
CS412: Lecture #9

Mridul Aanjaneya

February 17, 2015

Lagrange Interpolation

Lagrange interpolation is an alternative way to define Pn(x), without hav-
ing to solve expensive systems of equations. For a given set of n + 1 points
(x0, y0), (x1, y1), . . . , (xn, yn), define the Lagrange polynomials of degree-n l0(x),
l1(x), . . . , ln(x) as:

li(xj) =

{
1 if i = j
0 if i 6= j

Then, the interpolating polynomial is simply

Pn(x) = y0l0(x) + y1l1(x) + . . .+ ynln(x) =

n∑
i=0

yili(x)

Note that no solution of a linear system is required here. We just have to
explain what every li(x) looks like. Since li(x) is a degree-n polynomial, with
the n-roots x0, x1, x2, . . . , xi−1, xi+1, xi+2, . . . , xn, it must have the form

li(x) = Ci(x− x0)(x− x1) . . . (x− xi−1)(x− xi+1) . . . (x− xn)

= Ci

∏
j 6=i

(x− xj)

Now, we require that li(xi) = 1, thus

1 = Ci ·
∏
j 6=i

(xi − xj)⇒ Ci =
1∏

j 6=i(xi − xj)

Thus, for every i, we have

li(x) =
(x− x0)(x− x1) . . . (x− xi−1)(x− xi+1) . . . (x− xn)

(xi − x0)(xi − x1) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xn)

=
∏
j 6=i

(x− xj)
(xi − xj)

1



Note: This result essentially proves existence of a polynomial interpolant of
degree n that passes through n + 1 data points. We can also use it to prove
that the Vandermonde matrix V is non-singular. If it were singular, a right
hand side ỹ = (y0, . . . , yn) would have existed such that V ã = ỹ would have no
solution, which is a contradiction!

Let’s use Lagrange interpolation to compute an interpolating polynomial to
the three data points (−2,−27), (0,−1), (1, 0).

P2(x) = −27
(x− 0)(x− 1)

(−2− 0)(−2− 1)
+ (−1)

(x− (−2))(x− 1)

(0− (−2))(0− 1)
+ 0

(x− (−2))(x− 0)

(1− (−2))(1− 0)

= −27
x(x− 1)

6
+

(x+ 2)(x− 1)

2
= −1 + 5x− 4x2

Recall form Lecture 8 that this is the same polynomial we computed using the
monomial basis!

Let us evaluate the same four quality metrics we saw before for the Vander-
monde matrix approach.

• Cost of determining Pn(x): very easy.

We are essentially able to write a formula for Pn(x) without solving any
systems. However, if we want to write Pn(x) = a0 + a1x+ . . .+ anx

n, the
cost of evaluating the ai’s would be very high! Each li(x) would need to
be expanded, leading to O(n2) operations for each li(x) implying O(n3)
operations for Pn(x).

• Cost of evaluating Pn(x) for an arbitrary x: significant.

We do not really need to compute the ai’s beforehand, if we only need
to evaluate Pn(x) at a select few locations. For each li(x) the evaluation
requires n subtractions and n multiplications, implying a total of O(n2)
operations (better than O(n3) for computing the ai’s).

• Availability of derivatives: not readily available.

Differentiating each li(x) (since P ′n(x) =
∑
yil
′
i(x)) is not trivial; the

above expression has n terms each with n− 1 products per term.

• Incremental interpolation: not accomodated.

Still, Lagrange interpolation is a good quality method if we can accept its limi-
tations.

Newton Interpolation

Newton interpolation is yet another alternative, which enables both efficient
evaluation and allows for incremental construction. Additionally, it allows both
the coefficients {ai} as well as the derivative P ′n(x) to be evaluated efficiently.

2



For a given set of data points (x0, y0), . . . , (xn, yn), the Newton basis functions
are given by

πj(x) = (x− x0)(x− x1) . . . (x− xj−1) =

j−1∏
k=1

(x− xk), j = 0, . . . , n

where we take the value of the product to be 1 when the limits make it vacuous.
In the Newton basis, a given polynomial has the form

Pn(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + . . .+ an−1(x− x0)(x− x1) . . . (x− xn−1)

From the definition, we see that πj(xi) = 0 for i < j, so that the basis matrix
A with aij = πj(xi) is lower triangular. To illustrate Newton interpolation,
we use it to determine the interpolating polynomial for the three data points
(−2,−27), (0,−1), (1, 0). With the Newton basis, we have the lower triangular
linear system 1 0 0

1 x1 − x0 0
1 x2 − x0 (x2 − x0)(x2 − x1)

 a0
a1
a2

 =

 y0
y1
y2


For the given data, this system becomes 1 0 0

1 2 0
1 3 3

 a0
a1
a2

 =

 −27
−1
0


whose solution is ã = (−27, 13,−4). Thus, the interpolating polynomial is

P2(x) = −27 + 13(x+ 2)− 4(x+ 2)x = −1 + 5x− 4x2

which is the same polynomial we computed earlier!

3


