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Abstract

This dissertation presents a novel method for treating bubbles in free surface incom-

pressible flow that relies on the conservative advection of bubble mass and an associ-

ated equation of state in order to determine pressure boundary conditions inside each

bubble. It is shown that executing this algorithm in a traditional manner leads to

stability issues similar to those seen for partitioned methods for solid-fluid coupling.

Therefore, the problem is reformulated monolithically. This is accomplished by first

proposing a new fully monolithic approach to coupling incompressible flow to fully

nonlinear compressible flow including the effects of shocks and rarefactions, and then

subsequently making a number of simplifying assumptions on the air flow removing

not only the nonlinearities but also the spatial variations of both the density and

the pressure. The resulting algorithm is quite robust, has been shown to converge

to known solutions for test problems, and has been shown to be quite effective on

more realistic problems including those with multiple bubbles, merging and pinching,

etc. Notably, this approach departs from a standard two-phase incompressible flow

model where the air flow preserves its volume despite potentially large forces and

pressure differentials in the surrounding incompressible fluid that should change its

volume. The proposed method allows bubbles to readily change volume according to

an isothermal equation of state.

This method is then extended to model both large and small scale bubble dynam-

ics. Small under-resolved bubbles are evolved using Lagrangian particles that are

monolithically two-way coupled to the surrounding flow in a manner that closely ap-

proximates the analytic bubble oscillation frequency while converging to the analytic
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volume as predicted by the well-known Rayleigh-Plesset equation. A novel scheme is

presented for interconverting between these under-resolved Lagrangian bubbles and

the larger well-resolved Eulerian bubbles. A novel seeding mechanism is also presented

to realistically generate bubbles when simulating fluid structure interaction with com-

plex objects such as ship propellers. The proposed framework for bubble generation

is general enough to be incorporated into all grid-based as well as particle-based fluid

simulation methods.
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Chapter 1

Introduction

Bubbles are ubiquitous in most underwater scenes and embellish the otherwise lifeless

water providing visual cues to the virtually imperceptible velocity field. They also

provide a mechanism for sound generation [62, 48]. These sounds are a consequence

of the volumetric changes that bubbles undergo during their temporal evolution -

volumetric changes which can be substantial when bubbles rise a significant distance,

or when fast moving objects such as ship propellers interact with water. In such fluid

structure interactions, lower pressure regions are generated near the objects causing

some of the water to instantly vaporize through the compressible phenomena of cav-

itation [5]. Since the density of water is a thousand times larger than that of air,

the vaporized water forms bubbles that quickly expand in size becoming visible to

the naked eye. Thus, to realistically simulate both bubble sounds and dynamics, it is

important to design numerical methods that allow bubbles to change in volume - con-

trary to the traditional approach of treating the air inside bubbles as incompressible

flow, e.g. [4, 60, 58, 28, 26, 47, 44, 63, 3].

Although a completely compressible treatment of this problem is possible, it is com-

putationally expensive since water has a very high density compared to that of air

and the larger sound speed in water imposes a very strict time step restriction on

both phases based on the typical CFL condition. On the other hand, the air phase

1



CHAPTER 1. INTRODUCTION 2

is neglected when simulating free surface incompressible flows under the assumption

that the inertia of air is very small compared to that of water. Hence, such solvers

are unsuitable for modeling effects such as air entrainment and bubble dynamics. To

prevent the air bubbles from collapsing unnaturally, methods have been proposed for

computing a pressure inside these bubbles by tracking their volume over time and

using an equation of state [56]. But volume can change radically if a bubble rises a

long distance, merges with other nearby bubbles, or breaks up into smaller bubbles.

Several Lagrangian methods have also been proposed for modeling bubble dynam-

ics [20, 49, 9, 59, 35, 6, 36, 30]. An early approach to particle-based bubble simu-

lation was proposed by [20] who generated bubbles based on escaped particles from

the particle level set method of [13] similar to the approach for spray in [16] (see

also [18]). Later, a number of authors proposed additional Lagrangian techniques

including [35, 6, 36, 30]. Although [35] did propose using a variable density Pois-

son solver for approximating the average bubble motion, this only gives very limited

two-way interactions and ignores changes in the bubble’s volume.

Instead of representing each bubble as a single particle, one can use a collection of

particles to model a single bubble. SPH-based methods are good candidates for such

an approach [49, 9, 59]. This can aid in modeling a bigger range of bubble dynamics

obtaining a wider variety of topological shapes that real bubbles exhibit. However,

fully Eulerian grid-based methods still seem preferable for these larger bubbles. More-

over, some of the most compelling methods for simulating fluids tie together multiple

scales as can be seen in [45, 29, 39, 46].

This dissertation proposes a mass tracking formulation for simulating bubble dynam-

ics based on the observation that the total mass of air inside water is conserved over

time (ignoring mass exchange across the interface such as vaporization). This avoids

the computational difficulties associated with tracking the volume when bubbles un-

dergo complex topological deformations during merging or splitting. The method is

devised by first proposing a rather straightforward approach based on mass tracking

in Chapter 2. This approach suffers from stability issues which have characteristics
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similar to partitioned (as opposed to monolithic) methods for solid-fluid coupling, see

for example [22, 52, 21] and the references therein. These issues can be alleviated

using outer iterations on the partitioned solver, as discussed in Chapter 3, although

this can require ten or more Poisson solves per time step and is thus computationally

expensive. Instead, we take a more traditional monolithic approach for the air-water

problem similar to the solid-fluid coupling in [22, 52, 21] as motivated by [38]. We

begin by revisiting the partitioned solver for incompressible and compressible flow

from [7] and devise a monolithic solver using the ideas from [38] to couple together

incompressible flow with fully nonlinear compressible flow including shocks and rar-

efactions. The results of this method are shown in Chapter 4 for both the gamma

gas law and an isothermal equation of state. Then in Chapter 5 we simplify this ap-

proach greatly so that it is in line with the straightforward bubble simulation method

of Chapter 2. This is achieved by setting both the bubble density and the bubble pres-

sure to be spatially constant, although time-varying. Chapter 7 presents a detailed

summary of the fully Eulerian approach developed so far referring to the appropriate

equations throughout the text and highlights its efficacy with various examples - in-

cluding the ability to treat multiple bubbles which may also split and merge. Since

the level set loses volume and cannot keep track of sub-grid scale details, Chapter 8

proposes to track these under-resolved bubbles using Lagrangian particles that are

also monolithically two-way coupled to the surrounding fluid. To seamlessly tran-

sition between these smaller Lagrangian bubbles and larger well-resolved Eulerian

bubbles, Chapter 9 proposes a novel scheme for interconverting between the two rep-

resentations. Chapter 10 proposes a novel seeding mechanism to realistically generate

bubbles when simulating fluid structure interaction with complex objects such as ship

propellers. The proposed framework for bubble generation is general enough to be

incorporated into all grid-based as well as particle-based fluid simulation methods.

Finally, we conclude in Chapter 11 with some interesting avenues for future work.



Chapter 2

A partitioned approach

We begin with a straightforward approach that conservatively advects the bubble

mass and uses the isothermal equation of state p = Bρ to compute a pressure inside

the bubble which is subsequently used as a Dirichlet boundary condition for making

the incompressible velocities divergence free. As we will see, this approach lacks

stability properties because the current pressure in the bubble is not a good predictor

of what the pressure would be in the next time step after applying the incompressible

flow pressure to generate a new velocity field that changes the size of the bubble. If

one couples the air pressure as a degree of freedom instead of as a Dirichlet boundary

condition, then the incompressible Poisson solver can better react to the anticipated

changes in the bubble volume. Thus, after presenting our straightforward approach in

this section (which we call partitioned), we present a monolithic solver in Chapter 4.

2.1 Incompressible flow

The incompressible Navier-Stokes equations are given by

~vt + (~v · ∇)~v +
∇p

ρI

=
∇ · (µ∇~v)

ρI

+ ~f (2.1)

∇ · ~v = 0 (2.2)

4
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where ρI is the density, ~v is the velocity, µ is the coefficient of viscosity and ~f is the

net body force acting on the incompressible fluid. These equations are discretized on

a MAC grid using the projection method [8], where we first explicitly update

~v? − ~vn

∆t
+ (~v · ∇)~v =

∇ · (µ∇~v)

ρI

+ ~f (2.3)

and then solve for the pressure via

∇ · ∇p

ρI

=
∇ · ~v?

∆t
(2.4)

in order to update the intermediate velocity ~v? as follows

~vn+1 − ~v?

∆t
+
∇p

ρI

= 0 (2.5)

We use the level set method [50] to track the interface between the bubbles and the

incompressible fluid. Before updating the incompressible velocities through advection,

they are extrapolated across the interface in order to define ghost node values. This

could be accomplished using constant extrapolation normal to the interface by solving

the equation Iτ + ~N · ∇I = 0, in fictitious time τ for each component I of ~v. We

instead compute the steady state solution using the fast extension method of [1]. The

incompressible velocities are then advected using semi-Lagrangian advection which

can be made second order accurate using a MacCormack-style method as in [53].

The level set function φ is advected using the particle level set method of [11] and

the semi-Lagrangian advection scheme of [12]. To keep the level set a signed distance

function we use the modified fast marching method proposed in [43].

The treatment of viscosity for multiphase incompressible flow with appropriate jump

conditions at the interface is discussed in [33]. However, viscosity is solved for explic-

itly in [33] which has a severe time step restriction of ∆t ∝ O(∆x2). In order to take

large time steps, we consider an implicit treatment of viscosity. As discussed in [27],

if all the jump conditions are treated implicitly then the equations for all components

of the velocity are coupled together. Although one could take an approach similar
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to [51] for spatially varying viscosity where the coupling terms are treated explicitly

and other terms are treated implicitly in order to get decoupling of various compo-

nents, there can be some time step restrictions based on the jump conditions. For the

simulation of bubbles, we assume that the dynamics inside the bubbles contain little

momentum, hence, they cannot absorb any viscous momentum from the liquid. Thus,

we enforce Neumann boundary conditions at the interface that the derivative of each

component of the incompressible velocity is zero. Thus, the jump in pressure due to

viscosity is also zero since the normal component of the viscous stress vanishes across

the interface. Finally, as we assume constant viscosity in the incompressible fluid,

the equations for the different components of the incompressible velocity decouple as

well. In two spatial dimensions, equation (2.3) can be written component-wise as

v?
1 − vn

1

∆t
+ (~v · ∇)v1 =

∇ · (µ∇v?
1)

ρI

+ f1 (2.6)

v?
2 − vn

2

∆t
+ (~v · ∇)v2 =

∇ · (µ∇v?
2)

ρI

+ f2 (2.7)

The advection and external forces can be applied first to obtain v̂1 and v̂2 followed

by a viscous solve of the form

v?
1 − v̂1

∆t
=
∇ · (µ∇v?

1)

ρI

(2.8)

v?
2 − v̂2

∆t
=
∇ · (µ∇v?

2)

ρI

(2.9)

Since v̂1 and v̂2 are not divergence free and the viscous update equations have been

derived assuming the divergence free condition, v̂1 and v̂2 are sometimes first projected

to be divergence free before applying viscosity. However, note that the pressure

projection is not idempotent in the presence of a non-zero pressure gradient across

the incompressible fluid. In this case we do not project v̂1 and v̂2 to be divergence

free before the viscous update. Note that the advection terms are computed in a

thin band of ghost cells so that there are adequate values when the interface moves,

however, the viscous terms can only be updated interior to the level set due to the

need to prescribe interface boundary conditions. Therefore, the level set must be
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moved to its new time tn+1 location before applying the viscous update.

We use the second order cut-cell method of [19] for computing the pressure in equation

(2.4) to make the incompressible velocities divergence free, where the pressure inside

the bubbles and the outside air are used as Dirichlet boundary conditions. In the

presence of surface tension, the term σκ is added to the Dirichlet pressure, where σ

is the coefficient of surface tension and κ is the curvature of the interface, computed

using the level set method [50]. See also Chapter 6.

The incompressible time step ∆tI is computed by enforcing the following inequality

at every cell center, as described in [33],

∆tI

(
Ccfl +

√
C2

cfl + 4S2
cfl + 4F 2

cfl

2

)
≤ 1 (2.10)

Here, Ccfl accounts for the convection terms where v1 and v2 have been averaged to

the cell center,

Ccfl =
|v1|
∆x

+
|v2|
∆y

(2.11)

Scfl accounts for the surface tension forces,

Scfl =

√
σκ

ρI(min{∆x, ∆y})2
(2.12)

and Fcfl accounts for the body forces ~f

Fcfl =

√
|f1|
∆x

+
|f2|
∆y

(2.13)

Note that the time step restrictions due to viscosity are not present as it is treated

implicitly.
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2.2 The oscillating bubble problem

We consider a model oscillating bubble problem in one spatial dimension as shown

in Figure 2.1, where an air bubble of radius r0 = .1 m with initial density ρ0 = 1.1

kg/m3 is inside a water “sphere” of radius r0
w = .4 m. The computational domain is

[0 m, 1 m] which gives .1 m of free air on each side of the water region. Figure 2.2

shows the problem in two spatial dimensions where an air bubble of radius r0 = .1

m with initial density ρ0 = 1.1 kg/m3 is inside a water sphere of radius r0
w = .4 m.

The computational domain is [0 m, 1 m] × [0 m, 1 m]. The setup for the problem

in three spatial dimensions is defined similarly. For simplicity, there is no gravity,

surface tension or viscosity in the system. Since the bubble is slightly compressed

with density ρ0 = 1.1 kg/m3, there will be a larger pressure p0 inside the bubble than

in the ambient air which is taken to be a free surface condition of patm = 101, 325

Pa and therefore, the bubble will start to expand, subsequently vibrating back and

forth. The appendices derive a second order ODE given by equations (A.4), (A.11)

and (A.18). In all three equations, we take the standard approach of solving for R̈(t),

rewriting the second order equation as a first order system, subsequently integrating

in time using third order accurate TVD Runge-Kutta, and refining the time step until

the solutions converge to obtain data that we use for the “exact” solutions when these

equations are considered.

r0 = .1

r0
w = .4

Air AirBubbleWater Water

Figure 2.1: Setup for the oscillating bubble problem in one spatial dimension.

For this problem, we modify the time step restriction of Section 2.1 to account for

velocities near zero when the bubble volume is at an extrema, i.e., when it has maxi-

mum or minimum volume. To prevent the time step from becoming excessively large

in these cases, we add a term to ∆tI that estimates the change in velocity over a time
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step, similar in spirit to what was done in [33] for body forces and [38] for compress-

ible flow - see also Section 4.4 for a quick summary. Essentially what is needed is

an estimate for |∇p| which will influence the velocity. We do this by computing lx

and ly as the minimum thicknesses of the water region in the x and y directions, and

approximate |px| as |patm − pn|/lx and |py| as |patm − pn|/ly, where pn is the pressure

inside the bubble at time tn. Then we write

Fcfl =

√
|patm − pn|

ρnlx∆x
+
|patm − pn|

ρnly∆y
(2.14)

and include this in equation (2.10) analogous to equation (4.30).

r0 = .1 r0
w = .4

Bubble

Water

Air

Figure 2.2: Setup for the oscillating bubble problem in two spatial dimensions.

2.3 Treating bubbles

Initially, each bubble is assigned a density (or mass), and the density is advected

using the unconditionally stable conservative semi-Lagrangian scheme of [41]. This

scheme is especially effective in keeping track of small bubbles, since the level set loses
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volume over time and cannot keep track of sub-grid level details. Although one could

advect the bubble density using velocities extrapolated from the incompressible flow,

we use a more accurate approach where air velocities are constructed and maintained

in a separate velocity field ~u. The velocity used for level set advection is a hybrid

between the incompressible flow velocity and the air velocities. Note that the effects

of viscosity and pressure projection from time tn are already present in this hybrid

velocity field, although the air component of these velocities is inviscid. For greater

stability, one could advect the time tn level set function with the hybrid velocity field

at time tn+1, although we do not follow this approach. Despite accurate velocities,

numerical smearing and other errors will cause the location of the zero level set and

the location of the non-zero bubble densities to drift apart over time. We address this

as follows. First we compute the total mass that belongs to a bubble as the sum of

all the mass inside the bubble and all the mass closest to that bubble. Then we use a

flood fill algorithm on that bubble to identify all grid cells belonging to that connected

component. The volume of this connected component is carefully computed using a

piecewise linear reconstruction of the level set as outlined in [40]. The mass is then

uniformly redistributed inside the bubble to obtain a spatially constant density ρb.

The Dirichlet boundary condition used for the incompressible Poisson solve given

in equation (2.4) is computed using the equation of state p = Bρ which simplifies

to p = BM/V , where M and V are the total mass and total volume of a bubble

respectively. Here, B is taken to be patm m3/kg, so that a density of 1 kg/m3 yields

a pressure of patm = 101, 325 Pa.

Air velocities are treated in a manner similar to the incompressible flow velocities.

Ghost node values are defined using the fast extension method of [1] exactly as is done

for the incompressible velocities, and then the air velocities are advected using the

MacCormack method [53]. Since the air is not strictly volume preserving as bubbles

can expand and contract, we do not make the air flow incompressible as would be

done for a truly two-phase incompressible flow. Instead, we solve a modified form of

equations (2.4) and (2.5) for each bubble
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Figure 2.3: Numerical profiles generated by the partitioned scheme in one spatial
dimension for bubble volume over time for the stationary bubble problem. Note
the forward Euler characteristic of the partitioned scheme which causes instability
in the computed solutions at lower grid resolutions. For higher grid resolutions, the
nonphysical growth is slower as expected.

∇ · ∇p̃ = ∇ · ~u? −∇ · ~un+1 (2.15)

~un+1 − ~u? +∇p̃ = 0 (2.16)

where p̃ = ∆tp/ρb, ρb is the spatially constant air density inside the bubble (which

could be different per bubble), and ~u? is the post-advected air velocity. Equations

(2.4) and (2.5) are solved first for the full water volume using Dirichlet boundary

conditions, after which the resulting water velocities surrounding the bubble are used

as Neumann boundary conditions to solve equation (2.15). Since the integral of the
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incompressible velocity around the surface of a bubble may not be zero, we compute

the net divergence for the boundary of the bubble summing all these velocities divided

by the number of cells in the bubble, and use that value for ∇ · ~un+1. This allows

bubbles to expand and contract and otherwise change volume as they follow and are

enslaved by the surrounding incompressible flow which has much higher momentum.

Also note that the Poisson matrix resulting from equation (2.15) has a rank-deficiency

of 1 due to the full Neumann boundary conditions and although the addition of∇·~un+1

guarantees that the right hand side is in the range of the Poisson matrix, one still

needs to take care to compute the minimum norm solution during the conjugate

gradient solve.

(a) (b)

Figure 2.4: (a) Numerical profiles generated by the partitioned scheme in one spa-
tial dimension for bubble volume over time for the oscillating bubble problem, (b)
peak-to-peak growth rates under grid refinement. Note that the partitioned scheme
shows instability at lower grid resolutions because of its forward Euler characteristic,
although converges to the “exact” solution under grid refinement.

In Figures 2.3 and 2.4 we present numerical profiles generated by the partitioned

scheme. Consider the setup shown in Figure 2.1 and assume the bubble is initially

at rest, i.e., the initial air density inside it is ρ0 = 1 kg/m3. Analytically, the bubble

should just stay at rest and the bubble volume should remain constant over time.

We refer to this problem as the stationary bubble problem. Figure 2.3 shows the

bubble volume profiles over time with the proposed partitioned scheme. Note that

although the initial solution computed by this scheme is indeed constant, it quickly
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goes unstable at lower grid resolutions because of the forward Euler characteristic of

the partitioned scheme. For higher grid resolutions, the nonphysical growth is slower

as expected. For the one dimensional oscillating bubble problem, Figure 2.4(a) shows

the resulting volume profiles over time under grid refinement. The peak-to-peak

growth rates are shown in Figure 2.4(b) and the respective convergence orders are

shown in Table 2.1. Again, note that the partitioned scheme shows instability at

lower grid resolutions while converging to the “exact” solution under grid refinement.

The results for the two dimensional simulations are similar. Note that throughout

the paper the peak-to-peak growth/decay rate is defined as the slope of the best fit

line to the first few peaks in the bubble volume profile, whereas the convergence order

is computed for the peaks shown in the inset zoom ins.

resolution1 resolution2 resolution3 convergence
order

400 800 1600 -.4076
800 1600 3200 .1035
1600 3200 6400 .3797
3200 6400 12800 .5168

Table 2.1: Convergence orders for the volume profiles generated by the partitioned
scheme for the oscillating bubble problem.



Chapter 3

An iterative approach

Although the partitioned scheme proposed in Chapter 2 converges to correct ana-

lytical solutions under grid refinement, it shows instability at lower grid resolutions

because of its forward Euler characteristic. The most logical next step is to try using

TVD Runge-Kutta methods for greater stability [54]. We approach this by applying

second order accurate TVD Runge-Kutta on the bubble pressure pb which is used as a

Dirichlet boundary condition in equation (2.4). Specifically, we take two full steps of

our method to compute the spatially constant density ρ̂n+2
b inside the bubble and use

the average (ρn
b + ρ̂n+2

b )/2 for computing the Dirichlet pressure pb = B(ρn
b + ρ̂n+2

b )/2.

Subsequently, we rewind the simulation to the beginning of the time step and use

this Dirichlet pressure boundary condition in the incompressible flow solve in equa-

tions (2.4) and (2.5) in order to obtain the divergence free incompressible velocity

field. Note that intermediate substeps can result in velocities that dictate a smaller

step size than that chosen at the beginning of the time step. Ignoring this can re-

sult in inaccurate solutions, so if this occurs we revert to the beginning of the time

step and start over using smaller step size. Figure 3.1 shows a comparison between

the forward Euler scheme, second order accurate TVD Runge-Kutta on the Dirichlet

pressure pb without modifying the time step, and the modified second order accurate

TVD Runge-Kutta which reverts the simulation to the beginning of the time step if

14
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Figure 3.1: A comparison between numerical profiles for the one dimensional station-
ary bubble problem generated using the forward Euler scheme (red), second order
TVD Runge-Kutta (green), modified second order TVD Runge-Kutta which takes
time step restrictions imposed by intermediate velocities into account (blue), and
Brent’s method (magenta).

the CFL condition is violated. Note the intermittent spikes generated by the stan-

dard second order accurate TVD Runge-Kutta scheme, which are not present in the

modified rewinding version as it obeys the CFL time step restriction even at inter-

mediate steps. Also note that the modified second order accurate TVD Runge-Kutta

scheme does a much better job at tracking the constant solution than the forward

Euler version of the scheme.

The enhanced stability shown by the use of a second order accurate TVD Runge-

Kutta scheme on the Dirichlet pressure boundary condition pb used for the bubble

in solving equations (2.4) and (2.5) motivates consideration of a technique similar
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to [38] where our goal is to replace the p = BM/V Dirichlet boundary condition

with the pressure the bubble would have in the next time step after solving for the

incompressible velocities and advecting the bubble forward in time. Consider the

pressure evolution equation [15],

pt + ~u · ∇p = −ρc2∇ · ~u (3.1)

Since we assume that the air density inside the bubble is spatially constant, it follows

from p = Bρ that ∇p = 0 and thus

pt = −ρc2∇ · ~u (3.2)

For a gas governed by the equation of state p = Bρ, the sound speed c is defined as

c =

√
pρ +

ppe

ρ2
=
√

B (3.3)

implying that it is constant in time and space. Discretizing equation (3.2) in time

gives

pn+1 = pn −∆tρn+1B∇ · ~u (3.4)

where we set ρ to time tn+1. As mass is conserved over time Mn+1 = Mn = M . Using

p = Bρ, ρn = M/V n and ρn+1 = M/V n+1, we obtain

BM

V n+1
− BM

V n
= − BM

V n+1
∆t∇ · ~u (3.5)

or

∆V = V n∆t∇ · ~u (3.6)

where ∆V = V n+1− V n. Using the divergence theorem, V n∇ · ~u inside the bubble is

equivalent to
∮

~u · ~ndS. Letting ū be the average normal velocity on the boundary of
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the bubble and P be the perimeter of the bubble allows us to write

∆V = ∆tPū (3.7)

Note that we use a piecewise linear reconstruction of the level set as described in [40]

for computing P and ū.

(a) (b)

Figure 3.2: Numerical profiles generated by the iterative scheme for bubble volume
over time under grid refinement for the stationary bubble problem in, (a) one spatial
dimension, (b) two spatial dimensions.

The initial guess for the iterative solver sets p = BM/V as a Dirichlet boundary

condition for projecting the incompressible velocities. These velocities are then used

to guess the bubble’s volume V n+1 using equation (3.7). Since mass is constant,

this predicts a new pn+1 = Bρn+1 = BM/V n+1. This pressure can again be set as

a Dirichlet boundary condition to project the incompressible velocities and improve

the guess for pn+1. Through the iterative solver, we are looking for a fixed point

for this “function”, i.e., p = f(p) or a root of g(p) = f(p) − p. Note that if the

input pressure is too large, the bubble expands and the predicted pressure drops, and

similarly if the input pressure is too small, the bubble contracts and the predicted

pressure increases. This allows us to place bounds on the solution. Basically, we start

with pn = BM/V n and if f(p) is bigger, the initial guess for p is the left end-point

of our interval. Otherwise, if f(p) is smaller, this is taken as the right end-point of

the interval. As the iteration proceeds, we eventually identify both left and right
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end-points. Once we find a bounding interval we use Brent’s method [2] to find the

root.

(a) (b)

(c) (d)

Figure 3.3: Numerical profiles generated by the iterative scheme for bubble volume
over time under grid refinement for the oscillating bubble problem in, (a) one spatial
dimension, and (c) two spatial dimensions. The peak-to-peak decay rates are shown in
(b) one spatial dimension, and (d) two spatial dimensions. Note the improved stability
achieved by the iterative method as compared to the forward Euler scheme. Also
note that the highest resolution simulation in (c) has not been run for the entire time
length because the bubble broke up into multiple bubbles due to Kelvin-Helmholtz
instability, breaking our underlying assumptions and making further computation
meaningless.

Figures 3.2(a) and 3.2(b) show the numerical profiles generated by the iterative solver

for the bubble volume over time with increasing grid resolutions in one and two spatial

dimensions for the stationary bubble problem. Note the improved stability achieved
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resolution1 resolution2 resolution3 convergence
order

200 400 800 .9043
400 800 1600 1.0153
800 1600 3200 1.1083
1600 3200 6400 1.2136
3200 6400 12800 1.3847

Table 3.1: Convergence orders for the volume profiles generated by the iterative
scheme for the oscillating bubble problem in one spatial dimension.

resolution1 resolution2 resolution3 convergence
order

200 400 800 1.0411
400 800 1600 1.1084

Table 3.2: Convergence orders for the volume profiles generated by the iterative
scheme for the oscillating bubble problem in two spatial dimensions.

by the iterative solver. For the sake of comparison, the iterative solver is also shown

labeled as Brent’s method in Figure 3.1. Next consider the oscillating bubble problem.

Figures 3.3(a) and 3.3(c) show the corresponding profiles for the bubble volume over

time under grid refinement. The peak-to-peak decay rates for both one and two spatial

dimensions are shown in Figures 3.3(b) and 3.3(d) while the respective convergence

orders are shown in Tables 3.1 and 3.2. Comparing Figures 2.4 and 3.3, note that

the explicit method diverges for low grid resolutions and eventually converges to the

“exact” solutions as the grid is refined. In contrast, the implicit solution overly damps

the phenomena on coarse grids while still converging to the “exact” solutions as the

grid is refined. Obviously one would prefer the implicit approach over the explicit one

so that although unresolved phenomena are not accurately resolved, i.e., the solution

is overdamped, they at least do not explode and corrupt the entire solution.



Chapter 4

Compressible-incompressible

coupling

Motivated by the method in [38] which proposes an elliptic solver for pressure for

compressible flow, our goal is to develop a fully monolithic solver which solves for air

and water pressures together. However, before doing this we first develop a full mono-

lithic solver that couples incompressible flow with fully non-linear compressible flow

including contact discontinuities like shocks and rarefactions building upon the parti-

tioned solver of [7]. They used a fully explicit scheme for the compressible fluid, and

the pressure in the compressible region was used as a Dirichlet boundary condition

when solving the incompressible Poisson equation for updating the incompressible

velocities. Near the interface, the ghost fluid method (GFM) [14] was used to treat

the boundary conditions in a manner that admitted sharp discontinuities while still

allowing for smooth discretizations across the interface. To achieve this, the inter-

face values of pressure and normal velocity were carefully determined noting that,

although these variables are continuous, they may possess kinks across the interface.

Small errors in the normal velocity of the incompressible fluid create small errors in

its divergence, which in turn can lead to large spurious pressure oscillations in the

incompressible region. While small errors in the velocity of the compressible fluid

20
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cause the same small errors in its density, these have little effect on the gas since the

gamma gas law equation of state is rather robust. Again, since the incompressible

flow’s pressure response is rather stiff, one can expect large variations in the incom-

pressible pressure near the interface which in turn can lead to poor predictions of the

interface pressure. While these errors in the interface pressure have a relatively small

effect on the heavier incompressible fluid, they can have a rather large effect on the

lighter compressible gas. Conversely, since the gamma gas law equation of state is

rather robust, the compressible pressure tends to be smooth near the interface and is

therefore a good candidate for the interface pressure. In view of these statements, [7]

proposed using the incompressible region to determine the interface normal velocity

and the compressible region to determine the interface pressure. In the presence of

surface tension, the compressible pressure is not used directly, but is first modified

according to the appropriate [p] = σκ jump condition. Although the method of [7]

works well, it suffers from a strict time step restriction because the sound speed in the

compressible fluid dictates the size of the time step. In addition, the method of [7]

utilizes a partitioned coupling approach which can suffer from stability issues.

4.1 A semi-implicit formulation for compressible

flow

Let ρ be the density of the compressible fluid, ~u its velocity, E the total energy, p the

pressure, and U = (ρ, ρ~u, E) the compressible state vector. The inviscid compressible

Euler equations in multiple spatial dimensions are as follows

Ut +∇ · F(U) =


ρ

ρ~u

E


t

+∇ ·


ρ~u

ρ~u⊗ ~u + p

(E + p)~u

 =


0

0

0

 (4.1)

A semi-implicit formulation for solving these equations was recently proposed in [38],

where the flux vector F(U) was split into an advection part and a nonadvection part
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F1(U) =


ρ~u

ρ~u⊗ ~u

E~u

 ,F2(U) =


0

p

p~u

 (4.2)

The advection part F1(U) was integrated explicitly to get intermediate values ρ?,

(ρ~u)? and E?, and since pressure does not affect the continuity equation, it follows

that ρn+1 = ρ?. The original method of [38] used a modified ENO scheme for the

explicit update to avoid Gibbs phenomena. Recently, [21] proposed using the standard

ENO scheme [55] and a different method for computing the post-advected pressure

(pa, see below) which avoids this issue. We follow this improved approach. The

nonadvection momentum and energy updates are

(ρ~u)n+1 − (ρ~u)?

∆t
= −∇p (4.3)

En+1 − E?

∆t
= −∇ · (p~u) (4.4)

Motivated by the standard incompressible flow formulation, equation (4.3) is divided

by ρn+1 to obtain

~un+1 = ~u? −∆t
∇pn+1

ρn+1
(4.5)

and its divergence is taken to obtain

∇ · ~un+1 = ∇ · ~u? −∆t∇ ·
(
∇pn+1

ρn+1

)
(4.6)

Then the pressure evolution equation (3.1) is semi-discretized by fixing ∇ · ~u to time

tn+1 through the time step and by treating the advection terms explicitly. Let e =

E/ρ− ~u · ~u/2 denote the internal energy per unit mass, then the advected pressure is

computed as pa = p? = p(ρ?, e?) using the equation of state. Substituting p? into the
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semi-discretized form of equation (3.1), we obtain

pn+1 = p? −∆tρc2∇ · ~un+1 (4.7)

Eliminating∇·~un+1 by combining equations (4.7) and (4.6) and rearranging the terms

gives

pn+1 −∆t2ρn(c2)n∇ ·
(
∇pn+1

ρn+1

)
= p? −∆tρn(c2)n∇ · ~u? (4.8)

where the term ρc2 has been fixed to the time tn value. By composing the ρn(c2)n

terms into a diagonal matrix P = [∆t2ρn(c2)n] and discretizing the gradient and

divergence operators, we obtain the following system of equations

[P−1 + GT (ρ̂n+1)−1G]p̂n+1 = P−1p̂? + GT û? (4.9)

where G is the discretized gradient operator, −GT the corresponding discretized di-

vergence operator. The pressure is scaled by ∆t, i.e., p̂ = p∆t, ρ̂ is the density

interpolated to cell faces and û denotes a density-weighted averaged face velocity, i.e.,

ρ̂n+1
i+1/2 =

ρn+1
i + ρn+1

i+1

2
, û?

i+1/2 =
(ρu)?

i + (ρu)?
i+1

ρn+1
i + ρn+1

i+1

(4.10)

Note that the resulting matrix in equation (4.9) has an identity term in it, which

allows fast solvers like preconditioned conjugate gradient (PCG) to converge in rel-

atively few iterations. After solving equation (4.9) to obtain cell-centered pressure

values, they are applied in a conservative flux-based manner to update the interme-

diate momentum and energy. Face pressures are computed using density-weighted

averaging, i.e.,

p̂n+1
i+1/2 =

ρn+1
i p̂n+1

i+1 + ρn+1
i+1 p̂n+1

i

ρn+1
i + ρn+1

i+1

(4.11)
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and face velocities are computed by rewriting equation (4.5) using face-averaged quan-

tities as defined above.

ûn+1
i+1/2 = û?

i+1/2 − (ρ̂n+1
i+1/2)

−1Gi+1/2p̂
n+1 (4.12)

Here, Gi+1/2 denotes the row of G corresponding to face i + 1/2. The flux-based

implicit update then takes the form

(ρ~u)n+1
i = (ρ~u)?

i −
p̂n+1

i+1/2 − p̂n+1
i−1/2

∆x
, En+1

i = E?
i −

p̂n+1
i+1/2û

n+1
i+1/2 − p̂n+1

i−1/2û
n+1
i−1/2

∆x
(4.13)

4.2 Explicit coupling step

We use the level set method to track the interface between the compressible and

incompressible fluids. For the explicit part of the method, the interface boundary

conditions are treated as described in [7]. Various quantities need to be extrapolated

across the interface in either direction to define ghost node values. This is accom-

plished using constant extrapolation normal to the interface by solving the equation

Iτ + ~N · ∇I = 0, in fictitious time τ for the different quantities I - we use the fast

extension method of [1]. To compute the compressible ghost node state we decompose

the extrapolated state vector into entropy, pressure and velocity, compute the cell cen-

tered incompressible velocity, and replace the normal component of the compressible

velocity field with the normal component of the incompressible cell centered velocity

field before reassembling entropy, pressure and velocity to obtain a ghost state for the

compressible flow. The explicit update for the compressible fluid consists of applying

only the advection fluxes from equation (4.2) using these ghost node values. In order

to properly handle uncovered cells a band of ghost node values is also updated in

time.

The incompressible flow update proceeds similarly as to what was described in Sec-

tion 2.1. The full incompressible velocity field is extrapolated across the interface into

the compressible region to obtain ghost node values, the advection terms are updated
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to obtain intermediate velocities, and the viscous terms are updated noting that the

compressible fluid is inviscid and thus cannot absorb any viscous stress.

Note that when applying viscosity to the incompressible fluid, the time t̂ velocities v̂1

and v̂2 are sometimes first projected to be divergence free, as noted in Section 2.1 after

equations (2.8) and (2.9). In our monolithic approach, the divergence free projection

is two-way coupled between the compressible and incompressible flow as given in

equations (4.20) and (4.21) below in Section 4.3. Thus, our strategy is to apply this

two-way coupled projection first and then use the resulting incompressible state to

add the effects of the viscous terms to the incompressible fluid. Interestingly, note

that this first coupled projection solve essentially gives the answer one would obtain if

the incompressible flow was inviscid. Thus for the viscous case, we essentially obtain

the inviscid solution first, rewind the compressible state vector U to its pre-projected

state, apply the viscous update to the incompressible region, and then apply the

coupled projection once again to obtain a final solution which includes the effects of

viscosity on the incompressible fluid.

4.3 Implicit coupling step

For the sake of exposition, we describe the implicit step in one spatial dimension. Mul-

tiple spatial dimensions are handled in a straightforward manner using a dimension-

by-dimension approach. Consider the situation depicted in Figure 4.1. Let pint denote

the interface pressure and θ = |φ(x2)|/(|φ(x2)|+ |φ(x3)|) be the cell fraction between

the interface and the center of cell 2. Discretizing the incompressible flow Poisson

equation (2.4) for cell 3, we obtain

−∆t

∆x

(
pn+1

4 − pn+1
3

ρI∆x
− pn+1

3 − pint

ρI(1− θ)∆x

)
= −∇ · ~v? (4.14)

Recall from Sections 2.1 and 4.1 that ~v refers to the face centered incompressible ve-

locity while ~u refers to the cell centered compressible velocity. Let I and C subscripts
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θ

1 1.5 2 2.5 3 4

Figure 4.1: A global Poisson solve for coupling together compressible and incom-
pressible fluids. Compressible cells are shown with red borders, incompressible cells
are shown with blue borders. The interface is shown in green and the shared face is
colored black.

represent values from the incompressible and compressible sides of the interface. For

inviscid flow ∇p/ρ is continuous across the interface [33] satisfying

∇pI

ρI

=
∇pC

ρC

(4.15)

Although [33] showed this for two-phase incompressible flow, one can still derive

equation (2.1) for compressible flow from the equations for conservation of mass and

momentum and so it also holds for inviscid compressible flow and mixed compressible-

incompressible flow (as long as the strong form of the equations hold and derivatives

exist). For viscous flows things can be more complex, however, in our case we assume

the compressible flow is inviscid and that there is no viscous momentum transfer

from the incompressible to the compressible flow as mentioned in Section 2.1 (see

also Section 4.2) - allowing equation (4.15) to still hold. Approximating equation

(4.15) with one-sided differences, we obtain

pint − pn+1
2

ρCθ∆x
=

pn+1
3 − pint

ρI(1− θ)∆x
(4.16)
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where we take ρC = ρn+1
2 (one might also conceivably use ρ̂n+1

2.5 ). Solving equation

(4.16) for the interface pressure pint gives

pint =
θρCpn+1

3 + (1− θ)ρIp
n+1
2

θρC + (1− θ)ρI

(4.17)

Writing

ρ̃ = θρC + (1− θ)ρI (4.18)

allows us to write

pint − pn+1
2

ρCθ∆x
=

pn+1
3 − pn+1

2

ρ̃∆x
=

pn+1
3 − pint

(1− θ)ρI∆x
(4.19)

and thus, equation (4.14) becomes

−∆t

∆x

(
pn+1

4 − pn+1
3

ρI∆x
− pn+1

3 − pn+1
2

ρ̃∆x

)
= −∇ · ~v? (4.20)

Next consider the compressible Poisson equation in cell 2. Note that cell 3 has a

valid compressible state vector after advection because we also update a band of

ghost cells near the interface (see Section 4.2). Let ρ̂n+1
2.5 , ρ̂n+1

1.5 denote the interpolated

face density obtained by averaging cell-centered values. Discretizing the compressible

Poisson equation (4.9) for cell 2 and using equation (4.19) gives

pn+1
2

ρn
2 (c2

2)
n∆t

− ∆t

∆x

(
pn+1

3 − pn+1
2

ρ̃∆x
− pn+1

2 − pn+1
1

ρ̂n+1
1.5 ∆x

)
=

p?
2

ρn
2 (c2

2)
n∆t

−∇ · û? (4.21)

Note that equations (4.20) and (4.21) together form a symmetric positive definite

(SPD) system, allowing for the use of fast Poisson solvers such as PCG.

Besides using ρ̃ in equations (4.20) and (4.21) to enforce the balance condition of

equation (4.15) we also desire a unique velocity at the shared face location x2.5 (shown

in black in Figure 4.1) for computing the term ∇ ·~v? in equation (4.20) and the term

∇ · û? in equation (4.21). Since we have separate velocity fields for compressible and
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incompressible fluids, the values û?
2.5 and v?

2.5 at the shared face need not be equal,

even though theoretically the normal component of the velocity field is supposed to

be continuous across the interface. Thus, at the shared face we apply a force λ to the

incompressible fluid and an equal and opposite force −λ to the compressible fluid so

that the resulting time t?? velocities at the shared face are equal, i.e.,

ρ̂n+1
2.5 û??

2.5 = ρ̂n+1
2.5 û?

2.5 − λ∆t, ρIv
??
2.5 = ρIv

?
2.5 + λ∆t (4.22)

Setting û??
2.5 = v??

2.5, and solving for λ gives

û??
2.5 = v??

2.5 =
ρIv

?
2.5 + ρ̂n+1

2.5 û?
2.5

ρI + ρ̂n+1
2.5

(4.23)

as our velocity at the shared face (note that since the incompressible density tends to

be much bigger than the compressible density, one could also use the incompressible

velocity and obtain similar results - we have tested this numerically). Also note that

the compressible face velocity is not an actual degree of freedom since the degrees of

freedom for compressible flow lie at cell centers. Hence, we add the momentum −λ∆t

to both the compressible cell 2 and the compressible ghost cell 3, i.e., (ρu)??
2 = (ρu)?

2−
λ∆t and (ρu)??

3 = (ρu)?
3−λ∆t, so that the first equation of equation (4.22) is satisfied.

This is equivalent in spirit to adding −λ∆t to cell 2 and then re-extrapolating into

ghost cell 3. Finally, after changing the compressible state vector at cell 2, the velocity

û?
1.5 is recomputed to make it consistent with the new state in cell 2. In multiple

spatial dimensions, if a compressible cell borders multiple incompressible cells then it

would be updated multiple times, leading to the compressible velocity at the shared

face not matching the incompressible velocity. We use the updated incompressible

velocity v??
2.5 at the shared face in this case for greater accuracy.

After solving the coupled projection solve of equations (4.20) and (4.21), the incom-

pressible velocity at the shared face is updated to time tn+1 via

vn+1
2.5 = v??

2.5 −
p̂n+1

3 − p̂n+1
2

ρ̃∆x
(4.24)
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For updating the compressible momentum at cell 2, we compute the face pressure p̂n+1
2.5

using the linear interpolant through pn+1
2 and pint, i.e., pn+1

2.5 = pn+1
2 +(pint− pn+1

2 )/2θ.

If θ is too small for the denominator, we instead compute the slope using equation

(4.19) and obtain pn+1
2.5 = pn+1

2 +ρn+1
2 (pn+1

3 −pn+1
2 )/(2ρ̃). The compressible momentum

at cell 2 is then updated as

(ρ~u)n+1
2 = (ρ~u)??

2 − p̂n+1
2.5 − p̂n+1

1.5

∆x
(4.25)

noting that (ρu)??
2 includes the momentum update λ∆t. For the energy update,

equation (4.13) is still used with the face pressure p̂n+1
2.5 as computed above and the

face velocity ûn+1
2.5 at the shared face computed using û??

2.5 in equation (4.12). Note

that in the presence of surface tension, we modify the Poisson equations for both

the compressible cell 2 and the incompressible cell 3 by taking the jump σκ into

account, as described in Section 2.1 (see also [33, 42]). Also note that in the presence

of surfactants, the surface tension coefficient σ can be variable and our method can

easily handle this scenario.

4.4 Time step restriction

The size of the overall time step is computed as the minimum of the incompressible

and the compressible time steps, i.e.,

∆t = α min{∆tI , ∆tC} (4.26)

where α denotes the CFL number. The incompressible time step ∆tI is computed as

described in Section 2.1. The compressible time step ∆tC is computed as described

in [38]. In order to prevent ∆tC from becoming infinite for near zero velocities un,

the term ∇p/ρ is added which estimates the change in velocity at the end of a time
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step. Hence, the CFL condition becomes

∆tC

(
|un|max + |px|

ρC
∆tC

∆x

)
≤ 1 (4.27)

Equation (4.27) is a quadratic in ∆tC with two solutions

−|un|max −
√
|un|2max + 4 |px|

ρC
∆x

2|px|/ρC

≤ ∆tC ≤
−|un|max +

√
|un|2max + 4 |px|

ρC
∆x

2|px|/ρC

(4.28)

Note that the lower limit in equation (4.28) is non-positive, and as ∆tC ≥ 0, only

the upper bound needs to be enforced. As px → 0, both the numerator and the

denominator vanish obtaining the typical bound of ∆x/|un|max which is problematic

when |un|max is small. We obtain a more convenient time step restriction which is not

plagued by either small |px| or small |un|max by replacing the second ∆t in equation

(4.27) with the right hand bound from equation (4.28) to obtain

∆tC
2

 |un|max

∆x
+

√(
|un|max

∆x

)2

+ 4
|px|

ρC∆x

 ≤ 1 (4.29)

In two spatial dimensions, the following CFL restriction is obtained

∆tC
2

 |un
1 |max

∆x
+
|un

2 |max

∆y
+

√(
|un

1 |max

∆x
+
|un

2 |max

∆y

)2

+ 4
|px|

ρC∆x
+ 4

|py|
ρC∆y

 ≤ 1 (4.30)

4.5 Numerical Results

We used the gamma gas law equation of state p = (γ − 1)ρe and an outer loop of

third order TVD Runge-Kutta in all these examples, noting that although the implicit

treatment of terms inside the RK loop generally leads to a loss of third order time

accuracy, greater stability is achieved. All examples use a CFL number of .5.
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4.5.1 One dimensional examples

Consider a computational domain of [0 m, 1 m]. The domain is filled with a com-

pressible gas with ρ = 1.226 kg/m3, u = 0 m/s, and p = 105 Pa. An incompressible

droplet of length .2 m is located at the center of the domain with ρ = 1000 kg/m3,

u = 100 m/s, and p = 105 Pa. Since the incompressible droplet is moving rightwards

in an initially stationary gas, a shock wave forms in the gas ahead of it and a rarefac-

tion wave forms in the gas behind it. Figure 4.2 shows the density, velocity, pressure

and time step profiles, along with the fully explicit method of [7] run on the finest

grid of resolution 12800 for the sake of comparison. (Note that our implementation

of [7] gave a different result for this example, although agrees with [7] for all other

examples that they ran in both one and two spatial dimensions, leading us to believe

that there is probably a typo in the description of this example in [7].) Note that our

method converges to the highly refined explicit result as the grid is refined. Figure 4.3

shows similar results when the density of the incompressible droplet is ρ = 10 kg/m3.

The compressible gas slows down the lighter droplet faster and as a result secondary

rarefaction waves stretch between the droplet and the shock and rarefaction waves.

Note that our method can take a time step that is four times larger, however, the cost

of each time step is slightly larger because the compressible degrees of freedom have

been added to the incompressible Poisson solver. The overall speedup in wall clock

time will generally depend on the ratio of increased cost per time step as compared

to the decrease in the number of time steps - in this particular example, the code was

approximately three times faster. For some problems the speedups can be significantly

larger especially when one cares about phenomena that occur after the compressible

flow relaxes to smaller velocities - in this case the time steps could increase by several

orders of magnitude.

Consider a computational domain of [0 m, 1 m] filled with a compressible fluid with

density ρ = 1.58317 kg/m3, velocity u = 0 m/s, and pressure p = 98066.5 Pa. An

incompressible droplet of length .2 m is initially located at the center of the domain

with ρ = 1000 kg/m3, u = 0 m/s, and p = 98066.5 Pa. A shock wave is initially
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(a) density (b) velocity

(c) pressure (d) time step

Figure 4.2: Numerical results for the moving incompressible droplet example, where
a droplet of density 1000 kg/m3 is travelling to the right in an initially stationary
compressible fluid at t = 7.5 × 10−4 s. Note that the profiles converge to those
generated using the partitioned method of [7].

located at x = .1 m with a post-shock state of ρ = 2.124 kg/m3, u = 89.981 m/s, and

p = 148407.3 Pa to the left of x = .1 m. The shock wave travels to the right impinging

on the incompressible droplet, causing both reflected and transmitted waves as shown

in Figure 4.4 at t = 1.75 × 10−3 s. Note that the transmitted wave is too weak to

be seen in this example, although it can be clearly seen in Figure 4.5 where the

incompressible droplet has density ρ = 10 kg/m3.
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(a) density (b) velocity

(c) pressure (d) time step

Figure 4.3: Numerical results for the moving incompressible droplet example, where
a droplet of density 10 kg/m3 is travelling to the right in an initially stationary
compressible fluid at t = 7.5 × 10−4 s. Note that the profiles converge to those
generated using the partitioned method of [7].

4.5.2 Two dimensional examples

All two-dimensional examples include the effects of viscosity and surface tension with

coefficients µ = .001137 kg/ms and σ = .0728 kg/s2. These effects are not present in

the one dimensional examples shown in Section 4.5.1 because the incompressible flow

has constant velocity and the interface has no curvature.

Consider a computational domain of [0 m, 1 m]×[0 m, 1 m]. Similar to the one
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(a) density (b) velocity

(c) pressure (d) time step

Figure 4.4: Numerical results for the shock impinging on a heavy incompressible
droplet example at t = 1.75× 10−3 s, where a shock wave initially located at x = .1
m travels to the right impinging on an incompressible droplet of density 1000 kg/m3

generating both reflected and transmitted waves. Note that the profiles converge to
those generated using the partitioned method of [7].

dimensional case, the domain is filled with a compressible gas with ρ = 1.226 kg/m3,

u = v = 0 m/s, and p = 105 Pa. An incompressible droplet of radius .2 m is located

at the center of the domain with ρ = 1000 kg/m3, u = 100 m/s, v = 0 m/s, and

p = 105 Pa. Since the compressible gas is initially stationary and the droplet is

moving rightwards, a shock wave forms in the gas in front of it, and a rarefaction

wave forms in the gas behind it. Figure 4.6(a) shows 50 equally spaced pressure
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(a) density (b) velocity

(c) pressure (d) time step

Figure 4.5: Numerical results for the shock impinging on a light incompressible droplet
example at t = 1.75×10−3 s, where a shock wave initially located at x = .1 m travels to
the right impinging on an incompressible droplet of density 10 kg/m3 generating both
reflected and transmitted waves. Note that the profiles converge to those generated
using the partitioned method of [7].

contours between .75× 105 Pa and 1.5× 105 Pa on a 1600× 1600 grid at t = 5× 10−4

s. Figure 4.6(b) shows the pressure contour of 1.1 × 105 at various grid resolutions

to show that the numerical profiles generated using our method converge to those

generated using the fully explicit method of [7] under grid refinement. The velocity

field is shown in Figure 4.6(c) where the incompressible velocities are shown in blue

and the compressible ones are shown in red. Figure 4.6(d) shows the initial location
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(a) (b)

(c) (d)

Figure 4.6: The moving incompressible droplet example in two spatial dimensions
inside a computational domain of [0 m, 1 m]×[0 m, 1 m], where an incompressible
droplet of density 1000 kg/m3 and initial radius .2 m is travelling to the right in
an initially stationary compressible fluid. (a) 50 equally spaced pressure contours
between .75 × 105 Pa and 1.5 × 105 Pa on a 1600 × 1600 grid at t = 5 × 10−4

s, (b) pressure contour of 1.1 × 105 at t = 5 × 10−4 s under grid refinement to
illustrate convergence to the result generated using the partitioned method of [7], (c)
velocity field at t = 5× 10−4 s where the incompressible velocities are shown in blue,
and compressible velocities are shown in red, and (d) the zero level set under grid
refinement at t = 2.5× 10−3 s as compared to its initial location.
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(a) (b)

(c) (d)

Figure 4.7: The moving incompressible droplet example in two spatial dimensions
inside a computational domain of [0 m, 1 m]×[0 m, 1 m], where an incompressible
droplet of density 10 kg/m3 and initial radius .2 m is travelling to the right in an
initially stationary compressible fluid. (a) pressure contour of 1.1×105 at t = 5×10−4

s under grid refinement to illustrate convergence to the result generated using the
partitioned method of [7], (b) the zero level set under grid refinement at t = 2.5×10−3

s as compared to its initial location, (c) the zero level set on a grid of resolution
800×800 at t = 2.5×10−3 s as compared to its initial location using the fully explicit
partitioned solver of [7], and (d) the zero level set on a grid of resolution 800 × 800
at t = 2.5× 10−3 s as compared to its initial location using our monolithic solver.
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of the zero level set as compared to its location at t = 2.5× 10−3 s. Figure 4.7(a)-(d)

show the results for the case when the incompressible droplet has ρ = 10 kg/m3. Note

that the lighter droplet undergoes larger deformation and also slows down at a faster

rate. Also note that, as observed in [7], the computations for the lighter droplet show

signs of Kelvin-Helmholtz instability as is apparent by the wiggles in the interface

location shown in Figure 4.7(b). This effect is less apparent on coarser grids because

of the artificial damping due to numerical viscosity.

(a) (b)

Figure 4.8: The moving incompressible droplet example in two spatial dimensions
inside a computational domain of [0 m, 1×10−5 m]×[0 m, 1×10−5 m], where an
incompressible droplet of density 10 kg/m3 and initial radius .2×10−5 m is travelling
to the right in an initially stationary compressible fluid. (a) one dimensional cross-
section of the pressure on an 800 × 800 grid at t = 5 × 10−9 s, where the pressure
in the incompressible region is shown in blue and that in the compressible region is
shown in red, and (b) the zero level set under grid refinement at t = 2.5× 10−8 s as
compared to its initial location.

To demonstrate the effects of surface tension and viscosity, we also shrunk the domain

to [0 m, 1×10−5 m]×[0 m, 1×10−5 m] for the case when the incompressible droplet

has density ρ = 10 kg/m3. Figure 4.8(a) shows a one dimensional cross-section of

the pressure at t = 5 × 10−9 s, where the pressure in the incompressible region is

shown in blue and that in the compressible region is shown in red. Note the jump

in pressure across the interface due to surface tension effects. Figure 4.8(b) shows
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the initial location of the zero level set as compared to its location at t = 2.5× 10−8

s. Note that the smaller droplet is deformed less and has a more spherical shape as

compared to the larger droplet shown in Figure 4.7(d).

Consider a computational domain of [0 m, 1 m]×[0 m, 1 m]. Similar to the one

dimensional case, the domain is filled with a compressible fluid with ρ = 1.58317

kg/m3, u = v = 0 m/s, and p = 98066.5 Pa. An incompressible droplet with initial

state ρ = 10 kg/m3, u = v = 0 m/s, and p = 98066.5 Pa with radius .2 m is

located at the center of the domain. A shock wave is initially located at x = .1

m with a post-shock state of ρ = 2.124 kg/m3, u = 89.981 m/s, v = 0 m/s, and

p = 148407.3 Pa to the left of x = .1 m. The shock wave travels to the right

impinging on the incompressible droplet, generating both reflected and transmitted

waves. Figure 4.9(a) shows 50 equally spaced pressure contours between 1 × 105 Pa

and 1.8× 105 Pa on a 1600× 1600 grid at t = 1.25× 10−3 s. Figure 4.9(b) shows the

pressure contour of 1.62 × 105 Pa under grid refinement to illustrate convergence to

those generated using the fully explicit method of [7]. Figure 4.9(c) shows the velocity

field, where the incompressible velocities are shown in blue, and the compressible

velocities are shown in red. Figure 4.9(d) shows the initial location of the zero level

set as compared to its location at t = 2.5 × 10−3 s under grid refinment. Note that

the computations on the finer grids also show signs of Kelvin-Helmholtz instability.

4.6 Constant temperature formulation

We make an isothermal assumption, where the equations for conservation of mass

and momentum form a closed system and the equation for conservation of energy

decouples. In this case, the gamma gas law equation of state can be rewritten as

p = Bρ, where B is essentially (γ − 1)e which we set equal to the atmospheric

pressure, i.e., B = patm/ρatm m3/kg, as described in Chapter 2. For this equation of
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(a) (b)

(c) (d)

Figure 4.9: The shock impinging on an incompressible droplet example in two spatial
dimensions inside a computational domain of [0 m, 1 m]×[0 m, 1 m], where a shock
wave initially located at x = .1 m travels to the right impinging on an incompressible
droplet with ρ = 10 kg/m3 and initial radius .2 m generating both reflected and
transmitted waves. (a) 50 equally spaced contours between 1× 105 Pa and 1.8× 105

Pa on a 1600 × 1600 grid at t = 1.25 × 10−3 s, (b) pressure contour of 1.62 × 105

Pa under grid refinement at t = 1.25× 10−3 s to illustrate convergence to the result
generated using the partitioned method of [7], (c) velocity field at t = 1.25 × 10−3 s
where the incompressible velocities are shown in blue, and the compressible velocities
are shown in red, and (d) the zero level set under grid refinement at t = 2.5× 10−3 s
as compared to its initial location.
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state, substituting equation (3.3), equation (4.8) becomes

pn+1 −∆t2Bρn∇ ·
(
∇pn+1

ρn+1

)
= Bρ? −∆tBρn∇ · û? (4.31)

where p? has been replaced with Bρ?. Note that, as mentioned in Section 4.1, ρ? =

ρn+1, and thus p? = Bρ? = Bρn+1. Furthermore, if ρc2 in equation (4.8) is taken

to be at time tn+1 instead of tn, we can replace ρn with ρn+1 in equation (4.31) and

divide by Bρn+1 to obtain

1

∆t2Bρn+1
p̂n+1 −∇ ·

(
∇p̂n+1

ρn+1

)
=

1

∆t
−∇ · û? (4.32)

which is the continuous analog of equation (4.9) for this equation of state.

4.6.1 Numerical results

Now reconsider the examples presented in Section 4.5.1 simulated using p = Bρ as

the equation of state. We use the same ambient conditions for density and velocity

in all the examples, noting that the ambient pressures will be different since pressure

depends on density. Also, for the examples with prescribed shocks we choose to match

the shock speed prescribing a post-shock state of ρ = 1.97705 kg/m3 and u = 70.4023

m/s. Figures 4.12-4.15 show the numerical profiles generated using equation (4.32)

- a high resolution comparison to the fully explicit method of [7] is also shown in

the results. Note that the incompressibility assumption confines shock waves to the

compressible fluid, however, if one wishes to study phenomena such as when shock

waves impinge upon the compressible fluid or shock-induced bubble collapse then

fully two-phase compressible flow models should be used [32, 31].

Next consider the oscillating bubble problems introduced in Section 2.2. Here we

use the two-way coupled simulation techniques proposed in this section which couple

the incompressible flow solver to a full compressible flow solver that includes shocks

and rarefactions, albeit a somewhat simplified isothermal p = Bρ equation of state.
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(a) (b)

(c) (d)

Figure 4.10: Numerical profiles for bubble volume over time along with peak-to-peak
growth/decay rates for the oscillating bubble problem in one spatial dimension with
equation of state p = Bρ generated by (a,b) the partitioned method of [7], and (c,d)
the monolithic solver.

resolution1 resolution2 resolution3 convergence
order

200 400 800 1.1968
400 800 1600 1.1644
800 1600 3200 1.0506
1600 3200 6400 1.0000

Table 4.1: Convergence orders for the volume profiles generated by the partitioned
method of [7] for the oscillating bubble problem in one spatial dimension using the
equation of state p = Bρ.
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resolution1 resolution2 resolution3 convergence
order

200 400 800 -.08905
400 800 1600 .6740
800 1600 3200 .5688
1600 3200 6400 .6031
3200 6400 12800 .6033

Table 4.2: Convergence orders for the volume profiles generated by the monolithic
solver for the oscillating bubble problem in one spatial dimension using the equation
of state p = Bρ.

resolution1 resolution2 resolution3 convergence
order

100 200 400 3.3236
200 400 800 2.5883

Table 4.3: Convergence orders for the volume profiles generated by the partitioned
method of [7] for the oscillating bubble problem in two spatial dimensions using the
equation of state p = Bρ.

resolution1 resolution2 resolution3 convergence
order

100 200 400 .9151
200 400 800 .6104

Table 4.4: Convergence orders for the volume profiles generated by the monolithic
solver for the oscillating bubble problem in two spatial dimensions using the equation
of state p = Bρ.

Figure 4.10(a) shows the numerical profiles for the bubble volume over time generated

using the partitioned method of [7], while Figure 4.10(c) shows the profiles generated

using our proposed monolithic solver in one spatial dimension. Figures 4.10(b) and

(d) show the corresponding peak-to-peak growth/decay rates under grid refinement

while Tables 4.1 and 4.2 show the respective convergence orders. Note that the results

converge to the “exact” solution under grid refinement in both cases. Figure 4.11

shows the results for a two dimensional oscillating bubble. The respective convergence

orders are shown in Tables 4.3 and 4.4. Note that, unlike the one dimensional case,

the method of [7] also damps the solution on coarser grids, although converging to
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(a) (b)

(c) (d)

Figure 4.11: Numerical profiles for bubble volume over time along with peak-to-
peak decay rates for the oscillating bubble problem in two spatial dimensions with
equation of state p = Bρ generated by (a,b) the partitioned method of [7], and (c,d)
the monolithic solver. Note that the highest resolution simulation in (a) has not
been run for the entire time length because of the significant computational overhead
incurred by the partitioned scheme of [7].

the “exact” solution under grid refinement.
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(a) density (b) velocity

(c) pressure

Figure 4.12: Numerical results for the moving incompressible droplet example, where
a droplet of density 1000 kg/m3 is travelling to the right in an initially stationary
compressible fluid with equation of state p = Bρ at t = 7.5 × 10−4 s. Note that the
profiles converge to those generated using the partitioned method of [7].
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(a) density (b) velocity

(c) pressure

Figure 4.13: Numerical results for the moving incompressible droplet example, where
a droplet of density 10 kg/m3 is travelling to the right in an initially stationary
compressible fluid with equation of state p = Bρ at t = 7.5 × 10−4 s. Note that the
profiles converge to those generated using the partitioned method of [7].
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(a) density (b) velocity

(c) pressure

Figure 4.14: Numerical results for the shock impinging on a heavy incompressible
droplet example with equation of state p = Bρ at t = 1.75 × 10−3 s, where a shock
wave initially located at x = .1 m travels to the right impinging on an incompressible
droplet of density 1000 kg/m3 generating both reflected and transmitted waves. Note
that the profiles converge to those generated using the partitioned method of [7].
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(a) density (b) velocity

(c) pressure

Figure 4.15: Numerical results for the shock impinging on a heavy incompressible
droplet example with equation of state p = Bρ at t = 1.75 × 10−3 s, where a shock
wave initially located at x = .1 m travels to the right impinging on an incompressible
droplet of density 10 kg/m3 generating both reflected and transmitted waves. Note
that the profiles converge to those generated using the partitioned method of [7].



Chapter 5

Constant density and pressure

In this section continuing on from the isothermal assumption from Section 4.6, we

additionally make constant density and constant pressure assumptions to arrive at

our final method for simulating bubbles.

5.1 Constant density

We achieve constant density by redistributing the density in each bubble as the av-

erage density per bubble before the implicit pressure solve, exactly as is done for the

partitioned solver in Section 2.3. Note that a spatially constant density field does not

imply that pressure inside the bubbles is spatially constant as well.

Figure 5.1 shows the numerical profiles for the bubble volume over time along with

peak-to-peak decay rates under grid refinement for the oscillating bubble problems.

The respective convergence orders are shown in Tables 5.1 and 5.2. Note that the

profiles converge to the “exact” solutions under grid refinement.

49
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(a) (b)

(c) (d)

Figure 5.1: Numerical profiles for the bubble volume over time along with peak-to-
peak decay rates under grid refinement generated using the monolithic solver with
density redistribution to obtain constant density as well as an equation of state p = Bρ
for the oscillating bubble problem in (a,b) one spatial dimension, and (c,d) two spatial
dimensions.

5.2 Constant pressure

We now present a simplified monolithic solver which solves for a constant pressure

pn+1 inside the bubble with a single degree of freedom, i.e., spatially constant but

time-varying. In matrix terms, this corresponds to taking the Poisson matrix for the

full system and collapsing all the rows and columns corresponding to cells in the same

bubble into a single row and column, adding overlapping matrix elements. This can

also be seen as summing equation (4.32) over the entire bubble to obtain



CHAPTER 5. CONSTANT DENSITY AND PRESSURE 51

resolution1 resolution2 resolution3 convergence
order

200 400 800 .9170
400 800 1600 1.0061
800 1600 3200 1.1145
1600 3200 6400 1.2446
3200 6400 12800 1.2756

Table 5.1: Convergence orders for the volume profiles generated by the monolithic
solver with density redistribution to obtain constant density for the oscillating bubble
problem in one spatial dimension using the equation of state p = Bρ.

resolution1 resolution2 resolution3 convergence
order

200 400 800 1.1948
400 800 1600 1.3827

Table 5.2: Convergence orders for the volume profiles generated by the monolithic
solver with density redistribution to obtain constant density for the oscillating bubble
problem in two spatial dimensions using the equation of state p = Bρ.

∑
i∈Ω

1

∆t2Bρn+1
p̂n+1 −

∑
i∈Ω

∇ ·
(
∇p̂n+1

ρn+1

)
=
∑
i∈Ω

1

∆t
−
∑
i∈Ω

∇ · û? (5.1)

The first term on each side of the equality simply sums over the number of cells N

inside the bubble. The last term can be modified by multiplying and dividing by the

volume of a cell Vc and converting the volume sum to a surface sum along the MAC

grid cell faces that border the bubble. If the average normal velocity on all these

faces is ū and the perimeter of all these faces is P , we obtain

N

∆t2Bρn+1
p̂n+1 −

∑
i∈Ω

∇ ·
(
∇p̂n+1

ρn+1

)
=

N

∆t
− ūP

Vc
(5.2)

Most of the terms in the final summation vanish since ∇p is zero within the bubble,

leaving only terms corresponding to MAC grid faces that surround the bubble volume.

For each of these faces ρn+1 equals ρ̃ as defined in equation (4.18). Note that the first
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(a) (b)

(c) (d)

Figure 5.2: Numerical profiles for the bubble volume over time along with peak-to-
peak decay rates under grid refinement generated by the constant pressure formulation
where all pressure unknowns are collapsed to a single degree of freedom for each
distinct bubble for the oscillating bubble problem in (a,b) one spatial dimension, and
(c,d) two spatial dimensions.

term on each side of equation (5.2) is based on the number of cells within the bubble

and the second term on each side of the equality is based on the number of MAC grid

faces surrounding the bubble. Reminder, ρn+1 in the first term denotes the bubble

density.

Note that the constant pressure formulation does not produce pressure gradients

within the bubble. Thus, the air velocities are updated through a second projection

solve as per equations (2.15) and (2.16) using the boundary incompressible velocities,
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(a) (b)

(c) (d)

Figure 5.3: Numerical profiles for the bubble volume over time along with peak-to-
peak decay rates under grid refinement generated by the constant pressure solver
for the external pressure field problem in (a,b) one spatial dimension, and (c,d) two
spatial dimensions. Note that the higher resolution simulations in (c) have not been
run for the entire time length because the bubble breaks up into multiple bubbles due
to Kelvin-Helmholtz instability, breaking our underlying assumptions and making
further computation meaningless.

as outlined in Section 2.3. Figure 5.2 shows the numerical profiles for the bubble vol-

ume over time along with peak-to-peak decay rates for the oscillating bubble problems

in one and two spatial dimensions respectively. Tables 5.3 and 5.4 show the respec-

tive convergence orders. Note that the profiles closely match those shown in Figures

3.3 and 5.1, verifying the correctness of the solver. We also consider the case where

the initial density inside the bubble is 1 kg/m3, and the outside air pressure is time-

varying as patm(t) = Bf(t), where f(t) = 1 − .2 sin(2πt + π/2). We refer to this
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resolution1 resolution2 resolution3 convergence
order

200 400 800 .9154
400 800 1600 1.0061
800 1600 3200 1.1145
1600 3200 6400 1.2136
3200 6400 12800 1.3847

Table 5.3: Convergence orders for the volume profiles generated by the constant
pressure solver for the oscillating bubble problem in one spatial dimension.

resolution1 resolution2 resolution3 convergence
order

200 400 800 1.1701
400 800 1600 1.0426

Table 5.4: Convergence orders for the volume profiles generated by the constant
pressure solver for the oscillating bubble problem in two spatial dimensions.

problem as the external pressure field problem. Note that this problem is similar

in spirit to the excitation of an isolated gas bubble from a planar sinusoidal wave,

as studied in [17]. Figure 5.3 shows the resulting numerical profiles for the bubble

volume over time along with peak-to-peak decay rates generated using our method

in one and two spatial dimensions respectively, which converge to the “exact” so-

lutions under grid refinement. Tables 5.5 and 5.6 show the respective convergence

orders. Note that the “exact” solutions are computed using equations (A.4), (A.11)

and (A.18) in the appendix which are also valid for time-varying external pressures.

resolution1 resolution2 resolution3 convergence
order

200 400 800 1.0208
400 800 1600 1.1272
800 1600 3200 1.2518
1600 3200 6400 1.3991
3200 6400 12800 1.5850

Table 5.5: Convergence orders for the volume profiles generated by the constant
pressure solver for the external pressure field problem in one spatial dimension.
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resolution1 resolution2 resolution3 convergence
order

100 200 400 1.0661
200 400 800 1.1934
400 800 1600 1.3502

Table 5.6: Convergence orders for the volume profiles generated by the constant
pressure solver for the external pressure field problem in two spatial dimensions.

For the oscillating bubble and external pressure field problems, we also considered the

effects of surface tension and viscosity for a range of parameters from high to low, both

individually and in combination. Figures 5.4(a) and (b) show the numerical profiles

for the bubble volume over time for both these problems in two spatial dimensions

with coefficients σ = .0728 kg/s2 and µ = .2 kg/ms. To heighten the effects of surface

tension, the computational domain has been uniformly scaled down by a factor of

10−3.

(a) (b)

Figure 5.4: Numerical profiles for the bubble volume over time under grid refinement
generated by the constant pressure solver under the effects of surface tension and
viscosity for the (a) oscillating bubble problem in two spatial dimensions, and (b)
external pressure field problem in two spatial dimensions.

As further validation of our method, we also considered the rising bubble examples

from [33]. Consider a computational domain of [−1 m, 1 m]× [−1 m, 2 m] which is

initially filled with water except for a circular air bubble of radius 1/3 m centered at

the origin with density ρ = 1.226 kg/m3. The effects of surface tension and viscosity
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are present with coefficients µ = .001137 kg/ms and σ = .0728 kg/s2. The edges

of the computational domain have solid wall boundary conditions. Figure 5.5 shows

the positions of the air bubble at t = 0, t = .2, t = .35 and t = .5 seconds under

grid refinement. Note that the results are similar to those shown in Figures 3 and

4 from [33]. The finer grid computations at t = .35 s and t = .5 s show signs of

Kelvin-Helmholtz instability, as noted in [33]. To demonstrate the effects of surface

tension, we reduced the computational domain to [−.01 m, .01 m]× [−.01 m, .02 m]

and the radius of the air bubble to 1/300 m. Figure 5.6 shows the positions of the air

bubble at t = 0, t = .02, t = .035 and t = .05 seconds under grid refinement. Note

that the results are similar to those shown in Figures 1 and 2 from [33].
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t = 0 s t = .2 s

t = .35 s t = .5 s

Figure 5.5: Level set profiles under grid refinement for an air bubble of initial radius
1/3 m rising inside a computational domain of [−1 m, 1 m]× [−1 m, 2 m] filled with
water with solid wall boundary conditions. Note that the computations at time t = .5
s show signs of Kelvin-Helmholtz instability.
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t = 0 s t = .02 s

t = .035 s t = .05 s

Figure 5.6: Level set profiles for an air bubble of initial radius 1/300 m rising under
the effects of surface tension and viscosity inside a computational domain of [−.01 m,
.01 m]× [−.01 m, .02 m] filled with water with solid wall boundary conditions.



Chapter 6

Momentum conservation

Consider an isolated incompressible droplet with no ambient pressure forces. When

solving equation (2.4) to make the velocities divergence free, a constant pressure along

the boundary leads to a net force of zero implying momentum conservation for the

droplet. When updating the velocity degrees of freedom on regular MAC grid faces

via equation (2.5), the interior cell-centered pressures are applied in a conservative

fashion to velocities at faces bordering interior cells, and as there is no net pressure

force along the boundary the projection step conserves momentum in each Cartesian

direction independently. That is, momentum is conserved during the projection step

for the velocity degrees of freedom that surround the cell-centered pressure degrees

of freedom.

During the velocity extrapolation step, if one computes φ-values at faces by averaging

cell-centered φ-values, then some of the faces involved in the momentum conserving

projection step above may be deemed outside the droplet and overwritten. This

violates momentum conservation and can be seen as moving the boundary inward

by one grid cell replacing the proper exterior constant pressure Dirichlet boundary

condition with a spurious internal pressure. Thus we do not use face-averaged φ-

values, instead labeling every face adjacent to an interior cell center as interior to

the droplet. Similarly, the viscous solver uses the same velocity degrees of freedom
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with exterior Neumann boundary conditions. Currently, we do not use momentum

conserving advection [41] as the largest errors for momentum conservation occur when

applying surface tension.

In the presence of surface tension, there is additional momentum added for any veloc-

ity degree of freedom that lies between an interior and an exterior cell. We compute

curvature at a face as a φ-weighted average of its cell-centered values, i.e.,

κf =
κi|φi+1|+ κi+1|φi|
|φi|+ |φi+1|

(6.1)

The surface tension force per unit area at this face is sign(±1)σκ, where sign(±1) is

chosen consistent with the outward unit normal in the Cartesian grid directions based

on which cells are interior and exterior to the level set. To properly conserve momen-

tum, the net force due to surface tension should sum to zero for each independent

bubble and droplet independently along each of the Cartesian directions. To enforce

this for each independent bubble and droplet, we compute the total surface tension

force per unit area along each Cartesian direction as σκtotal =
∑

f sign(±1)σκf , and

subtract it off from the corresponding force for each face in a curvature-weighted

fashion. That is, the new jump for each face becomes

σκnew
f = sign(±1)σκf −

|κf |∑
f |κf |

σκtotal (6.2)

Obviously alternatives to equation (6.2) exist, and it is not the form of the correction

but the fact that a correction needs to be made in order to conserve momentum that

we stress. In our simulations we noticed that the net surface tension force along the

boundary is close to zero for large well-resolved bubbles and water droplets. However,

for under-resolved droplets which are a few grid cells wide, we noticed that the net

surface tension force can be so far from zero that droplets can even change directions

in mid-air violating conservation of momentum.

Although we only apply the surface tension correction to closed surfaces, it appears

that one can use a similar strategy for open surfaces connected to boundaries as well.
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Consider for example a single circular bubble, if this bubble is cut in half then it

follows from the conservation of momentum that the force on the top half of the

bubble must equal the force on the bottom half. However, if we redrew the bottom

half of the bubble to any arbitrary curve, then the net force on this new bottom half

must still be equal to the net force on the top half. Essentially, the net force on the

bottom half of the bubble is independent of its shape and is somehow tied to the

boundary conditions on the top half. Therefore, for an open surface connected to the

boundary of the domain, with additional knowledge about contact angles, one could

likely compute a consistent measure for the net force on the open surface.



Chapter 7

Complex bubble breakup

To summarize, our method for simulating bubbles in free surface incompressible

flows is as follows. We use the level set method [50] to track the interface be-

tween the bubbles and the incompressible fluid. Initially, each bubble is assigned

a density (or mass) which is advected using the unconditionally stable conservative

semi-Lagrangian scheme of [41]. We advect the bubble density using air velocities

which are constructed and maintained in a separate velocity field, although one could

also use velocities extrapolated from the incompressible flow for increased efficiency

but lower accuracy. The velocity used for level set advection is a hybrid between the

incompressible flow velocity and the air velocity field. Even so, numerical smearing

and other errors cause the location of the zero level set and the location of the non-

zero bubble densities to drift apart over time. We address this issue as follows. First

we compute the total mass that belongs to a bubble as the sum of all the mass inside

the bubble and all the mass closest to that bubble. Then we use a flood fill algorithm

on that bubble to identify all grid cells belonging to that connected component. The

volume of this connected component is carefully computed using a piecewise linear

reconstruction of the level set as outlined in [40]. The mass is then uniformly re-

distributed inside the bubble to obtain a spatially constant bubble density. Before

advecting the incompressible velocities and the air velocities, they are extrapolated
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across the interface in order to define ghost node values using the fast extension

method of [1]. The two velocity fields are then independently advected using the

second order accurate MacCormack method [53]. The level set function is advected

using the particle level set method of [11] and the semi-Lagrangian advection scheme

of [12]. To keep the level set a signed distance function we use the modified fast

marching method of [43]. Note that we also compute the advection terms in a thin

band of ghost cells so they are adequately defined when the interface moves. Also

note that we passively advect the bubble mass that is not close to any bubble using

the incompressible flow velocities in order to accurately track sub-grid level details.

When a bubble is about to merge with the ambient air near the free surface, dynamic

events can cause the bubble to open in one time step and close in the next. To ro-

bustly track the bubble density in these cases, we keep advecting the bubble mass

even if the bubble merges with the ambient air near the free surface.

Viscosity in the water is treated implicitly using Neumann boundary conditions at

the interface that the derivative of each component of the incompressible velocity is

zero. As described in Section 2.1, this is based on the assumption that the dynamics

inside the air bubbles contain little momentum and hence, they cannot absorb any

viscous momentum from the liquid. Thus, the jump in pressure due to viscosity is also

zero since the normal component of the viscous stress vanishes across the interface.

Finally, as we assume constant viscosity in the incompressible fluid, the equations for

the different components of the incompressible velocity decouple as in equations (2.6)

and (2.7) for two spatial dimensions. Note that the level set is advected to its new

time tn+1 position before the viscous update due to the need to prescribe interface

boundary conditions.

For the implicit step of our method, we use a coupled solve between a single degree of

freedom pressure for the bubble and the surrounding incompressible flow by solving

equation (5.2), as described in Section 5.2. The ambient air is taken to be a Dirichlet

boundary condition of patm = 101, 325 Pa for which we use the second order cut-

cell method of [19]. In the presence of surface tension, the appropriate σκ jumps

are added to pressure values near the interface. These pressure jumps are carefully
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(a) (b)

Figure 7.1: Velocity field at t = .5 s on a 80× 120 grid for the rising bubble example
from [33] (and Figure 5.5) when the air velocities are (a) wiped out at the end of
every time step and computed from the boundary incompressible velocities using a
second projection solve, and (b) advected forward in time and updated using pressure
gradients from a second projection solve. The incompressible velocities are shown in
blue and the air velocities are shown in red. Note that the velocity field in (b) appears
much more continuous and smooth compared to the velocity field in (a).

computed noting that the net surface tension force on each bubble and each water

droplet must be zero, as described in Chapter 6. We use this pressure to update the

incompressible velocities via equation (2.5). This provides a very stable monolithic

coupling for interactions between bubbles and the surrounding incompressible flow.

The air velocities inside the bubbles are computed from the boundary incompressible

flow velocities using a second projection as in equations (2.15) and (2.16). One might

consider wiping out the air velocities at the end of every time step assuming that the

bubble has little momentum and thus, a very small influence on the incompressible
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velocity field. However, this destroys the temporal continuity of the overall flow field

as shown in Figures 7.1(a) and (b) for the rising bubble example from Figure 5.5.

Note that all the vorticity in the air velocities is confined near the boundaries in

Figure 7.1(a) which would give rise to a noisy level set as the simulation progresses.

In contrast, Figure 7.1(b) has a much better behaved velocity field which maintains

a smooth level set over time.

Finally, the size of the time step is computed using equation (2.10) where we add an

estimate for |∇p| using equation (2.14) which accounts for the change in velocity over

a time step. This term prevents the time step from becoming excessively large when

velocities are near zero and is similar in spirit to the idea proposed in [33] for body

forces and [38] for compressible flow.

7.1 Numerical results

Consider a computational domain of [−1 m, 1 m]× [−1 m, 2 m] which is initially filled

with water with density 1000 kg/m3 where the free surface is located at y = 1.5 m. A

circular air bubble of radius 1/3 m is centered at the origin with density 1.364 kg/m3.

The effects of surface tension and viscosity are absent. Figure 7.2 shows the level set

at t = 0, t = .45, t = .9, t = 1.2, t = 1.5, t = 1.8, t = 2.4, t = 2.7 and t = 3 seconds

for two grids of resolutions 320×480 and 640×960 respectively. Note the small scale

details that our solver is able to resolve and accurately track over time. In order to

show convergence of our solver under grid refinement, we reduced the computational

domain to [−.01 m, .01 m]× [−.01 m, .02 m] and the radius of the bubble to 1/300 m,

and included the effects of surface tension and viscosity with coefficients σ = .0728

kg/s2 and µ = .001137 kg/ms. The initial density of the air bubble is 1.227 kg/m3.

Figure 7.3 shows the level set at t = 0, t = .02, t = .04 and t = .08 seconds.

As further validation, we also simulated the rising bubble experiment corresponding

to Fig 1A from [25] where a bubble of radius .0061 m and initial density 1 kg/m3

rises in a liquid of density 875.5 kg/m3. The computational domain is [−.1464 m,
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t = 0 s t = .45 s t = .9 s

t = 1.2 s t = 1.5 s t = 1.8 s

t = 2.4 s t = 2.7 s t = 3 s

Figure 7.2: An air bubble of initial radius 1/3 m rising inside a computational domain
of [−1 m, 1 m] × [−1 m, 2 m] filled with water with a free surface initially located
at y = 1.5 m. The effects of surface tension and viscosity are absent. Note the small
scale details that our solver is able to resolve and accurately track over time.
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t = 0 s t = .02 s

t = .04 s t = .08 s

Figure 7.3: Level set profiles under grid refinement for an air bubble of initial radius
1/300 m rising inside a computational domain of [−.01 m, .01 m]× [−.01 m, .02 m]
filled with water with a free surface initially located at y = .015 m. The effects of
surface tension and viscosity are present.



CHAPTER 7. COMPLEX BUBBLE BREAKUP 68

(a) (b)

Figure 7.4: Rising bubble example from Fig. 1A of [25], (a) computed steady state
bubble shape and the streamlines inside the bubble and those in its wake, and (b)
time evolution of the position of the center of mass of the bubble.

.1464 m] × [−.0732 m, .366 m] and the bubble is initially located at the origin.

The coefficient of viscosity is µ = .118 kg/ms and the coefficient of surface tension

is σ = .0322 kg/s2. The edges of the computational domain have slip solid wall

boundary conditions. This example was also simulated in [57, 24] and our solver

gives similar results. Figure 7.4(a) shows the bubble at time t = .6 s on a 512× 768

grid along with the streamlines both inside the bubble and in its wake. Figure 7.4(b)

shows the time evolution of the position of the center of mass of the bubble. We

compared this data with the linear best fit for .6 ≤ t ≤ .8 seconds. The slope of

the linear best fit is .2114 m/s whereas the expected slope is .215 m/s. We note

that the streamlines do not match the experimentally observed values due to the fact

that a highly simplified single pressure degree of freedom model is used for the air,

however, the steady state bubble rise speed is close to the experimentally measured

value in [25] and the steady state bubble shape is similar to that observed in [25] and

computed in [57, 24].
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7.1.1 Object interaction

When updating the incompressible flow velocities during advection, in the presence

of objects, we set velocity Dirichlet boundary conditions at cell faces whose centers

lie inside an object as these cell faces have well-defined velocities determined by the

object velocity. We then advect every face obtaining a well-defined incompressible

flow velocity field at time t?. As we consider interaction with objects that are fully

submerged initially, we initialize φ inside these objects to be the value when no

objects were present, i.e., treat them as water. Subsequently when advecting φ, we

also update φ at grid cells whose centers lie inside an object. Air velocities are

handled similar to the incompressible flow velocities during advection with Dirichlet

boundary conditions at cell faces inside objects. As described in [41] (see also [23]),

for advecting the air density, we modify the forward and backward ray casting to

stop when it hits an object. Interpolation weights are computed at the surface point,

where weights coming from cells inside an object are discarded and the remaining

weights are rescaled to sum to 1. During the viscous solve, we set Dirichlet boundary

conditions at cell centers that lie inside objects. When solving for the pressure to

make the incompressible flow velocities divergence free, we set Neumann boundary

conditions at cell faces whose centers lie inside objects. Similarly, during the second

projection step for updating the air velocities, we set Neumann boundary conditions

at cell faces whose centers lie inside objects.

Consider a computational domain of [−1 m, 1 m]× [−1 m, 2 m] which is initially filled

with water with density 1000 kg/m3 where the free surface is located at y = 1.5 m. A

circular air bubble of radius 1/3 m is centered at the origin with density 1.364 kg/m3.

The domain has nine circular objects with four objects located at (−.6 + .4k, .5),

where k = {0, 1, 2, 3} and the other five objects located at (−.8 + .4k, .9), where

k = {0, 1, 2, 3, 4}. Figure 7.5 shows the level set at t = 0, t = .25, t = .5, t = .75,

t = 1, t = 1.25, t = 1.5, t = 1.75 and t = 2.1 seconds for two grids of resolutions

320 × 480 and 640 × 960 respectively. As can be seen, the objects break up the

bubble into a large number of small bubbles which our solver is able to resolve and

efficiently track over time. We also show an example where the larger bubbles deform
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t = 0 s t = .25 s t = .5 s

t = .75 s t = 1 s t = 1.25 s

t = 1.5 s t = 1.75 s t = 2.1 s

Figure 7.5: An inviscid air bubble of initial radius 1/3 m rising in the presence of
objects inside a computational domain of [−1 m, 1 m]× [−1 m, 2 m] filled with water
with a free surface initially located at y = 1.5 m. The objects break up the bubble
into a large number of small bubbles which our solver is able to resolve and efficiently
track over time.
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t = 0 s t = .1 s t = .2 s

t = .3 s t = .4 s t = .5 s

t = .6 s t = .7 s t = .8 s

Figure 7.6: An air bubble of initial radius 1/30 m rising in the presence of objects
inside a computational domain of [−.1 m, .1 m]×[−.1 m, .2 m] filled with water with a
free surface initially located at y = .15 m. The effects of surface tension and viscosity
are present. Note that the smaller bubbles remain spherical because of larger surface
tension forces while the larger bubbles readily deform.
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t = 0 s t = .075 s

t = .16 s t = .225 s

Figure 7.7: Level set profiles under grid refinement for an air bubble of initial radius
1/150 m rising in the presence of objects inside a computational domain of [−.02
m, .02 m] × [−.02 m, .04 m] filled with water with a free surface initially located at
y = .03 m. The effects of surface tension and viscosity are present.
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while the smaller bubbles are able to preserve their shape due to surface tension

forces by reducing the computational domain to [−.1 m, .1 m] × [−.1 m, .2 m], the

radius of the bubble to 1/30 m with initial density 1.24 kg/m3, and adding the effects

of surface tension and viscosity with coefficients σ = .0728 kg/s2 and µ = .001137

kg/ms. Figure 7.6 shows the level set at t = 0, t = .1, t = .2, t = .3, t = .4,

t = .5, t = .6, t = .7 and t = .8 seconds for two grids of resolutions 160 × 240

and 320 × 480 respectively. Note that the smaller bubbles remain spherical because

of larger surface tension forces while the larger bubbles readily deform. In order to

show convergence under grid refinement in the presence of objects, we reduced the

computational domain to [−.02 m, .02 m] × [−.02 m, .04 m] and the radius of the

bubble to 1/150 m, and reduced the number of objects to five. Two objects are

located at (−.007 + .014k, .01), where k = {0, 1} and the other three are located at

(−.014+ .014k, .018), where k = {0, 1, 2}. The effects of surface tension and viscosity

are present with the same coefficient values as above. The initial density of the air

bubble is 1.229 kg/m3. Figure 7.7 shows the level set at t = 0, t = .075, t = .16 and

t = .225 seconds.

(a) (b)

Figure 7.8: Numerical profiles for the (a) total mass, and (b) total volume of the
bubbles for the rising bubble example in three spatial dimensions.
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t = 0 s t = .7 s

t = 1 s t = 1.4 s

Figure 7.9: An air bubble rising in a water column with a free surface in the presence
of objects in three spatial dimensions. The effects of surface tension and viscosity are
absent.
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Figure 7.10: A close up of the three dimensional rising bubbles at t = 1 seconds (see
Figure 7.9(c)). Note the large amount of topological detail that our solver is able to
resolve and accurately track over time.

7.1.2 Three spatial dimensions

Consider a computational domain of [−1 m, 1 m]× [−1 m, 2 m]× [−1 m, 1 m] which

is initially filled with water with density 1000 kg/m3 where the free surface is located

at y = 1.5 m. An air bubble of radius 1/3 m and density 1.364 kg/m3 is centered

at the origin. The effects of surface tension and viscosity are absent. To break up

the bubble into a large number of smaller bubbles, the domain also has 25 spherical

objects of radius .15 m centered at (−.8+ .4i, .5,−.8+ .4j), where i, j = {0, 1, 2, 3, 4}.
Figure 7.9 shows the level set at t = 0, t = .7, t = 1 and t = 1.4 seconds simulated
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using a grid of resolution 256× 384× 256. A close up of the level set at t = 1 seconds

is shown in Figure 7.10 illustrating the large amount of topological detail that our

solver is able to resolve and accurately track over time. Figures 7.8(a) and (b) show

the numerical profiles for the total bubble mass and volume demonstrating that the

proposed method allows bubbles to readily change in volume while conserving the

total bubble mass. This simulation took approximately two weeks for simulating 240

frames at 80 frames per second (i.e., a 3 second simulation) on a dual hexcore T7500

Dell workstation.



Chapter 8

Extensions to sub-grid scale

Although the Eulerian scheme proposed in Chapters 5 and 7 works for large well-

resolved bubbles, it cannot keep track of sub-grid scale bubbles since the level set loses

volume over time. To track these under-resolved bubbles, we propose a Lagrangian

formulation which is still strongly coupled to the surrounding flow.

8.1 Sub-grid bubbles

We use the equation of state Pb = Bρb for the sub-grid bubbles with the constant B

chosen such that a density ρb = 1.226 kg/m3 gives a pressure Pb = 101,325 Pa. We

assume that the sub-grid bubbles are spherical in shape with radius r, have a single

radial velocity degree of freedom vr, and a single pressure degree of freedom Pb which

is coupled to all the surrounding fluid degrees of freedom in a monolithic fashion.

When solving for the bubble volumes, monolithic approaches are preferable to par-

titioned approaches because they do not require additional relaxation techniques for

stability and robustness (see e.g. [63, 34]). Therefore for stability reasons, we follow

an approach similar to that described in Chapter 5 which modelled a well-resolved

Eulerian level set bubble occupying N grid cells with the following equation,
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N

∆t2Bρb

Pb −
(
∇p

ρ

)
Pn

Vc

=
N

∆t2
− ūnPn

Vc∆t
(8.1)

where ∆t is the size of the time step, Vc is the volume of a grid cell, ūn is the aver-

age radial velocity of the bubble, Pn is the surface area of the bubble, and
(
∇p
ρ

)
is

the average density-weighted pressure gradient across the bubble-water interface. We

would like to use a similar equation for the sub-grid bubbles as well so that they have

the same qualitative behavior as the level set bubbles and seamlessly convert into

them when they grow large enough. A brute force approach for achieving this by cre-

ating a mesh for each sub-grid bubble would result in increased complexity and poor

conditioning due to small control volumes. Instead, we make some approximations

noting that our resulting scheme gives adequate results as illustrated in Figure 8.1.

First, we substitute ūn = vn
r and N = V n

b /Vc, where V n
b is the volume of the bubble,

and rewrite equation (8.1) as,

V n
b

Vc∆t2Bρb

Pb −
(
∇p

ρ

)
Pn

Vc

=
V n

b

Vc∆t2
− vn

rPn

Vc∆t
(8.2)

Notice as ∆t → 0, the first term on each side of the equation must balance indicating

that the bubble pressure equals the equation of state pressure. Moreover, when the

bubble pressure is identical to the equation of state pressure these terms cancel, and in

order to remain at equilibrium with vn
r = 0 the term

(
∇p
ρ

)
Pn

Vc
must also vanish. This

means that the bubble pressure tries to match the average external pressure from the

fluid when it is near radial equilibrium (n.b. equation (8.4)). Note that
(
∇p
ρ

)
is an

area-weighted average where the weights are computed based on the fraction of the

bubble’s surface area visible to a neighboring fluid cell and that cell’s pressure degree

of freedom pi. We estimate these weights wi as the weights each of the neighboring

eight cells would have in a tri-linear interpolation formula for the location of the

center of a bubble. Then
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(
∇p

ρ

)
≈

8∑
i=1

wi
(pi − Pb)

∆xiρ
≈

8∑
i=1

wi
(pi − Pb)

∆xρb

(8.3)

where ∆xi is the distance between the sub-grid bubble center and the center of the

ith incompressible cell. We have found that we can make further approximations

replacing ∆xi by a characteristic length ∆x and replacing ρ by the bubble density ρb

as seen in the rightmost term in equation (8.3). Here ∆x is chosen as the length of a

grid cell in the case of our uniform grid. Although these approximations might appear

aggressive, they allow us to treat the sub-grid bubbles as point particles while keep-

ing the equations well-defined even for degenerate cases where the sub-grid bubbles

overlap each other or encompass a fluid degree of freedom. Note that

8∑
i=1

wi
(pi − Pb)

∆xρb

=
pavg − Pb

∆xρb

(8.4)

where pavg is the incompressible flow pressure linearly interpolated to the bubble’s

Figure 8.1: Using equations (8.5) and (8.11), we solve the oscillating bubble problem
for a sub-grid bubble (radius = .3∆x) on a 253 grid of dimensions 1m3 with (Left)
an initial density of 1.1 kg/m3, where the bubble starts with an initial volume of
7.238 cm3, converges to the predicted volume of 7.962 cm3, and closely approximates
the analytic bubble oscillation frequency as the size of the time step is refined, and
(Right) an initial density of 1,100 kg/m3, where the bubble starts with an initial
volume of .268 cm3 and expands three orders of magnitude, remaining stable even
when it grows beyond its incompressible neighbors. Note that the bubble remains
stable at all time steps in both cases.
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center. This provides some intuition as to why these approximations work. The term

on the right is a reasonable approximation to the gradient between the incompressible

flow pressure and the bubble’s pressure using the same characteristic length scale.

In summary, we use the following equation when solving for the pressure of a sub-grid

bubble,

V n
b

Vc∆t2Bρb

Pb −
8∑

i=1

wi
(pi − Pb)Pn

∆xρbVc

=
V n

b

Vc∆t2
− vn

rPn

Vc∆t
(8.5)

Even with these approximations, we converge to the analytic bubble volume at sub-

grid resolutions and the simulation remains stable with large time steps. The de-

nominator ρ in equation (8.3) controls the bubble’s oscillation frequency. For any

given radius, it can be tuned such that the model closely matches the analytic bub-

ble oscillation frequency. Most of our sub-grid bubbles are seeded with radii in the

interval (.2∆x, .3∆x), and setting ρ = ρb works quite well in this case as shown in

Figure 8.1(left). For more accuracy such as when simulating fluid sounds, one could

choose a better value for ρ or even make it a function of the bubble’s radius. We

leave this as future work since all our examples use large time steps and only rely on

the sub-grid bubbles converging to the right volume while remaining stable.

Note that we treat all sub-grid bubbles independently of each other when coupling to

the external fluid pressures. In addition, we set weights to zero when a neighboring

fluid degree of freedom is inside a kinematic object or is subject to a free surface

pressure boundary condition. This means that both kinematic objects and free air

cannot see the pressure from the sub-grid bubble which is fine. When a neighboring

fluid degree of freedom is inside a level set bubble, the level set pressure degree of

freedom can be coupled to the sub-grid bubble pressures, except that this increases the

density of the Poisson equation matrix repeatedly for every sub-grid bubble adjacent

to a single level set region - which we have observed increases the number of iterations

required by PCG for convergence. Therefore, we set weights to zero in this case as

well.
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As shown in [38], the divergence of the velocity field at time tn+1 is given by the

second and fourth terms in equations (8.1) and (8.2), and thus equation (8.5). Since

the volume-weighted divergence of a sub-grid spherical bubble is given by vrP , we

can write

vn+1
r Pn+1 = VcD

n+1 = vn
rPn −∆tPn

8∑
i=1

wi
(pi − Pb)

∆xρb

(8.6)

After solving a monolithically coupled Poisson equation for all the fluid and bubble

pressures, the right hand side of equation (8.6) is known. Using the definition of

surface area Pn+1 = 4π(rn+1)2 and writing vn+1
r = drn+1/dt, we analytically integrate

equation (8.6) from time tn to tn+1 to obtain rn+1. Once rn+1 is determined, we use

a backward Euler discretization of rn+1 − rn = ∆tvn+1
r for computing vn+1

r .

8.2 Coupling to Incompressible Flow

Consider an incompressible fluid containing many sub-grid bubbles with the inviscid

Navier-Stokes equation given by

~ut + (~u · ∇)~u +
∇p

ρ̄
= ~g (8.7)

where ρ̄ is the average density, ~u is the velocity, and ~g is the net body force acting

on the fluid. We discretize these equations on a MAC grid where we first explicitly

update

~u? − ~un

∆t
+ (~u · ∇)~u = ~g (8.8)

with a semi-Lagrangian MacCormack method [53], and then solve for the pressure

via
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∇ · ∇p

ρ̄
=
∇ · ~u?

∆t
− ∇ · ~un+1

∆t
(8.9)

in order to update the intermediate velocity ~u? using equation (2.5).

We lump the divergences of all the sub-grid bubbles into a column vector ~Dn+1 so

that they can affect the divergences of the individual fluid cells via W ~Dn+1, where W

is a weight matrix with Wjk corresponding to the fraction of the divergence of bubble

k that is added to the divergence of cell j. For simplicity of exposition, consider a

single bubble where we only consider one column of the weight matrix which we index

solely by the cell, i.e., for example Wj. Then, equation (8.9) can be written as

−∇ · ∇p

ρ̄
= −∇ · ~u?

∆t
+

W ~Dn+1

∆t
(8.10)

With the aid of equation (8.6), we discretize equation (8.10) for cell j with faces f as

follows

−
6∑

f=1

pf − pj

ρ̄∆x2
+ Wj

8∑
i=1

wi
(pi − Pb)Pn

∆xρbVc

= −∇ · ~u?

∆t
+ Wj

vn
rPn

Vc∆t
(8.11)

where pf refers to the pressure on the other side of the face f . For multiple bub-

bles, the second and fourth terms in equation (8.11) must be summed over all the

influencing bubbles k with Wj replaced by Wjk.

The weight matrix W can be chosen such that the resulting system of equations

(8.5) and (8.11) is symmetric positive definite allowing for the use of fast solvers such

as preconditioned conjugate gradient. In order to obtain symmetry, the coefficient

of Pb in the second term in equation (8.11) must be the same as the coefficient

of pj in equation (8.5), and the coefficient of pi (when i 6= j) must be the same

as that for pj in the corresponding equation for cell i. The first condition means
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that wj = Wj

∑8
i=1 wi or Wj = wj/

∑8
i=1 wi. Note that this relation automatically

satisfies the second condition for symmetry as well. Typically, since wi represents the

interpolation weight,
∑8

i=1 wi = 1 and we are simply using the interpolation weights

once again to define W . However, as pointed out in Section 8.1, objects, level set

bubbles and the free surface are not directly coupled to the sub-grid bubble’s pressure

discretization yielding weight values of zero and
∑8

i=1 wi 6= 1. Technically, this means

that our sub-grid bubbles are not directly coupled to objects, level set bubbles, or

free surface pressure boundary conditions but are always assumed to be submerged

in the neighboring fluid degrees of freedom that happen to be present.

Finally, after solving for the pressure and updating the fluid velocities in the usual

manner, the translational velocity of the bubble is set to be the interpolated average

fluid velocity ~u at the center of the bubble. One could make the bubble motion

more lively by applying additional forces such as buoyancy, vorticity confinement

or a random perturbation as done in [35] - we use buoyancy in our examples. For

greater accuracy, this new velocity can then be subtracted from the average velocities

to conserve the fluid momentum, although this step is not essential since the bubble

momenta is very small.



Chapter 9

Bubble-bubble interactions

When two sub-grid bubbles overlap, we merge them into a single bubble adding their

masses and volumes. The radial velocity of the bubble is chosen such that the net

divergence is equal to the sum of the divergences of the original bubbles. Additionally,

for increased realism, similar to [29] we apply an attraction force which is of the form

fattract = Km1m2/r
2, where K is a constant, m1, m2 are the masses of the two bubbles

and r is the distance between them. When a sub-grid bubble grows large enough such

that its radius covers more than two grid cells, we convert it to a level set function.

This is accomplished by rasterizing the sub-grid bubble onto the grid and adding its

mass to the level set region by computing the appropriate density. Note that the

divergence remains continuous during this process since the background fluid velocity

already contains the bubble’s divergence. Also, when a sub-grid bubble enters a level

set bubble we delete the sub-grid bubble and add its mass to the mass of the level

set region by modifying the density field.

If a level set bubble becomes smaller than a grid cell, it can lose mass because of

numerical errors during advection. However, the bubble mass cannot disappear be-

cause it is advected conservatively using the method of [41]. This stray mass was

distributed to the nearby bubbles as described in Chapter 2. However, such a scheme

can sometimes move the bubble mass too far away in a non-physical manner. Instead,
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Figure 9.1: A single level set bubble rises in a tall domain, undergoing topological
deformations and generating smaller level set as well as sub-grid bubbles during its
temporal evolution (150×500×150 grid); about 1,200 sub-grid bubbles.

we propose to track this stray mass using sub-grid bubbles as shown in Figure 9.1.

To achieve this, we first run a greedy condensation procedure on the stray density

field by moving it in the direction of the gradient vectors for a few iterations. Then

for every cell with density above some threshold we seed a sub-grid bubble with the

appropriate mass. To correctly choose its volume, we set the steady state pressure

p = ρIgh (where ρI is the density of the incompressible fluid and h is the depth of the

sub-grid bubble from the water surface) to be equal to the equation of state pressure

Pb = Bρb = BMb/Vb and solve for Vb. Note that we do not use the incompressible

pressure for computing the bubble’s volume because it can oscillate wildly and even

go negative at times during the course of the simulation due to small numerical errors

in the velocity field - this is because of the well-known fact that the fluid pressure in

incompressible flow is more of a Lagrange multiplier than an actual pressure. Finally

note that even if our initial volume estimate has some errors, the monolithic coupling
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keeps the scheme stable and the bubble readily changes volume to an appropriate

value.

Figure 9.2: To preserve visual realism, we render a sub-grid bubble as a time-evolving
level set function by maintaining a dictionary of level sets acquired from a coarse
simulation and intersecting rays with them during the rendering process. Shown in
the figure is a sub-grid bubble rising on a 6×18×6 grid rendered (Left) as a sphere,
and (Right) at different points in time using our level set dictionary.

9.1 Time-evolving proxy geometry

Although sub-grid bubbles are monolithically coupled to the surrounding fluid, ren-

dering them as oscillating spheres next to fully deforming level set bubbles can look

visually disturbing. To avoid this, we render them as time-evolving level set functions

which have been pre-computed offline. This was achieved by maintaining a dictionary

of level sets acquired from a rising bubble simulated on a coarse grid. During the

rendering process these level sets are substituted within the bounding boxes of the

sub-grid bubbles and intersected with the rays, as shown in Figure 9.2. Bubble shapes

can also be handcrafted or created via superposition of certain basis functions [48] for
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use during the rendering process. Using this method for rendering a simulation with

hundreds of thousands of sub-grid bubbles can be computationally quite expensive.

However, we found that using this method on the largest few thousand bubbles added

negligible computational overhead while drastically increasing the visual realism, see

Figure 9.3(far right). Note that in some cases we have rendered the sub-grid bubbles

larger than their actual radii to increase the visual expression.

Figure 9.3: A cylindrical source inside a tall domain seeding tiny bubbles which grow
as they rise and merge together due to attraction forces, ultimately forming large sub-
grid and level set bubbles as they approach the surface (128×640×128 grid); about
500,000 sub-grid bubbles. (Far right) shows the sub-grid bubbles in red and blue,
where red depicts the smaller spherical ones (Figure 9.2 left), and blue depicts those
rendered using the time evolving level set dictionary (Figure 9.2 right).

9.2 Solid object interaction

As described in Chapter 7, when advecting the fluid velocities, the object velocity is

set as a Dirichlet boundary condition at cell faces that lie inside the object. For level

set advection, objects are treated as water. i.e., the level set function φ is initialized

to be the value as if no objects were present and subsequently also updated at grid

cells that lie inside the object. For advecting the air mass, the forward and backward
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advection rays are clamped when they hit an object, as described in [23, 41]. The

surface point is used for computing the interpolation weights, where weights coming

from cells inside the object are discarded and the remaining weights are rescaled to

sum to 1. Similarly, when advecting the sub-grid bubbles we clamp the advection

rays to the object surface. During the pressure projection step, we set Neumann

boundary conditions at cell faces that lie inside thick objects, while for thin shells we

use visibility information as described in [23].

Figure 9.4: Same as Figure 9.3 except an armadillo moving up and down illustrating
complex object interaction.

As discussed in Section 8.1, if a sub-grid bubble has a neighbor that lies inside an

object then the weight wi is set to zero. This means that sub-grid bubble pressures

do not directly couple with solid objects. Although this is fine for kinematically cou-

pled objects, the method should be modified in order to properly handle interactions

with two-way coupled objects, increasing the overall complexity. We leave this as

interesting future work. Figure 9.4 shows a kinematically coupled armadillo moving

inside the underwater bubble simulation of Figure 9.3. Note that the larger level set

bubbles form earlier in this example because of the merging of the sub-grid bubbles

due to collisions with the armadillo.



Chapter 10

Bubble seeding

When considering fluid structure interactions with fast moving objects such as ship

propellers, lower pressure regions are generated near the object and some of the wa-

ter instantly vaporizes through cavitation [5] and forms bubbles. Since the density of

water is a thousand times larger than that of air, these bubbles quickly expand in size

becoming visible. The problem of modeling bubble generation has been addressed by

various authors for phenomena such as boiling [47, 37] or air entrainment [20, 29, 46].

While the former schemes predict bubble seeding locations using temperature and ob-

jects, the latter set of schemes use the escaped level set particles. As a result, all these

schemes are unsuitable for modeling cavitation. Note that it is extremely difficult to

vaporize pure water due to strong cohesion forces between the water molecules. Thus,

the major mechanism for cavitation is through nuclei that are very tiny bubbles (of

the order of microns) already present in water, or which are generated near rough

surfaces. When these bubbles enter lower pressure regions, they quickly grow in size

becoming visible to the naked eye.

Although lower pressure regions might appear to be good candidates for seeding bub-

bles, this idea does not work well in practice because the incompressible pressure

behaves like a Lagrange multiplier, as mentioned in Chapter 9. The incompressible

flow velocities, on the other hand, are much more reliable. We observed that the
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Figure 10.1: A cavitating propeller generates the characteristic helical pattern in its
wake.
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vorticity of the velocity field is a very good predictor for cavitating regions and thus,

we determine such regions by thresholding the vorticity magnitude. Note that one

should be careful when computing vorticity at fluid cells bordering objects because

the vorticity magnitude can be erroneously high due to Neumann boundary condi-

tions. To avoid this, we first extrapolate the fluid velocity inside objects and then

compute vorticity. We seed bubbles with small radii, zero radial velocity, and use the

steady state pressure for setting their mass, as described in Chapter 9. Once seeded,

these bubbles stably grow to their correct volume in a few time steps because of the

monolithic couping scheme. Figure 10.1 shows the characteristic helical pattern gen-

erated by a cavitating propeller simulated on a 256× 512× 256 grid, and Figure 10.2

shows a cavitating hydrofoil generating the typical Von Karman vortex street.

Figure 10.2: A fast moving hydrofoil generates the typical Von Karman vortex
street in its wake through cavitation. The vortex street is generated because of the
two-dimensional cross-sectional nature of the hydrofoil (1024×128×128 grid); about
600,000 sub-grid bubbles.

A nuclei in a lower pressure region keeps growing until it becomes large enough to

affect the surrounding pressure. The number of cavitating bubbles and their size is

determined by the nuclei density in water, a high nuclei density implying that there

are many cavitation sites in lower pressure regions and so each nuclei can only grow

by a small amount before it starts affecting the surrounding pressure - ultimately

manifesting as a mist of small bubbles. Solid objects affect the nuclei density in

proportion to their surface roughness, rougher surfaces generating more nuclei. Our

method allows us to emulate different nuclei densities by varying the magnitude of

the attraction forces between the sub-grid bubbles, a small magnitude implying a

higher nuclei density as less bubbles merge together and vice-versa (see Figure 10.3).
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Figure 10.3: Headforms with varying surface roughness to illustrate different nu-
clei densities in water ranging from a large number of small bubbles to a few large
bubbles (256×512×256 grid). Note that our results are qualitatively similar to the
experimental results on bubble cavitation shown in Figure B.3 in [61].
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Figure 10.4: Faucet pouring water showing air entrainment (200×400×200 grid);
about 300,000 sub-grid bubbles. Note that the size of the sub-grid bubbles was
accentuated to highlight the complex bubble interactions and the dynamic flow field.
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Figure 10.5: A fully simulated water dispenser (200×300×200 grid). As water exits
the spout the air pressure above the free surface decreases and some air gets entrained
from below to compensate for this pressure drop forming bubbles.

Although initially designed for simulating cavitation, we found that our vorticity-

based seeding mechanism works well for simulating air entrainment as well because

of high vorticity at the boundary between the faster impinging jet and the slower

surrounding flow. Figure 10.4 shows a faucet pouring water into a container entraining

bubbles. Figure 10.5 shows a fully simulated water dispenser where the free air above

the water surface expands whenever water pours out decreasing the air pressure. To

balance this pressure drop, some air gets entrained from below forming bubbles, and

the process continues.



Chapter 11

Conclusion and Future Work

We designed a method for simulating air bubbles in free surface incompressible flows.

To formulate our method, we first proposed a straightforward partitioned solver based

on mass tracking. We showed that such an approach suffers from stability issues which

have characteristics similar to partitioned (as opposed to monolithic) methods for

solid-fluid coupling [22, 52, 21]. These issues can be alleviated using outer iterations

on the partitioned solver, although the computation time increases drastically because

each time step can require ten or more Poisson solves. Hence, we took a monolithic

approach for the air-water problem similar to the solid-fluid coupling in [22, 52, 21] as

motivated by [38]. To design this approach, we revisited the partitioned solver of [7]

for coupling compressible and incompressible flow and devised a monolithic solver

using the ideas from [38] to couple together incompressible flow with fully non-linear

compressible flow including shocks and rarefactions. We then simplified this approach

greatly to make this approach in line with our straightforward partitioned approach

for simulating bubbles. This was achieved by setting both the bubble density and the

bubble pressure to be spatially constant, although time-varying. We demonstrated

the accuracy and robustness of this method on test problems as well as more realistic

problems in both one, two and three spatial dimensions.

Since the level set loses volume and cannot keep track of sub-grid scale details, we
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extended the above Eulerian formulation by tracking under-resolved bubbles using La-

grangian particles that are monolithically two-way coupled to the surrounding fluid.

We showed that despite the aggressive approximations made in Section 8.1, the pro-

posed sub-grid bubble model still closely approximates the analytic bubble oscillation

frequency and converges to the analytic volume as predicted by the Rayleigh-Plesset

equation while remaining stable even for large time steps. We proposed a novel

scheme for seamlessly interconverting between these small Lagrangian bubbles and

larger well-resolved Eulerian bubbles. We also introduced a novel seeding mechanism

to realistically generate bubbles when simulating fluid structure interaction with com-

plex objects such as ship propellers.

In the future, we would like to augment our solver with a sound simulation sys-

tem. Since we have already shown that our proposed model closely approximates the

analytic bubble oscillation frequency, we believe that such a system would produce

realistic fluid sound effects. It would be interesting to track bubbles using deform-

ing chimera grids [10] that also split and merge along with the bubbles to achieve

higher level of detail near the bubble-water interface. Another interesting avenue for

future work is to include lower-dimensional surface tension effects to model bubble-

bubble interactions such as bubble stacking. Eventually, we would like to integrate

our bubble solver into a full-fledged ship simulation to study effects of bubbles on

ship movements by two-way coupling the bubbly liquid with solid objects.



Appendix A

Oscillating bubble problems

Consider an infinitesimal element with volume dΩ and force per unit volume ∇p,

implying that the total force on this element is ∇pdΩ. The work done in displacing

this element in an infinitesimal time interval dt is given by ∇pdΩ · d~x = ∇pdΩ · ~vdt.

The total work done dW in the time interval dt is the integral of this work over the

entire domain, i.e.,

dW =

∫
Ω

∇p · ~vdΩdt =

∫
Ω

∇ · (p~v)dΩdt (A.1)

since ∇ · ~v = 0. Using the divergence theorem, this integral is equivalent to the

following surface integral

dW =

∮
∂Ω

p~v · ~ndSdt (A.2)

which we use in the following subsections.
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Appendix-I

Consider the one dimensional oscillating bubble problem introduced in Section 2.2

and Figure 2.1. Since the system is symmetric about the midpoint we only consider

the right-half of the domain. In one spatial dimension, water being incompressible has

a spatially constant velocity. Since there is no mass transfer between the air bubble

and the water this is also the velocity of the bubble-water interface, or the rate of

change of the radius of the bubble. Thus at time t, v(t) = Ṙ(t) at the interface of the

bubble of radius R(t). If l is the length of the water region, then ρI l is its mass. Let

pb(t) be the pressure inside the bubble and patm(t) be the pressure in the air at time

t. The total force on the water is given by pb(t)− patm(t). This must equal the mass

times the acceleration R̈(t) of water, i.e.,

pb(t)− patm(t) = ρI lR̈(t) (A.3)

Using an equation of state p = Bρ, it follows that pb(t) = Bρb(t) = BM/R(t), where

M is the constant mass of the bubble. Substituting this in equation (A.3) gives

R̈(t) =
1

ρI l

(
BM

R(t)
− patm(t)

)
(A.4)

Appendix-II

Consider the oscillating bubble problem in two spatial dimensions as shown in Fig-

ure 2.2. Since the total volume of water is conserved, the radius of the water sphere

Rw(t) is dependent on the radius of the bubble R(t). Let R0 be the initial radius of

the bubble and R0
w be that of the water drop. Then conservation of volume yields

π((R0
w)2 − (R0)2) = π(Rw(t)2 −R(t)2)

Rw(t) =
√

(R0
w)2 + R(t)2 − (R0)2

Rw(t) =
√

a2 + R(t)2, where a2 = (R0
w)2 − (R0)2 (A.5)
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In fact, the volume is conserved for any annulus with inner radius R(t) and outer

radius r, so that π(r2 −R(t)2) is constant and

rṙ = R(t)Ṙ(t) (A.6)

At any point in time the kinetic energy of an annulus of infinitesimal thickness dr and

radius r is given by 1
2
(ρI2πrdr) · v(r)2, where v(r) = ṙ = R(t)Ṙ(t)/r from equation

(A.6). The total kinetic energy of water is obtained by integrating this from the

radius of the bubble R(t) to the outer radius of water Rw(t), i.e.,

K.E.(t) = ρIπ

Rw(t)∫
R(t)

(R(t)Ṙ(t)/r)2rdr = πρI(R(t)Ṙ(t))2 ln(Rw(t)/R(t)) (A.7)

Equating the work done with the kinetic energy, and noting that equation (A.2)

applied to our annulus gives two terms of the form 2πrṙ results in

t∫
0

pb(τ)2πR(τ)Ṙ(τ)dτ − patm(τ)2πRw(τ)Ṙw(τ)dτ = πρI(R(t)Ṙ(t))2 ln(Rw(t)/R(t))

(A.8)

From equation (A.6), Rw(t)Ṙw(t) = R(t)Ṙ(t) for any time t and thus

2

t∫
0

(pb(τ)− patm(τ))R(τ)Ṙ(τ)dτ = ρI(R(t)Ṙ(t))2 ln(
√

a2 + R(t)2/R(t)) (A.9)

Differentiating both sides with respect to t and simplifying gives

pb(t)−patm(t) = ρI(R̈(t)R(t)+Ṙ(t)2) ln(
√

a2 + R(t)2/R(t))−.5a2ρIṘ(t)2/(a2+R(t)2)

(A.10)
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Substituting pb(t) = Bρb(t) = BM/(πR(t)2) and rearranging gives

ρIR̈(t)R(t) ln

(√
a2 + R(t)2

R(t)

)
+ ρIṘ(t)2

(
ln

(√
a2 + R(t)2

R(t)

)
− .5a2

a2 + R(t)2

)
− BM

πR(t)2
+ patm(t) = 0 (A.11)

Appendix-III

Finally, consider the three dimensional case. Equation (A.5) becomes

Rw(t) = 3
√

a3 + R(t)3, where a3 = (R0
w)3 − (R0)3 (A.12)

equation (A.6) becomes

r2ṙ = R(t)2Ṙ(t) (A.13)

and equation (A.7) becomes

K.E.(t) = 2πρI

Rw(t)∫
R(t)

(R(t)2Ṙ(t)/r2)2r2dr = 2πρIR(t)4Ṙ(t)
2
(1/R(t)− 1/Rw(t)) (A.14)

Equating the work done with the kinetic energy, and noting that equation (A.2)

applied to our thickened shell gives two terms of the form 4πr2ṙ results in

t∫
0

pb(τ)4πR(τ)2Ṙ(τ)dτ−patm(τ)4πRw(τ)2Ṙw(τ)dτ = 2πρIR(t)4Ṙ(t)
2
(1/R(t)−1/Rw(t))

(A.15)
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From equation (A.13), R2
w(t)Ṙw(t) = R2(t)Ṙ(t) for any time t and thus

2

t∫
0

(pb(τ)− patm(τ))R(τ)2Ṙ(τ)dτ = ρIR(t)4Ṙ(t)
2
(
1/R(t)− 1/ 3

√
a3 + R(t)3

)
(A.16)

Differentiating both sides with respect to t and simplifying gives

pb(t)− patm(t) = ρIR̈(t)

(
R(t)− R(t)2

3
√

a3 + R(t)3

)

+ ρIṘ(t)2

(
3

2
+

R(t)2

2/3
√

a3 + R(t)3
− 2R(t)

3
√

a3 + R(t)3

)
(A.17)

Substituting pb(t) = Bρb(t) = BM/(4
3
πR(t)3) and rearranging gives

ρIR̈(t)

(
R(t)− R(t)2

2/3
√

a3 + R(t)3

)
+ ρIṘ(t)2

(
3

2
+

R(t)2

2/3
√

a3 + R(t)3
− 2R(t)

3
√

a3 + R(t)3

)
− BM

4
3
πR(t)3

+ patm(t) = 0 (A.18)
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