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Abstract

We consider direct visibility in simple orthogonal poly-
gons and derive tight lower and upper bounds on
the number of strictly internal and external visibility
edges. We also show a lower bound of [5] —1 on the
number of diffuse reflections required for completely
illuminating an orthogonal polygon from an arbitrary
point inside it. Further, we derive lower bounds on
the combinatorial complexity of the visibility polygon
of a point source S after £k > 1 specular reflections
within special classes of polygons.

1 Introduction

Let P be a simple polygon with n vertices. The in-
ternal (external) visibility graph [2] of P is a graph
with vertex set equal to the vertex set of P, in which
two vertices are adjacent if the line segment connect-
ing them does not intersect the exterior (interior) of
P. A visibility edge is called strictly internal (strictly
external) [2] if it is not an edge of P and lies com-
pletely inside (outside) P. Line segments connecting
non-consecutive vertices of the polygon that intersect
polygon edges are called mized visibility edges [2]. The
edge bc (resp. ab) in Figure 1(i) is a strictly external
(resp. internal) visibility edge, and cd is a mixed vis-
ibility edge. We focus on a special class of polygons,
namely orthogonal polygons, in which the internal an-
gle at each vertex is either 90 or 270 degrees.

We consider direct visibility and derive a lower
bound of (2n — 6) on the sum S of the number of
strictly internal and strictly external visibility edges.
We also derive an upper bound on S by counting
the number of mixed visibility edges. We show these
bounds to be tight by constructing two families of or-
thogonal polygons which achieve these bounds.

Next, we consider visibility with reflections. We
prove that [§] — 1 diffuse reflections are sometimes
necessary for completely illuminating a simple poly-
gon from an arbitrary point inside it by considering
a spiral orthogonal polygon. We also derive several
lower bounds on the combinatorial complexity of the
visibility polygon Vp(S) of a point source S after k > 1
specular reflections within special classes of polygons
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P. For simple orthogonal polygons, we show that
Vp(S) can have Q(n?) holes with one reflection. We
also show that Vp(S) is simply-connected after at
most two reflections in spiral orthogonal polygons,
and that Vp(S) can have Q(n) holes after ©(n) re-
flections in general spiral polygons.

2 Counting visibility edges

Let int(P) (resp. ext(P), miz(P)) denote the num-
ber of strictly internal (resp. strictly external, mixed)
visibility edges of a polygon P. Determining the sum
of the number of strictly internal (i) and strictly ex-
ternal (e) visibility edges, ¢ + e, of a simple polygon
was posed as an open problem in [1]. This problem
was settled by Urrutia in [2]. He also suggested a fam-
ily of polygons (as shown in Figure 1(ii)) that achieve
the bound in Theorem 1.

Theorem 1 (Urrutia [2]) For any simple polygon
P with n vertices, the number of strictly internal and
strictly external visibility edges is at least [3%5-17] — 4.
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Figure 1: (i) Visibility edges. (ii) A family of simple
polygons which achieve the lower bound for (i + e).

2.1 Lower bound on the number of visibility edges

A partitioning of P into convex quadrilaterals is called
a convexr quadrilateralization of P. Only vertices of
the polygon P may serve as vertices of the quadri-
laterals. Kahn, Klawe and Kleitman [3] proved that
every orthogonal polygon P (with or without holes)
is convexly quadrilateralizable. Any convex quadri-
lateralization of P has 252 convex quadrilaterals [5].
Adding a diagonal to each quadrilateral gives us a tri-
angulation of P which has (n — 3) edges. If we now

flip the diagonal of each quadrilateral, we again get a



triangulation of P with distinct edges. Using this
fact to count the number of strictly internal visibility
edges, we have the following lemma:

n—2
2

Lemma 2 Any n-sided simple orthogonal polygon P
has at least 3”{ 8 strictly internal visibility edges.

A vertex v of P is internal if it is inside the convex
hull of P. We use Lemma 3 proved by Urrutia in [2]
to derive a lower bound of (2n — 6) on the number of
strictly internal and strictly external visibility edges.

Lemma 3 (Urrutia [2]) If P is a simple polygon
with k internal vertices, then there are at least k
strictly external visibility edges, i.e., ext(P) > k.

Theorem 4 There are at least (2n—6) strictly inter-
nal and strictly external visibility edges in any simple
orthogonal polygon P with n vertices.

Proof. First note that all reflex vertices of P are in-
ternal vertices. O’ Rourke showed that there are ”T*‘l
reflex vertices in any orthogonal polygon with n ver-
tices [5]. So from Lemma 3, there are at least “5%
strictly external visibility edges in P. Using this fact

and Lemma 2, we get int(P) + ext(P) >2n—6. O

Figure 2: (a) Staircase polygons which achieve the
lower bound of (2n —6). (b) Construction scheme for
the staircase (z and y are any two positive integers).
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We show this bound to be tight by constructing a
family of staircase polygons for which i + e =2n — 6
(see Figure 2(a)). A staircase polygon is an isothetic
polygon bounded by two monotonically rising (falling)
staircases. The staircase is constructed as shown in
Figure 2(b).

2.2  Upper bound on the number of visibility edges

In simple polygons, it is easy to see that int(P) +
ext(P) < ("Cy — n). This bound is achieved by a
convex polygon where the number of mixed visibility
edges is zero. However, mixz(P) is never zero for or-
thogonal polygons. We call a horizontal edge of P a
top (bottom) edge if int(P) is below (above) it. Sim-
ilarly, we define left (right) vertical edges of P. We
derive the following upper bound and also show it to
be tight by constructing a family of staircase poly-
gons. See Figure 4 for the construction.
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Figure 3: A mixed visibility edge is present between
any two top edges (symmetric cases are also possible).

Theorem 5 There are at most w

Z? N ”1("1 U strictly internal and strictly external
visibility edges in any simple orthogonal polygon P
with n vertices, where n, (resp. ng,ns,ng), is the

number of top (resp. bottom, left, right) edges in P.

Proof. Let e; and ey be any two top edges in P with
e1 lying below es. Let p and ¢ (resp. r and s) be
the end-points of e; (resp. es2). See Figure 3. Con-
sider the quadrilateral @) formed by joining p to r and
q to s, where traversal of the boundary bd(P) of P
in an anticlockwise fashion starting from p gives the
sequence of the vertices visited as p — s — r — q.
Since rs is a top edge, there exists a point x inside
Q@ infinitesimally below rs lying inside P. Similarly,
there exists a point y inside @ infinitesimally above
pq lying outside P. We conclude that bd(P) inter-
sects the interior of Q). So at least one of the four
edges of (Q must be a mixed visibility edge. So there
is at least one mixed visibility edge corresponding to
every pair of top edges. Symmetrically, this claim also
holds for every pair of left (resp. right, bottom) edges
also. From the above observation we conclude that,
miz(P) > Z?:l % Using this observation and
the fact that int(P) + ext(P) 4+ mixz(P) = @ —n,

i n(n—3 4 ni(ni—1
we get int(P)+ext(P) < % =D ie1 % U
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Figure 4: (a) Staircase polygons which achieve the up-
per bound. (b) Construction scheme for the staircase
(z and y are any two positive integers).



3 Visibility with reflections

The problem of visibility when reflections from the
interior of edges are allowed was first considered in [6,
7, 8]. Two kinds of reflections were defined, specular,
in which Newton’s laws of reflection are obeyed, and
diffuse, in which light is reflected back in all possible
directions over a spread of 180 degrees. We denote the
visibility polygon [4] of a point source S in a simple
polygon P by Vp(S).

3.1 lllumination with diffuse reflections

An interesting problem in visibility is to bound the
number of diffuse reflections required for completely
illuminating a given polygon. The portion m of an
edge e that becomes visible at the kth reflection is
called a mirror at the kth stage. The union of mir-
rors at the kth stage of reflection, lying on an edge e of
P, form connected components called reflecting seg-
ments. Prasad et al. [8] proved the following lemma:

Lemma 6 ([8]) Let the edge e of P have a reflecting
segment at the [th stage of reflection. Then, the entire
edge e is a reflecting segment at the (I + 2)nd stage.

Figure 5: Illumination after two diffuse reflections
in spiral polygons. (Illuminated regions are shaded
white, non-illuminated regions are shaded black.)

Consider an n-sided spiral orthogonal polygon Q.

We claim that [§] — 1 reflections are necessary for
completely illuminating @) from any arbitrary point
inside it. Using Lemma 6 one can show that start-
ing from the arm containing the source S light suc-
cessively floods adjoining arms, thereby propagating
inside the polygon. So each arm of ) requires one
diffuse reflection to become illuminated. Hence, @
becomes completely illuminated after [§] — 1 diffuse
reflections. It is well-known that the entire polygon
will be illuminated after n diffuse reflections [9]. How-
ever, we believe that [5] — 1 diffuse reflections are
also sufficient for complete illumination. We have
not been able to prove it as yet.

One approach for proving this result would be to
study diffuse reflections in the light of the cooperative
guards problem (see [10]). However, the guards chosen
should be edge guards instead of verter guards since
the latter can see “around the corner”, which is not

permitted in reflections.

3.2 Combinatorial complexity of visibility poly-
gons with specular reflections

Let P be any n-sided simple polygon. A blind spot
is a connected component of P\Vp(S). Holes are
blind spots which do not intersect the boundary of P.
Aronov et al. [7] proved that the visibility polygon
Vp(S) of a point source S has complexity O(n?) with
one specular reflection and that this bound is tight.
We show that this bound can also be achieved in case
of orthogonal polygons, even though the topology of
such polygons does not permit the initial angle of in-
cidence of a ray to change significantly. See Figure 6
for an example with (n?) holes.

Figure 6: Q(n?) holes with one specular reflection.

Now consider spiral orthogonal polygons. For at
most two reflections, we show that Vp(S) is simply-
connected in such polygons. For one specular reflec-
tion, a wvpath limit is defined as any 2-link path in P
from S to bd(P) that obeys the reflection property
but passes through a vertex of P. Blind spots are
created by the intersection of vpath limits. Each link
of a vpath is given a direction which is same as that of
the ray defining it. Suppose two vpath links cross at
x. Removal of these two links produces four or more
quadrants, which are classified as left, right, bottom,
or top. If the blind spot lies in the left (right, bottom,
top) quadrant with respect to x, locally near x, then
x is called a left (right, bottom, top) vertex. See [7] for
details on the above definitions. The following result
was proved in [7]:

Lemma 7 ([7]) A hole is a closed convex polygon
with each vertex on two vpath limits; it contains ex-
actly one top and one bottom vertex.

Lemma 7 can be generalized to multiple specular
reflections. Using this result, one can show that at
least three sources (real or virtual), which throw light
in a shadow, are required for creating a hole at the kth
stage of reflection. See Figure 7. There exist only two
sources after both one and two specular reflections.
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Figure 7: Vp(S) is simply connected after one and
two specular reflections.

So Vp(S) remains simply-connected. However, after
k > 3 specular reflections, we observed that the anal-
ysis became extremely complicated. We are unaware
of the combinatorial complexity of Vp(S) after k > 3
specular reflections. In case of general spiral poly-
gons however, we observed that Vp(S) is multiply-
connected after three specular reflections (see Figure
8). Note that the construction shown in Figure 8 iso-
lates a single beam of light in each curl of the spi-
ral polygon. The part of the beam reflected back in
the previous curl can be made infinitely thin, so that
it has no subsequent effect on the connectedness of
Vp(S). We can extend this construction by curling
the polygon ©(n) times to prove the following result:

Theorem 8 The visibility polygon Vp(S) of a point
source S can have Q(n) holes in an n-sided spiral poly-
gon P after ©(n) specular reflections.

4 Conclusion

We derived tight lower and upper bounds on the com-
plexity of the internal and external visibility graphs
of orthogonal polygons. We considered the problem
of illuminating a polygon by multiple diffuse reflec-
tions and also studied the complexity of the visibil-
ity polygon Vp(S) of a point source S after multiple
specular reflections within special classes of polygons.
Apart from the several open problems discussed in
the paper, we are also studying the complexity of
Vp(S) after multiple diffuse reflections. We believe
that Vp(S) is always simply-connected in orthogonal
polygons. However, we still lack a proof. We also be-
lieve that it might be possible to solve the following

Figure 8: A hole after three specular reflections.

conjecture stated in [8] for orthogonal polygons, and
we are currently working towards proving this result.

Conjecture 1 ([8]) The total complexity of Vp(S)
after k diffuse reflections is ©(n?).
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