(CS412: Lecture #9

Mridul Aanjaneya
February 17, 2015

Lagrange Interpolation
Lagrange interpolation is an alternative way to define P,(z), without hav-
ing to solve expensive systems of equations. For a given set of n + 1 points

(0, 90)s (1,Y1)s - - - » (Tny Yn), define the Lagrange polynomials of degree-n ly(x),
li(x),...,lh(x) as:

1 ifi=g
i) = { 0 ifi#j
Then, the interpolating polynomial is simply
Po(x) = yolo(x) + yil1 (x) + ... + ynln(2) = > yili(2)
i=0

Note that no solution of a linear system is required here. We just have to
explain what every [;(z) looks like. Since [;(z) is a degree-n polynomial, with

the n-roots xg,x1, T, ..., Ti—1,Ti11,Tita, - .., Ty, it must have the form
li(x) = Cix—zo)(x—x1)...(x —zi—1)(x — 2i11) ... (x — x)
= G|l —=y)
J#i

Now, we require that [;(z;) = 1, thus

1
1201" (551_33):>CZ:—
]1;[. ! Hj;éi(xi - ;)
Thus, for every i, we have
L(w) = (x—zo)(x—2x1) ... (r —wi—1)(x — zi1) - .. (x — xp)

((Ei — xo)(xz — xl) . (CEZ — $i,1)(xi — $i+1) ce (xz - wn)

H (z —)

i (@i —5)

Note: This result essentially proves existence of a polynomial interpolant of
degree n that passes through n + 1 data points. We can also use it to prove
that the Vandermonde matrix V is non-singular. If it were singular, a right
hand side § = (yo, - - ., ¥n) would have existed such that Va = § would have no
solution, which is a contradiction!

Let’s use Lagrange interpolation to compute an interpolating polynomial to
the three data points (-2, —27), (0, —1), (1,0).

Polw) = —o7 &0l

E ey
(x—1) N (x+2)(x—1)

T
= =27
6 2

= —1+4 52 — 422

Recall form Lecture 8 that this is the same polynomial we computed using the
monomial basis!

Let us evaluate the same four quality metrics we saw before for the Vander-
monde matrix approach.

e Cost of determining P,,(z): very easy.
We are essentially able to write a formula for P, (x) without solving any
systems. However, if we want to write P, (x) = ag+ a1z + ...+ a,a™, the
cost of evaluating the a;’s would be very high! Each I;(x) would need to
be expanded, leading to O(n?) operations for each I;(x) implying O(n?)
operations for P, (x).

e Cost of evaluating P, (z) for an arbitrary x: significant.

We do not really need to compute the a;’s beforehand, if we only need
to evaluate P, (z) at a select few locations. For each [;(x) the evaluation
requires n subtractions and n multiplications, implying a total of O(n?)
operations (better than O(n3) for computing the a;’s).

e Availability of derivatives: not readily available.

Differentiating each [;(z) (since Pj,(x) = > y;ll(x)) is not trivial; the
above expression has n terms each with n — 1 products per term.

e Incremental interpolation: not accomodated.

Still, Lagrange interpolation is a good quality method if we can accept its limi-
tations.

Newton Interpolation

Newton interpolation is yet another alternative, which enables both efficient
evaluation and allows for incremental construction. Additionally, it allows both
the coefficients {a;} as well as the derivative P/ (x) to be evaluated efficiently.

For a given set of data points (zg, 4o),. - -, (Tn, Yn), the Newton basis functions
are given by

j—1

mi(x)=(z—z0)(x—x1)...(x —xj_1) = H(x—xk), i=0,...,n
k=1

where we take the value of the product to be 1 when the limits make it vacuous.
In the Newton basis, a given polynomial has the form

Pr(x) =ap+ a1(x — xg) + as(x — z0)(x —x1) + ... + an—1(x —z0)(x —x1) ... (T — Tp—1)

From the definition, we see that 7;(x;) = 0 for ¢ < j, so that the basis matrix
A with a;; = m;(x;) is lower triangular. To illustrate Newton interpolation,
we use it to determine the interpolating polynomial for the three data points
(—2,-27),(0,—1),(1,0). With the Newton basis, we have the lower triangular
linear system

1 0 0 ag Yo
1 Tr1 — o 0 a1 = Y1
1 29—m9 (v2—mo)(z2—71) | | a2 Y2

For the given data, this system becomes

100 ao [27
1 20 a | =| -1
1 3 3 as 0

whose solution is @ = (—27,13, —4). Thus, the interpolating polynomial is
Po(z) = =27+ 13(x +2) — 4(z + 2)x = —1 + 5o — 422

which is the same polynomial we computed earlier!

