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Abstract
We present a novel method for the efficient denting and bending of rigid bodies without the need for expensive finite
element simulations. Denting is achieved by deforming the triangulated surface of the target body based on a dent
map computed on-the-fly from the projectile body using a Z-buffer algorithm with varying degrees of smoothing.
Our method accounts for the angle of impact, is applicable to arbitrary shapes, readily scales to thousands of
rigid bodies, is amenable to artist control, and also works well in combination with prescoring algorithms for
fracture. Bending is addressed by augmenting a rigid body with an articulated skeleton which is used to drive
skinning weights for the bending deformation. The articulated skeleton is simulated to include the effects of both
elasticity and plasticity. Furthermore, we allow joints to be added dynamically so that bending can occur in a non-
predetermined way and/or as dictated by the artist. Conversely, we present an articulation condensation method
that greatly simplifies large unneeded branches and chains on-the-fly for increased efficiency.

1. Introduction
Realistic deformation and destruction of objects has be-
come increasingly popular in modern day computer games
providing immersive gameplay and visual feedback to the
player’s actions. Such effects can be accurately simulated
using computationally intensive algorithms such as finite el-
ement methods [BW97], however, rigid objects require high
stiffness and thus either more expensive implicit time dis-
cretization or a stringent explicit time step restriction. For ef-
ficiency, researchers have designed algorithms that use such
methods only on a limited basis [MMDJ, PPG04, BHTF07]
and otherwise use faster rigid body solvers for the bulk of the
simulation. Although efficient finite element algorithms have
also been designed for real-time systems [PO09, DBB11], it
is often preferable to make the simulation as fast as possi-
ble freeing up resources for other tasks. More importantly,
finite element simulations are not easy for the artist to con-
trol. In light of the above, [SSF09] proposed a prescoring
algorithm for frame rate rigid body fracture which was op-
timized for real-time systems in [MCK13]. However, large
scale denting effects are still missing from today’s games
and are only available for very specific scenarios such as
bullet impacts using either precomputed textures or parallax
mapping [Wes06].
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We dent rigid bodies by deforming the triangulated sur-
face of the target body using a dent map that is computed
on-the-fly from the projectile body via a Z-buffer algorithm
with varying degrees of smoothing. Our method has similari-
ties with [SSF09] where a prescoring algorithm was used for
fracture, and realistic fractures were obtained by centering
the prescored fracture pattern at the point of impact. Sim-
ilar to prescoring the entire space, our method computes a
dent map for the entire space that is based on the projectile
body’s shape, orientation, and angle of impact. Our method
allows for the efficient and controllable denting of arbitrary
meshes, readily scales to thousands of rigid bodies (see Fig-
ure 10) and also works well in combination with prescoring
algorithms for fracture. Moreover, it can be easily integrated
into most rigid body simulation frameworks as a postprocess
at the end of each time step.

Unlike denting which is a local change to the rigid body
mesh, bending is more typically a global deformation and
hence, is not easily achieved by using displacement maps,
proxy meshes, etc. Thus, we propose a skeleton-based ap-
proach to bending where the skeleton can either be spec-
ified by an artist or computed using medial axes [Dey06,
HWCO∗13, MC14]. We use linear blend skinning for up-
dating the rigid body’s triangulated surface mesh, although
other methods can also be used [KCvO08,DdL13,VBG∗13].
Whereas bending is usually considered to be a plastic defor-
mation, our method can also handle short term elastic behav-
ior. Although various authors have considered two-way cou-

c© The Eurographics Association 2014.



Patkar et al. / Efficient Denting and Bending of Rigid Bodies

Figure 1: (Top) Denting in a Gauss-Seidel manner results in
asymmetry. (Bottom) Symmetric denting can be achieved by
using a Jacobi-style algorithm.

pling between articulated skeletons and deformable bodies,
see e.g. [SSF08, KP11, LGS∗11, TGTL11, LYWG13] (see
also [JL11, MZS∗11]), our method appears to be the first to
use an articulated skeleton for defining the shape of a rigid
body, and we obtain visually pleasing bends even with very
crude skeletons. For added realism, we also allow for the dy-
namic augmentation of the skeleton with new joints when-
ever unforeseen impacts/collisions occur. For efficiency, we
propose a condensation mechanism to dynamically collapse
sub-bodies into a single rigid body cluster thereby simpli-
fying large articulated branches and chains. Note that our
method is not physically-based but still produces results that
are comparable to finite element simulations; in fact linear
finite element methods can have visual artifacts such as lin-
earized rotations causing a plank to become thicker near
its ends after bending (see [BHTF07]) - which our method
avoids.

2. Rigid Body Simulation
We use the method of [GBF03] as our base solver, although
our method is general enough to be incorporated into most
rigid body simulation frameworks. Each rigid body has both
a triangulated surface and a level set representation. We use

x

z

(a) (b) (c) (d)

Figure 2: a) A ball hitting a block in two spatial dimensions.
The x and z axes represent the local placement of the co-
ordinate system of the displacement map D, b) A dent map
applied to the collision surface points only, c) A dent map ap-
plied to all the points so that the back of the block bulges out-
wards. d) A thin wall gets inverted because of a very sharp
attenuation function.

Figure 3: Ball fracturing a wall illustrating our denting algo-
rithm in combination with a prescored fracture.

the second order accurate integration scheme from [SSF08]
to explicitly update the position and velocity. For simulat-
ing articulated rigid bodies, we use the maximal coordinate
framework of [WTF06], enforce the joint constraints with
impulse-based prestabilization, and enforce linear and an-
gular velocity constraints with poststabilization. Due to its
impulse-based nature, the method can be easily integrated
with most collision and contact algorithms for simulating
rigid bodies.

3. Denting
Denting can be viewed as applying a displacement map D
to every point in three dimensional space, D : (x,y,z) →
(∆x,∆y,∆z). Given such a map, one can center its coordi-
nate axes at the point of impact and transform the points on
the target body creating a dent. After denting the triangu-
lated surface, other auxiliary rigid body information such as
level sets and bounding boxes are updated. The projectile
rigid body can be treated in several different ways: it can be
moved into the space created by the dent, its velocity can be
modified or left unaffected, it may also dent, etc. When the
projectile rigid body is also denting, we use the predented
information for each body when denting the other body in
order to obtain symmetric results (see Figure 1).

3.1. Dent maps
Storing the displacement map D can be computationally in-
efficient requiring a huge memory footprint. Thus, we in-

Z-buffer

broadening
and

smoothing

Figure 4: (Left) The dotted line shows the image plane used
for the Z-buffer algorithm. (Middle) The profile of the pro-
jectile body causing the dent. (Right) Smoothed version of
the profile.
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stead store a two dimensional dent map D̂ : (x,y,z = 0)→
(∆x,∆y,∆z) which can be specified analytically, generated
procedurally, created by an artist, taken from finite element
simulations, etc. Consider a simple two dimensional exam-
ple where a ball hits a block as shown in Figure 2. The ball
leaves a dent in the block at the point of impact, and for
this special case an analytic dent map with a Gaussian dent
function is a suitable choice for a plausible dent. We place a
coordinate system with its origin at the point of impact and
z-axis along the direction of the inward normal of the body
being dented (we refer to this inward normal as the denting
normal). The dent map stores a displacement for each point
on the x-axis. In this case a Gaussian is stored as a function of
x and the width of the Gaussian is chosen as a function of the
sphere’s radius. The amplitude of the Gaussian, i.e. |D̂(~0)|,
can either be specified as a user-defined input parameter or
computed based on the impact velocities during collision.
We refer to this amplitude |D̂(~0)| as the dent distance. Ap-
plying the two dimensional dent map only moves the points
on the collision plane as shown in Figure 2b. Additional re-
alism can be obtained by including an attenuation function,
for example, by specifying D(x,y,z) = a(z)D̂(x,y), where
a(0) = 1 and a(z) approaches zero for z > 0. In Figure 2c we

chose a(z) = 2/(1+ez/|D̂(~0)|) and note that the deformation
on the back side of the surface is an attenuated version of that
on the colliding front side. One must be careful when choos-
ing a(z) such that the falloff is not so steep that points on the
front surface cross over those on the back surface (see Fig-
ure 2d). If the falloff is less steep than f (z) = 1− z/|D̂(~0)|,
then the dent map will not cause the object to self-intersect.
A more steep falloff can be chosen to get a certain effect as
long as the object is not too thin.

3.2. Arbitrarily shaped projectiles
Analytic dent maps can give implausible results for projec-
tiles with more complex shapes. Although artists could hand
craft object-specific dent maps, it can be cumbersome espe-
cially because the dent map depends on the orientation of
the object as shown in Figure 4. To remedy this, we propose
a novel algorithm to generate these dent maps procedurally.
First we move the collision plane in the direction opposite
the denting normal by the dent distance. Then we use a stan-
dard Z-buffer algorithm to compute the profile of the pro-
jectile that impacts the target (the maximum Z-depth from
the plane towards the target is used). The size of the two di-
mensional grid is chosen such that it is large enough to have
the dent map taper off to zero near the boundaries. The res-
olution of this grid is chosen based on the mesh resolutions
of the target body and the projectile body to ensure that all
small scale features of the projectile body are captured in
the dent. Note that our algorithm readily handles non-convex
shapes such as the bunny ears in Figure 5.

Using the profile generated by the Z-buffer algorithm
alone may generate dents that are too crisp as shown in Fig-
ure 5b (far left). Thus, we smooth the results of the Z-buffer

algorithm as shown in Figure 4 (far right), Figure 5b, and
Figure 7. As an example consider Figure 6. The black curve
is the profile generated by the Z-buffer algorithm using the
uniform one dimensional grid that stores the dent map. To
obtain a broader dent function, we place a Gaussian func-
tion of height zi at location xi for each point (xi,zi) on the
black curve. The width of the Gaussian is computed based
on the desired blurring of the final map. Then we compute
the upper envelope of these Gaussians (shown in red). This
upper envelope can have sharp corners when Gaussians from
two local maxima intersect each other. To remove these and
obtain the green curve, we use few iterations of an opti-
mized heat kernel/convolution operator in an explicit fashion
(many efficient GPU implementations exist). This removes
the noise in the dent map near the peaks. Then we rescale
the dent map such that the dent distance remains the same as
before and again run few iterations of a modified heat ker-
nel/convolution operator, but this time clamping the result
so that Z-values are only allowed to increase (not decrease).
This removes the sharp creases giving a smooth result. See
Figure 7. Note that the broadening algorithm is crucial for
producing realistic dents. Directly smoothing the Z-buffer
profile using the heat equation will cause inter-penetrations
when the projectile body is moved inside the target body,
while using the modified heat equation on the Z-buffer pro-
file retains the sharp corners (see the blue curve in Figure 6).

As discussed above, the algorithm requires one to com-
pute the upper envelope of Gaussian functions defined on
a two dimensional grid. We accomplish this efficiently us-
ing a technique from computational geometry (see for ex-

(a) (Left to right) shows the effect of increasing the dent distance.

(b) (Left to right) shows the effect of increasing smoothing.

Figure 5: Different parameter values for the dent distance or
Gaussian width allows us to obtain the illusion of simulating
different material properties.
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Figure 6: (Black) Result of the Z-buffer algorithm. (Cyan)
Gaussians of height zi placed at xi for every point (xi,zi).
(Red) Upper envelope of the Gaussians. (Green) Final result
obtained by heat equation smoothing of the red curve. (Blue)
Result obtained after running the modified heat equation di-
rectly on the black curve.

ample [dBCvKO08]). It is well-known that the upper enve-
lope of planes in three spatial dimensions can be found in
O(N logN) time by mapping the planes to points in the dual
space and taking the lower convex hull of the dual points.
Thus, given a set of Gaussians over the xy-plane defined as
z = zi exp(−c((x− xi)

2 +(y− yi)
2)), we compute their up-

per envelope by first mapping them to a set of planes with the
same upper envelope in the following fashion: first take the
logarithm of each Gaussian to obtain logz = logzi− c((x−
xi)

2 + (y− yi)
2), then subtract off −c(x2 + y2) to obtain

logz = 2cxix+2cyiy+(logzi− cx2
i − cy2

i ) which represents
a plane in the coordinates (x,y, logz). Given these planes, we
compute the convex hull of their dual points in O(N logN)

Figure 7: (Top left) Result of the Z-buffer algorithm for the
bunny from Figure 5. (Top right) Result obtained by com-
puting the upper envelope of the Gaussians - notice the sharp
boundaries. (Bottom left) Final dent map after smoothing the
upper envelope with the heat equation. (Bottom right) Parti-
tioning of the collision plane based on the upper envelopes.
Each triangle is uniquely associated with a Gaussian that is
the uppermost Gaussian in that region.

time. Every edge in the lower convex hull corresponds to an
intersection between two Gaussians that belong to the upper
envelope. Note that two Gaussians with the same width in-
tersect along a plane that projects to a line on the collision
plane. Given a Gaussian, we find the corresponding point on
the lower convex hull and compute the polygonal region in
which it is the uppermost Gaussian by intersecting it with
Gaussians corresponding to neighboring points. This gives
us a polygonal partitioning of the two dimensional collision
plane, which we triangulate to obtain a mapping from trian-
gles to Gaussians (see Figure 7d). We rasterize each triangle
onto the grid used by the Z-buffer algorithm and update the
values of all grid cells (pixels) that lie inside that triangle
with the value of the corresponding Gaussian at those cell
centers. Note that this construction requires that all Gaus-
sians have the same width c, which is fine for our applica-
tion.

a) b) c) d)

Figure 8: a) Ball hitting an object at an angle θ. b) Dent
map along the relative velocity direction c) Scaling the dent
map by 1/cos(θ) to account for the oblique projection and
rotating to align it along the collision plane. d) Shearing the
dent map while maintaining its base to orient it along the
relative velocity direction.

3.3. Glancing impacts
The aforementioned discussion is valid when a projectile
rigid body impacts a target rigid body head on, however, it
requires modifications when the projectile impacts the target
at an angle. Assuming the angle between the velocity of the

x

z

a

θ

Figure 9: Shearing the dent map. (Red) Dent map for a ball
hitting head on. (Black) Scaled dent map. (Green) Sheared
dent map generated from the black curve corresponding to
impacting at an angle. (Blue) Slightly widened version of the
green curve that better matches the width of the red curve.
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Figure 10: An armadillo, a bunny, a horse and a dinosaur being dented by a large number of spheres.

projectile and the denting normal is θ, we first use our Z-
buffer algorithm along the direction perpendicular to the rel-
ative velocity as shown by the blue line in Figures 8a and 8b.
Then we rotate the Z-buffer grid and scale it by 1/cos(θ) to
align it with the collision plane - the scaling accounts for the
oblique projection and widens the base of the dent map (see
Figure 8c). Note that we clamp the denominator to avoid di-
vision by zero, although such cases are rare because the rela-
tive velocity along the normal direction is small for large val-
ues of θ. Finally, to obtain the result shown in Figure 8d, we
shear the dent map by an angle θ as follows. For simplicity of
exposition, consider a one dimensional dent map D̂(x,z = 0)
as shown in red in Figure 9. Since the displacement is only
along the denting normal, the dent map D̂ can be specified
as D̂(x) = (0,D̂2(x)). First we scale all points (x,D̂2(x)) on
the red curve by a factor s < 1 to obtain the black curve
with points (x,sD̂2(x)). Then we shear the points on the
black curve by an angle θ along the x-axis to obtain the
green curve with points (x− tan(θ)sD̂2(x),sD̂2(x)). The ori-
gin gets transformed to (− tan(θ)sa,sa) on the green curve,
where a is the original dent distance. Choosing s to keep
the dent distance invariant implies that sec(θ)as = a or
s = cos(θ). In summary, the green curve is computed by
the transformation (x,0)→ (x−sin(θ)D̂2(x),cos(θ)D̂2(x)).
Although the green curve has the correct angle and dent
distance, it does not have the correct width - the width of
the green curve reduces as the angle increases. The curve
shown in blue can be obtained by the transformation ((x−
2sin(θ)D̂2(x))/(1 + exp(tx)),cos(θ)D̂2(x)), where t ≥ 0.
Note that setting t = 0 gives back the green curve.

3.4. Timing
Table 1 shows the timing information on a single CPU for
the different steps of our denting algorithm as the two-
dimensional grid storing the dent map is refined. For all our
examples, the resolution of this grid was between 50× 50
and 200×200 depending on the mesh resolutions of both the
projectile body and the target body. Note that the broadening
and smoothing steps only depend on the grid resolution.

Grid Broadening
Resolution Z-buffer Ours O(N2) Smoothing

25×25 .0086 .0053 .0148 1.5e−4

50×50 .0094 .0118 .2392 5.9e−4

100×100 .0104 .0696 3.949 .0025
200×200 .0125 .6643 65.88 .0105
400×400 .0178 8.031 1057 .0438

Table 1: Timing (in seconds) for the example from Figure 5a
(far right) under grid refinement. The fourth column corre-
sponds to the brute-force O(N2) approach for computing the
upper envelope of a set of Gaussian functions.

As can be seen from Figure 11 a grid resolution of 25×25
gives results that are quite acceptable for a video game set-
ting while grids of resolution 100× 100 and higher give re-
sults that are completely free of artifacts. Note that a GPU
implementation of the Z-buffer and convex hull algorithms
(which form the major components of our broadening algo-
rithm) can provide more than an order of magnitude speedup
allowing one to create tens of dents in a real time environ-
ment (see for e.g. [TZTM12]). Finally, although we do use
the expensive, albeit more accurate, level set method for sim-
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Figure 11: Bunny hitting a block with a grid of resolution
(top left) 20× 20, (top right) 50× 50, (bottom left) 100×
100, and (bottom right) 200×200 for the dent map.
ulating rigid bodies, one could certainly use a faster rigid
body solver for video games as our algorithm can work with
any black box rigid body solver.

Since our method operates only on the surface mesh,
our work shares similarities with the recent work of [RJ07,
DBB11,MC11]. Being more focused on denting effects, our
algorithm does not require the storage of velocities for ev-
ery mesh point and is local by design. However, it is more
limited in scope as it cannot be used to obtain elastic effects
such as squish, squeeze or twist - our main goal was to de-
sign a method that can easily be integrated in any rigid body
solver and allows bodies to dent.

3.5. Results
Algorithm 1 gives the pseudo code for our denting algo-
rithm. As is evident, denting is performed completely as a
post-process and only requires some auxiliary collision in-
formation from the actual rigid body simulation. Note that
step 21 can be done asynchronously and is very specific to
level set based rigid body solvers.

Figure 3 shows a prescored wall being dented and sub-
sequently fractured by a ball demonstrating that our method
can be easily integrated with a prescoring algorithm for frac-
ture. In this example we dented the wall over time instead of
creating a single dent. To achieve this, we repeatedly used
the predented state with increasing dent distances. Figure 5
demonstrates the ability of our method to mimic different
material properties by changing the dent distance and Gaus-
sian width. Figure 10 shows an armadillo, a bunny, a horse
and a dinosaur being dented by 1500 small spheres, four
medium sized spheres and three large spheres, which are
themselves dentable, illustrating the scalability and robust-
ness of our denting algorithm. Our method captures both
the large deformation undergone by the dinosaur’s back and
the small scale details on the horse. The reader may observe
that our method suffers from a noticeable amount of volume

loss when the projectile body as well as the denting distance
are large, as can be seen when the big sphere hits the di-
nosaur’s back. We leave addressing this issue as interesting
future work.

Algorithm 1 Denting Pseudo code
1: function DENT(target A, projectile B)
2: Compute denting distance based on relative velocity.
3: Decide the resolution and size of the grid.
4: Compute the Z-buffer profile of B on the grid.
5: Broaden the Z-buffer profile using Gaussians.
6: Smooth the profile using the modified heat equation.
7: Shear the dent map to account for glancing impact.
8: Apply the dent map to A’s surface mesh.
9: for every time step do

10: Advance the rigid bodies by one time step. Store col-
11: lision location, relative velocity, and collision nor-
12: mal for every collision pair.
13: for every collision pair (A,B) do
14: if relative normal velocity > threshold then
15: if A is dentable then
16: DENT(A,B) and possibly move B to
17: make the dent look more plausible
18: if B is dentable then
19: DENT(B,A) and possibly move A to
20: make the dent look more plausible
21: Update surfaces and level sets for all dented bodies.

4. Bending
To model bending, we augment each rigid body with an ar-
ticulated skeleton. The rigid body is then divided into sub-
bodies, and each sub-body is associated with an articulated
bone in the skeleton. For each bone, its triangulated surface
is computed by assigning to it all triangles whose maximum
skinning weight is associated with that bone. See for exam-
ple, Figure 12 (top right) which shows a bunny with four
articulated bones and (bottom left) which shows the triangu-
lated surface associated with each bone. Note that the trian-
gulated surfaces are open.

Similarly, we associate a level set with each articulated
bone by assigning each voxel of the original rigid body’s
level set to one of the sub-body’s level sets. The values of the
level set function remain unchanged and we stress that the
level set will not be a valid signed distance function in the re-
gions where the triangulated surface has holes. We use a sim-
ple marching/coloring algorithm that first assigns all voxels
adjacent to and closest to the triangles that have already been
associated with the bones. Then we march inwards one voxel
one ring at a time assigning those voxels as well, using a sim-
ple tie-breaker when necessary. The same process is carried
out for the region outside the object where the level set val-
ues are positive, so that the whole grid is decomposed into
subsections assigned to each articulated bone. In this fash-
ion, a rigid body with N articulated bones will now have N
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separate level set grids with level set values defined only on
a subset of that grid. One can fill the empty cells by choosing
a small positive number since we do not require valid level
set data at the seams between sub-bodies. For added effi-
ciency, one could prune this to a tighter fitting bounding box
either by deleting grid cells far from the bone or by resam-
pling to a different set of cell centers. Obviously, if needed,
one could compute an accurate level set and even close the
triangulated surfaces but we found this unnecessary for our
purposes. Figure 12 (bottom right) shows the level sets asso-
ciated with each of the four bones in the bunny’s skeleton. At
this point the level sets can be used to compute the masses,
inertia tensors, velocities, angular velocities, etc., of the sub-
bodies as in [SSF09].

The aforementioned process computes all information
necessary in order to simulate the original rigid body as
an articulated rigid body. However, significant changes in
the joint angles will expose the seams in between the sub-
bodies where the geometric information is not valid. There-
fore, whenever necessary we update the rigid body’s trian-
gulated surface using the skinning weights, recompute a new
level set for the deformed rigid body, and redivide the rigid
body into sub-bodies as described above. This can be done
asynchronously, i.e. if the CPU is being used for simulation
then the skinning, level set construction, and segmentation
into sub-bodies can be done separately on a GPU or other
processors/cores - after which the simulated hybrid structure
can be updated on-the-fly whenever these computations have
finished. This updated information could be a bit out-of-date
with the current state of the articulated rigid body, however,
it is a better approximation than the one that was being used
- the goal is simply to reduce the lag, although some amount
of lag is readily tolerated. Note that these seams never appear
in the final renderings at frame boundaries as the parent rigid
body’s mesh is updated/rendered using the skinning weights.

4.1. Plastic deformation
The joints should be unaffected by minor impacts but should
bend when subjected to stronger ones. To achieve this re-
quires modification of both the prestabilization and poststa-
bilization steps of [WTF06]. Typically, prestabilization com-
putes a linear and an angular impulse to maintain the joint
constraints. We assume the joint is rigid and first compute
only the angular impulse required to maintain the angular
constraint. Then we clamp the magnitude of this impulse if
it is larger than a predetermined threshold set by the user
as the bending strength. [WTF06] applies prestabilization as
an iterative process, and thus we clamp the accumulated im-
pulse. This accumulated impulse either reaches the threshold
in which case we clamp it and the joint bends, or the total
impulse needed to maintain rigidity at the joint is less than
the threshold in which case the collision causes no bending.
Next, the linear impulse is computed and applied in stan-
dard fashion in order to maintain the linear constraint so that
the articulated bones do not detach. Subsequently, we update

Figure 12: Different representations of the bunny including
the articulated skeleton (top right), triangulated surfaces with
holes (bottom left) and level sets (bottom right). Note that
our algorithm works even with a very crude skeleton. Also
note that the skeleton is not perfectly embedded inside the
body and pops out near its neck region, which our algorithm
robustly handles.

the target configuration to be the current configuration in the
rigid joint - i.e., plastic deformation. Since we are treating
the joints rigidly, standard poststabilization removes all rel-
ative velocities. While this is fine for the linear/prismatic ve-
locities, we found that targeting a damped angular velocity
is more realistic so that a bending joint will continue to bend
somewhat for a short time duration after the collision. We
found that a combination of constant and proportional damp-
ing gave good results.

4.2. Dynamic articulation
We allow for the dynamic addition of joints by taking the
collision location into account. When a collision occurs with
a body that has been specified to have dynamic articulation,
we add a new articulation if the relative normal velocity dur-
ing the collision is more than a set threshold. First we project
the collision location onto the closest bone, and then break
that bone into two separate bones with their own skinning
weights and sub-bodies. Note that we use the rest configura-
tion to compute the skinning weights so that the weights for
the remaining bones do not change. See Figures 14 and 13.

For efficiency, we propose a condensation mechanism that
dynamically collapses articulation. We do not carry out a full
articulated rigid body simulation when the parent rigid body
is not colliding or involved in any post-collision dynamics.
Instead, we merge all sub-bodies into a single rigid body

c© The Eurographics Association 2014.



Patkar et al. / Efficient Denting and Bending of Rigid Bodies

Figure 13: (Top) 400 articulated tetrahedra, each composed of ten rigid bodies (four balls and six cylinders) fall on four static
cubes and bend using dynamically created articulations on the cylinders. The tetrahedra also bend each other when they collide.
(Bottom) Six representative tetrahedra illustrating the variety of bending deformations that our method can achieve.

cluster with a single mass, center of mass, inertia tensor, lin-
ear and angular velocities, etc., similar to [RGL05, ELF13]
(see also [BFA02]). It is inefficient to simulate the entire
articulated rigid body when only one joint needs to bend.
Therefore, we additionally collapse all rigid bodies on either
side of the joint that is bending into single rigidified bodies
so that the bending simulation can be highly optimal, deal-
ing with only a single joint between two rigid bodies even for
models with highly detailed articulation. However, in certain
cases one wants to consider the bending of many joints, see
for example, Figure 15.

4.3. Elasticity
To simulate elasticity, we add torsional springs in joints,
where each joint is treated as a point joint and the axis of ro-
tation is chosen such that the spring opposes the relative an-
gular velocity. For simplicity of exposition, consider a joint
with a single degree of freedom and let I1 and I2 be the re-
spective inertia tensors of the bodies connected by the joint.
This system can be reduced to a single mass spring system
with an effective inertia tensor I = (I1 + I2)

−1I1I2. Given a
damping coefficient C and a spring constant κ, the spring
equation is Iθ̈+Cθ̇+κ(θ−θ0) = τext , where θ, θ̇, θ̈ are the

relative joint angles, joint velocities, joint accelerations and
θ0 is the rest angle associated with the joint. This can be inte-
grated analytically making it quite robust and efficient. After
applying external forces such as gravity, we use the analytic
solution of the spring equation to compute θ

n+1 and ω
n+1.

Then we apply equal and opposite angular impulses to the
bodies in a manner that ensures the new joint angle is θ

n+1

after integrating forward in time, i.e. the angular impulse is
jτ = I((θn+1−θ

n)/∆t−ω
n). We have successfully used this

approach for both angular and prismatic joints. See the video
for an example.

4.4. Coupling with denting
For coupling bending and denting, we slightly modify our
algorithm as follows: when the sub-body associated with
any bone collides with another rigid body, instead of dent-
ing the associated triangulated surface, we dent the surface
of the parent body. This requires updating the parent body to
the current state. Once the parent has been dented, the sub-
bodies are recomputed.

4.5. Results
Algorithm 2 gives the pseudo code for our bending algo-
rithm. Note that steps 1 and 2 only need to be performed
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once before the simulation as a pre-process. Step 4 is only re-
quired if there are a large number of bendable bodies. Steps
8, 10 and 11 are optional and only required if one needs
to perform dynamic articulation. Note that in step 10 the
skinning weights are recomputed only for the parent body
(and not every sub-body) in the rest pose, thus the skinning
weights change only for the broken bone.

Figure 14 simulates the ball hitting a bar example
from [BHTF07]. Initially the rod only has a single bone
which breaks into two bones near the point of impact when
the ball hits. Notice that unlike [BHTF07], the ends of the
plank remain unchanged even under a large deformation.
Figure 13 shows a pile of 400 tetrahedra falling on four static
cubic frames. Each tetrahedra is made up of 6 cylinders at
edges and 4 spheres at vertices with each cylinder having a

Figure 14: (Top) A ball hits a plank in the center where a
joint is dynamically created. (Bottom left) Skeleton bones
for the plank. (Bottom right) Triangulated surfaces associ-
ated with the bones of the plank.

Figure 15: An armadillo simulated as an articulated rigid
body, where all the blue bones are condensed into a single
rigid body cluster and the four bones adjacent to the four
joints in the right arm are simulated as individually articu-
lated bodies to allow the bending of these four joints after
the arm is hit by the ball.

Algorithm 2 Bending Pseudo code
1: Compute skinning weights for the desired skeleton
2: Break the rigid body into sub-bodies based on the skin-

ning weights and articulate the parts together.
3: for every time step do
4: Advance the rigid bodies by a dummy step and
5: gather collision information.
6: for every collision pair do
7: if relative normal velocity > threshold then
8: Dynamically add joints at the collision loca-
9: tion for dynamically articulated bodies.

10: Recompute the skinning weights.
11: Use the skinning weights to divide the parent
12: body into sub-bodies and recompute mass
13: properties.
14: Condense/uncondense joints.
15: Advance the rigid bodies by one time step.
16: Update the rigid body surface mesh via skinning.

single bone. At every collision we dynamically create joints
if the relative collision velocity is greater than a threshold.

For the bunny mesh consisting of 34000 triangles, the
skinning step took about 50ms on a single CPU core of a
dual hexcore Dell T7500 workstation. Subdivision of the tri-
angulated surface mesh and level set for the sub-bodies took
about 5ms. As the reader may notice, the computation of the
skinning weights in step 10 at every time step for the parent
rigid body does slow down our algorithm for dynamic artic-
ulation. We are currently investigating methods for speeding
this up by possibly interpolating skinning weights of sim-
pler shapes obtained through a convex decomposition of the
parent rigid body.

5. Limitations
Our method is not physically based by design. If the pro-
jectile body is too large or the denting distance is set to a
large number, our denting algorithm can suffer from con-
siderable amount of volume loss. We are currently investi-
gating techniques to mitigate this problem by expanding the
target body near the impact region to add back the lost vol-
ume. As mentioned before, our algorithm for dynamic ar-
ticulation requires the computation of skinning weights at
every time step which slows down our bending algorithm.
We are currently investigating methods to speed up this step.
Finally, both our bending and denting algorithms can pro-
duce self-intersections. The self-intersections in denting can
be avoided by carefully choosing a falloff function while
those in bending can be prevented by using a better skinning
algorithm.

6. Conclusions and Future Work
We proposed a novel, efficient and controllable algorithm for
denting and bending rigid bodies without the need for expen-
sive finite element simulations. Our algorithm can be eas-
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ily integrated into most rigid body simulation frameworks
and can readily be used in real-time environments. In the fu-
ture we would like to use the linearized velocity at the colli-
sion point in order to better account for the rotational motion
of the projectile body, however, we found this unnecessary
for our current examples. It would be interesting to explore
other skinning models such as [VBG∗13] that allow for self-
collisions and contacts to obtain more realistic bending ef-
fects. One could automate our bending algorithm by using
automatic rigging [BP07] combined with a medial axes al-
gorithm for computing and embedding the skeleton inside
the rigid body mesh. For handling more general scenarios
during dynamic articulation, one could consider using more
information such as external forces rather than just the colli-
sion location. We would also like to extend our algorithm to
simulate creasing and folding of thin rigid sheets [NPO13].
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