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Abstract
Motivated by the desire to investigate vehicle fording scenarios, we analyze four frameworks for the sim-
ulation of the fluid-solid interaction problem. While all of these approaches rely on a general multibody
dynamics simulation framework that supports impact, contact, and constraint, they differ in (i) the fluid
representation; (ii) the simulation methodology; and (iii) the fluid-solid interfacing mechanism.
The first approach relies on an explicit-implicit, Lagrangian-Lagrangian (LL), solution to the coupled
Navier-Stokes and Newton-Euler equations of motion. The fluid momentum and continuity equations,
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are solved using a weakly compressible Smoothed Particle Hydrodynamics (SPH) method [1]. In Eqs.
(1) and (2), ρ , v, p, f, and µ are density, velocity, pressure, volumetric force, and dynamic viscosity,
respectively. The incompressibility is satisfied to an appropriate degree by using a state equation that
relates the pressure and density. The two way coupling of the solid and fluid phases is enforced using
Lagrangian markers on the solid surfaces as well as within a layer inside the solid object. These so-called
Boundary Condition Enforcing (BCE) markers have been employed and validated for a range of particle
suspension problems as documented in [2].
The second approach relies on a coupled semi-implicit Lagrangian-Lagrangian method called “constraint
fluids” [3] where a many-body density constraint is formulated using each SPH marker and its sur-
rounding neighbors. More specifically, Eq. (2) is replaced with a constant density constraint written as
ρ/ρ0 − 1 = 0, where ρ0 is the target density. At each step a quadratic optimization problem is solved
where the unknowns represent impulses on the SPH particles that enforce incompressibility through the
density constraint. The major benefit of this approach is that coupling between fluid and rigid is straight-
forward as both the solid and fluid phases can be modeled in the same system of equations.
Unlike the first two approaches, the third method implements an Eulerian framework for the discretiza-
tion of the inviscid incompressible Navier-Stokes equations on a marker-and-cell (MAC) grid [4]. Herein,
Eq. (1) is written in the form of a partial differential equation where dv/dt is replaced with ∂v/∂ t+v·∇v.
In a projection method [5] implemented to enforce the divergence free constraint, i.e. ∇·v = 0 instead of
Eq. (2), an explicit advection step is first carried out using a second-order accurate MacCormack-style
method [6]. The pressure projection equation is subsequently solved using the second-order cut-cell
method [7]. Before updating the incompressible velocity through advection, they are extrapolated across
the interface using the fast extension method [8] in order to define valid ghost node values. We use the
level set method [9] to track the free surface of the incompressible fluid. The level set function φ is
advected using the particle level set method [10] and the semi-Lagrangian advection scheme [11].
The last and least accurate method approximates fluid as a set of frictionless rigid spheres which inter-
act with each other through contact and, if desired, friction and cohesion. This method is based on a
differential variational inequality approach where friction and contact are handled at the velocity level
using a semi-implicit time stepping scheme [12]. The fluid–solid coupling is trivial as both phases are
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Figure 1: A kinematically driven vehicle moving inside an incompressible fluid simulated using 3 meth-
ods. Left: 1 million frictionless rigid bodies, Center: 1 million SPH markers using constraint fluid, Right:
A 256×256×512 Cartesian MAC grid.

characterized by a set of constrained Newton-Euler equations of motion. In this framework, the nu-
merical approach calls for the solution of a large cone complementarity problem subsequently cast as
a quadratic optimization problem with conic constraints. The numerical solution of the latter is found
using a Nesterov-type algorithm [13], which yields at each time step the set of frictional contact forces
for all pairs of bodies experiencing mutual contact.
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