(x) =19 + 112+ ... + rpa”

Apparently, R, (z;) = 0 for all 0 < i < n. From algebra, we know that
every polynomial of degree n has at most n real roots, unless it is the zero
polynomial, i.e., ro =r; = ... = r, = 0. Since we have R, (z) = 0 for
n + 1 distinct values, we must have R, (z) =0 = P,(z) = Q,(x)!

The most basic procedure to determine the coefficients ag,ai,...,a, of the
interpolating polynomial P, () is to write a linear system of equations as follows:
ap + a1y + a4+ ...+ ap 127 Fapxt = Pulr) =
ap + a1 + agxs + ...+ an 12y Fanry = Pu(ra) = y2
ap+ a1y + a0z’ + .. F ap 12" M+ anz? = Pu(zn) =y



or, in matrix form:

2 n—1
1z 2y ... = . ] ao Yo
2 p—
1 m x5 ... xy xy a, Y1
2 -1
1z, = ... ap Ty O, Yn
—_—— —
Vin+1)x (n+1) A(n41) Y(n+1)
The matrix V is called a Vandermonde matriz. The set of functions {1, z,22,..., 2"}
represent the monomial basis. We will see that V' is non-singular, thus, we can
solve the system Va = § to obtain the coefficients @ = (ag, a1, ...,ay). Let’s

evaluate the merit and drawbacks of this approach:

e Cost to determine the polynomial P, (z): very costly.

Since a dense (n + 1) x (n + 1) linear system has to be solved. This
will generally require time proportional to n3, making large interpolation
problems intractable. In addition, the Vandermonde matrix is notorious
for being challenging to solve (especially with Gaussian elimination) and
prone to large errors in the computed coefficients {a;}, when n is large
and/or z; ~ z;.

e Cost to evaluate f(z) (x=arbitrary) if coefficients are known: very cheap.
Using Horner’s method:

ap + a1z + agr? + ... anr" = ag + w(ay +z(az + 2(.. . (an_1 +z0y)...))

e Availability of derivatives: very easy. For example,

P! (x) = ay + 2apx + 3azz® + ...+ (n — an_ 12" 2 + na,z™ !

e Allows incremental interpolation: no!

This property examines if interpolating through (zo, o), .., (Tn,yn) is
easier if we already know a polynomial (of degree n — 1) that interpolates
through (zo,40),- ., (Tn—1,Yn—1). In our case, the system Va = g would
have to be solved from scratch for the n + 1 data points.

To illustrate polynomial interpolation using the monomial basis, we will deter-
mine the polynomial of degree 2 interpolating the three data points (—2, —27),
(0,—1), (1,0). In general, there is a unique polynomial

Po(x) = ag + a12 + aga®

Writing down the Vandermonde system for this data gives

1 -2 4 ap 27
1 0 0 a | = -1
1 1 1 as 0



Solving this system by Gaussian elimination yields the solution @ = (—1, 5, —4)
so that the interpolating polynomial is

Po(z) = —1 + b — 4a?



