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Abstract

This dissertation presents a novel method for treating bubbles in free surface incom-
pressible flow that relies on the conservative advection of bubble mass and an associ-
ated equation of state in order to determine pressure boundary conditions inside each
bubble. It is shown that executing this algorithm in a traditional manner leads to
stability issues similar to those seen for partitioned methods for solid-fluid coupling.
Therefore, the problem is reformulated monolithically. This is accomplished by first
proposing a new fully monolithic approach to coupling incompressible flow to fully
nonlinear compressible flow including the effects of shocks and rarefactions, and then
subsequently making a number of simplifying assumptions on the air flow removing
not only the nonlinearities but also the spatial variations of both the density and
the pressure. The resulting algorithm is quite robust, has been shown to converge
to known solutions for test problems, and has been shown to be quite effective on
more realistic problems including those with multiple bubbles, merging and pinching,
etc. Notably, this approach departs from a standard two-phase incompressible flow
model where the air flow preserves its volume despite potentially large forces and
pressure differentials in the surrounding incompressible fluid that should change its
volume. The proposed method allows bubbles to readily change volume according to

an isothermal equation of state.

This method is then extended to model both large and small scale bubble dynam-
ics. Small under-resolved bubbles are evolved using Lagrangian particles that are
monolithically two-way coupled to the surrounding flow in a manner that closely ap-

proximates the analytic bubble oscillation frequency while converging to the analytic

v



volume as predicted by the well-known Rayleigh-Plesset equation. A novel scheme is
presented for interconverting between these under-resolved Lagrangian bubbles and
the larger well-resolved Eulerian bubbles. A novel seeding mechanism is also presented
to realistically generate bubbles when simulating fluid structure interaction with com-
plex objects such as ship propellers. The proposed framework for bubble generation
is general enough to be incorporated into all grid-based as well as particle-based fluid

simulation methods.
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Chapter 1

Introduction

Bubbles are ubiquitous in most underwater scenes and embellish the otherwise lifeless
water providing visual cues to the virtually imperceptible velocity field. They also
provide a mechanism for sound generation [62, 48]. These sounds are a consequence
of the volumetric changes that bubbles undergo during their temporal evolution -
volumetric changes which can be substantial when bubbles rise a significant distance,
or when fast moving objects such as ship propellers interact with water. In such fluid
structure interactions, lower pressure regions are generated near the objects causing
some of the water to instantly vaporize through the compressible phenomena of cav-
itation [5]. Since the density of water is a thousand times larger than that of air,
the vaporized water forms bubbles that quickly expand in size becoming visible to
the naked eye. Thus, to realistically simulate both bubble sounds and dynamics, it is
important to design numerical methods that allow bubbles to change in volume - con-
trary to the traditional approach of treating the air inside bubbles as incompressible
flow, e.g. [4, 60, 58, 28, 26, 47, 44, 63, 3].

Although a completely compressible treatment of this problem is possible, it is com-
putationally expensive since water has a very high density compared to that of air
and the larger sound speed in water imposes a very strict time step restriction on

both phases based on the typical CFL condition. On the other hand, the air phase
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is neglected when simulating free surface incompressible flows under the assumption
that the inertia of air is very small compared to that of water. Hence, such solvers
are unsuitable for modeling effects such as air entrainment and bubble dynamics. To
prevent the air bubbles from collapsing unnaturally, methods have been proposed for
computing a pressure inside these bubbles by tracking their volume over time and
using an equation of state [56]. But volume can change radically if a bubble rises a

long distance, merges with other nearby bubbles, or breaks up into smaller bubbles.

Several Lagrangian methods have also been proposed for modeling bubble dynam-
ics [20, 49, 9, 59, 35, 6, 36, 30]. An early approach to particle-based bubble simu-
lation was proposed by [20] who generated bubbles based on escaped particles from
the particle level set method of [13] similar to the approach for spray in [16] (see
also [18]). Later, a number of authors proposed additional Lagrangian techniques
including [35, 6, 36, 30]. Although [35] did propose using a variable density Pois-
son solver for approximating the average bubble motion, this only gives very limited

two-way interactions and ignores changes in the bubble’s volume.

Instead of representing each bubble as a single particle, one can use a collection of
particles to model a single bubble. SPH-based methods are good candidates for such
an approach [49, 9, 59]. This can aid in modeling a bigger range of bubble dynamics
obtaining a wider variety of topological shapes that real bubbles exhibit. However,
fully Eulerian grid-based methods still seem preferable for these larger bubbles. More-
over, some of the most compelling methods for simulating fluids tie together multiple

scales as can be seen in [45, 29, 39, 46].

This dissertation proposes a mass tracking formulation for simulating bubble dynam-
ics based on the observation that the total mass of air inside water is conserved over
time (ignoring mass exchange across the interface such as vaporization). This avoids
the computational difficulties associated with tracking the volume when bubbles un-
dergo complex topological deformations during merging or splitting. The method is
devised by first proposing a rather straightforward approach based on mass tracking

in Chapter 2. This approach suffers from stability issues which have characteristics
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similar to partitioned (as opposed to monolithic) methods for solid-fluid coupling, see
for example [22, 52, 21] and the references therein. These issues can be alleviated
using outer iterations on the partitioned solver, as discussed in Chapter 3, although
this can require ten or more Poisson solves per time step and is thus computationally
expensive. Instead, we take a more traditional monolithic approach for the air-water
problem similar to the solid-fluid coupling in [22, 52, 21] as motivated by [38]. We
begin by revisiting the partitioned solver for incompressible and compressible flow
from [7] and devise a monolithic solver using the ideas from [38] to couple together
incompressible flow with fully nonlinear compressible flow including shocks and rar-
efactions. The results of this method are shown in Chapter 4 for both the gamma
gas law and an isothermal equation of state. Then in Chapter 5 we simplify this ap-
proach greatly so that it is in line with the straightforward bubble simulation method
of Chapter 2. This is achieved by setting both the bubble density and the bubble pres-
sure to be spatially constant, although time-varying. Chapter 7 presents a detailed
summary of the fully Eulerian approach developed so far referring to the appropriate
equations throughout the text and highlights its efficacy with various examples - in-
cluding the ability to treat multiple bubbles which may also split and merge. Since
the level set loses volume and cannot keep track of sub-grid scale details, Chapter 8
proposes to track these under-resolved bubbles using Lagrangian particles that are
also monolithically two-way coupled to the surrounding fluid. To seamlessly tran-
sition between these smaller Lagrangian bubbles and larger well-resolved Eulerian
bubbles, Chapter 9 proposes a novel scheme for interconverting between the two rep-
resentations. Chapter 10 proposes a novel seeding mechanism to realistically generate
bubbles when simulating fluid structure interaction with complex objects such as ship
propellers. The proposed framework for bubble generation is general enough to be
incorporated into all grid-based as well as particle-based fluid simulation methods.

Finally, we conclude in Chapter 11 with some interesting avenues for future work.



Chapter 2

A partitioned approach

We begin with a straightforward approach that conservatively advects the bubble
mass and uses the isothermal equation of state p = Bp to compute a pressure inside
the bubble which is subsequently used as a Dirichlet boundary condition for making
the incompressible velocities divergence free. As we will see, this approach lacks
stability properties because the current pressure in the bubble is not a good predictor
of what the pressure would be in the next time step after applying the incompressible
flow pressure to generate a new velocity field that changes the size of the bubble. If
one couples the air pressure as a degree of freedom instead of as a Dirichlet boundary
condition, then the incompressible Poisson solver can better react to the anticipated
changes in the bubble volume. Thus, after presenting our straightforward approach in

this section (which we call partitioned), we present a monolithic solver in Chapter 4.

2.1 Incompressible flow

The incompressible Navier-Stokes equations are given by

v V. (Vo) -

G4 (5 Vg 2 = VoV g (2.1)
PrI P1
V-7 =0 (2.2)
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where p; is the density, ¥ is the velocity, u is the coefficient of viscosity and f is the
net body force acting on the incompressible fluid. These equations are discretized on
a MAC grid using the projection method [8], where we first explicitly update

v — " V- (uVv) >

A7 +(U-V)o = p” + f (2.3)

and then solve for the pressure via

y.Yp_ VU (2.4)
Pr At
in order to update the intermediate velocity v* as follows
vt —g* VUp
——+— =0 2.5
A T, (2.5)

We use the level set method [50] to track the interface between the bubbles and the
incompressible fluid. Before updating the incompressible velocities through advection,
they are extrapolated across the interface in order to define ghost node values. This
could be accomplished using constant extrapolation normal to the interface by solving
the equation I, + N-VI = 0, in fictitious time 7 for each component I of v. We
instead compute the steady state solution using the fast extension method of [1]. The
incompressible velocities are then advected using semi-Lagrangian advection which
can be made second order accurate using a MacCormack-style method as in [53].
The level set function ¢ is advected using the particle level set method of [11] and
the semi-Lagrangian advection scheme of [12]. To keep the level set a signed distance

function we use the modified fast marching method proposed in [43].

The treatment of viscosity for multiphase incompressible flow with appropriate jump
conditions at the interface is discussed in [33]. However, viscosity is solved for explic-
itly in [33] which has a severe time step restriction of At oc O(Az?). In order to take
large time steps, we consider an implicit treatment of viscosity. As discussed in [27],
if all the jump conditions are treated implicitly then the equations for all components

of the velocity are coupled together. Although one could take an approach similar
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to [51] for spatially varying viscosity where the coupling terms are treated explicitly
and other terms are treated implicitly in order to get decoupling of various compo-
nents, there can be some time step restrictions based on the jump conditions. For the
simulation of bubbles, we assume that the dynamics inside the bubbles contain little
momentum, hence, they cannot absorb any viscous momentum from the liquid. Thus,
we enforce Neumann boundary conditions at the interface that the derivative of each
component of the incompressible velocity is zero. Thus, the jump in pressure due to
viscosity is also zero since the normal component of the viscous stress vanishes across
the interface. Finally, as we assume constant viscosity in the incompressible fluid,
the equations for the different components of the incompressible velocity decouple as

well. In two spatial dimensions, equation (2.3) can be written component-wise as

vy A—tih + (T V), = w + £ (2.6)
1
vy — vy _ V- (uV3)
At + (U V)UQ = —,01 + f2 (27)

The advection and external forces can be applied first to obtain v; and v, followed

by a viscous solve of the form

-0 V- (uVe)

Uy

_ 2.

A7 p (2.8)
vy =0 V- (uVe3)

- 2.

A7 p (2.9)

Since 07 and vy are not divergence free and the viscous update equations have been
derived assuming the divergence free condition, 9; and 05 are sometimes first projected
to be divergence free before applying viscosity. However, note that the pressure
projection is not idempotent in the presence of a non-zero pressure gradient across
the incompressible fluid. In this case we do not project v; and 95 to be divergence
free before the viscous update. Note that the advection terms are computed in a
thin band of ghost cells so that there are adequate values when the interface moves,
however, the viscous terms can only be updated interior to the level set due to the

need to prescribe interface boundary conditions. Therefore, the level set must be
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moved to its new time ¢t"*! location before applying the viscous update.

We use the second order cut-cell method of [19] for computing the pressure in equation
(2.4) to make the incompressible velocities divergence free, where the pressure inside
the bubbles and the outside air are used as Dirichlet boundary conditions. In the
presence of surface tension, the term ok is added to the Dirichlet pressure, where o
is the coefficient of surface tension and « is the curvature of the interface, computed

using the level set method [50]. See also Chapter 6.

The incompressible time step At; is computed by enforcing the following inequality

at every cell center, as described in [33],

] 2 45y, T AFD
At[ (Cﬂ + \/Ccfl ;_ Scfl + Cf|> < 1 (210)

Here, C accounts for the convection terms where v; and vy have been averaged to

the cell center,
Co=—+— 2.11

Sen accounts for the surface tension forces,

Ser = \/pI(min{Am,Ay})Q (2.12)

and Fq accounts for the body forces f

Al Ll
Fop = -—+ == 2.13
al Axr Ay ( )
Note that the time step restrictions due to viscosity are not present as it is treated

implicitly.
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2.2 The oscillating bubble problem

We consider a model oscillating bubble problem in one spatial dimension as shown
in Figure 2.1, where an air bubble of radius r* = .1 m with initial density p° = 1.1
kg/m? is inside a water “sphere” of radius 2 = .4 m. The computational domain is
[0 m, 1 m] which gives .1 m of free air on each side of the water region. Figure 2.2
shows the problem in two spatial dimensions where an air bubble of radius r° = .1
m with initial density p° = 1.1 kg/m? is inside a water sphere of radius % = .4 m.
The computational domain is [0 m, 1 m] x [0 m, 1 m]. The setup for the problem
in three spatial dimensions is defined similarly. For simplicity, there is no gravity,
surface tension or viscosity in the system. Since the bubble is slightly compressed
with density p® = 1.1 kg/m?, there will be a larger pressure p® inside the bubble than
in the ambient air which is taken to be a free surface condition of pym = 101,325
Pa and therefore, the bubble will start to expand, subsequently vibrating back and
forth. The appendices derive a second order ODE given by equations (A.4), (A.11)
and (A.18). In all three equations, we take the standard approach of solving for R(t),
rewriting the second order equation as a first order system, subsequently integrating
in time using third order accurate TVD Runge-Kutta, and refining the time step until
the solutions converge to obtain data that we use for the “exact” solutions when these

equations are considered.

Air Water Bubble Water Air
—— — —
0 =1
rd =4

I
L4

Figure 2.1: Setup for the oscillating bubble problem in one spatial dimension.

For this problem, we modify the time step restriction of Section 2.1 to account for
velocities near zero when the bubble volume is at an extrema, i.e., when it has maxi-
mum or minimum volume. To prevent the time step from becoming excessively large

in these cases, we add a term to At; that estimates the change in velocity over a time
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step, similar in spirit to what was done in [33] for body forces and [38] for compress-
ible flow - see also Section 4.4 for a quick summary. Essentially what is needed is
an estimate for |Vp| which will influence the velocity. We do this by computing I,
and [, as the minimum thicknesses of the water region in the z and y directions, and
approximate |p,| as |patm — p"|/l: and |py| as |patm — p"|/l,, where p" is the pressure

inside the bubble at time ¢". Then we write

Fcfl _ ‘patm —-p ‘ |patm — D | (214)

Pl Az ply Ay

Figure 2.2: Setup for the oscillating bubble problem in two spatial dimensions.

2.3 'Treating bubbles

Initially, each bubble is assigned a density (or mass), and the density is advected
using the unconditionally stable conservative semi-Lagrangian scheme of [41]. This

scheme is especially effective in keeping track of small bubbles, since the level set loses
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volume over time and cannot keep track of sub-grid level details. Although one could
advect the bubble density using velocities extrapolated from the incompressible flow,
we use a more accurate approach where air velocities are constructed and maintained
in a separate velocity field @. The velocity used for level set advection is a hybrid
between the incompressible flow velocity and the air velocities. Note that the effects
of viscosity and pressure projection from time t" are already present in this hybrid
velocity field, although the air component of these velocities is inviscid. For greater
stability, one could advect the time t" level set function with the hybrid velocity field
at time t"*!, although we do not follow this approach. Despite accurate velocities,
numerical smearing and other errors will cause the location of the zero level set and
the location of the non-zero bubble densities to drift apart over time. We address this
as follows. First we compute the total mass that belongs to a bubble as the sum of
all the mass inside the bubble and all the mass closest to that bubble. Then we use a
flood fill algorithm on that bubble to identify all grid cells belonging to that connected
component. The volume of this connected component is carefully computed using a
piecewise linear reconstruction of the level set as outlined in [40]. The mass is then
uniformly redistributed inside the bubble to obtain a spatially constant density pp.
The Dirichlet boundary condition used for the incompressible Poisson solve given
in equation (2.4) is computed using the equation of state p = Bp which simplifies
to p = BM/V, where M and V are the total mass and total volume of a bubble
respectively. Here, B is taken to be p.um m®/kg, so that a density of 1 kg/m? yields
a pressure of p,im = 101,325 Pa.

Air velocities are treated in a manner similar to the incompressible flow velocities.
Ghost node values are defined using the fast extension method of [1] exactly as is done
for the incompressible velocities, and then the air velocities are advected using the
MacCormack method [53]. Since the air is not strictly volume preserving as bubbles
can expand and contract, we do not make the air flow incompressible as would be
done for a truly two-phase incompressible flow. Instead, we solve a modified form of
equations (2.4) and (2.5) for each bubble
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Forward Euler: CFL = .5, initial density = 1.
0.215 T T T T T

- ‘t,'}‘§¢;¢;:;g;~‘;tf~f~'~!t"W””“H“!‘H!!!u.‘ |
.y

time

Figure 2.3: Numerical profiles generated by the partitioned scheme in one spatial
dimension for bubble volume over time for the stationary bubble problem. Note
the forward Euler characteristic of the partitioned scheme which causes instability
in the computed solutions at lower grid resolutions. For higher grid resolutions, the
nonphysical growth is slower as expected.

where p = Atp/py, py is the spatially constant air density inside the bubble (which
could be different per bubble), and @* is the post-advected air velocity. Equations
(2.4) and (2.5) are solved first for the full water volume using Dirichlet boundary
conditions, after which the resulting water velocities surrounding the bubble are used

as Neumann boundary conditions to solve equation (2.15). Since the integral of the
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incompressible velocity around the surface of a bubble may not be zero, we compute
the net divergence for the boundary of the bubble summing all these velocities divided
by the number of cells in the bubble, and use that value for V - @**!. This allows
bubbles to expand and contract and otherwise change volume as they follow and are
enslaved by the surrounding incompressible flow which has much higher momentum.
Also note that the Poisson matrix resulting from equation (2.15) has a rank-deficiency
of 1 due to the full Neumann boundary conditions and although the addition of V-1
guarantees that the right hand side is in the range of the Poisson matrix, one still
needs to take care to compute the minimum norm solution during the conjugate

gradient solve.

Forward Euler: CFL = .125, initial density = 1.1 Forward Euler: peak-to-peak growth rate

027 - - - - - — 0.004

3200 — 0.0035 -

024 0.242 1 0003 -

0.2418 |

02416 | 0.0025 -

volume
°
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0.2414 |
0.002 |-

growth rate

021 0.2412 |

0241 [ [l
/ 00015 |-
0.2408 | |l

i
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0.001 |

i
018 | 02404 M
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(a) (b)

Figure 2.4: (a) Numerical profiles generated by the partitioned scheme in one spa-
tial dimension for bubble volume over time for the oscillating bubble problem, (b)
peak-to-peak growth rates under grid refinement. Note that the partitioned scheme
shows instability at lower grid resolutions because of its forward Euler characteristic,
although converges to the “exact” solution under grid refinement.

In Figures 2.3 and 2.4 we present numerical profiles generated by the partitioned
scheme. Consider the setup shown in Figure 2.1 and assume the bubble is initially
at rest, i.e., the initial air density inside it is p® = 1 kg/m3. Analytically, the bubble
should just stay at rest and the bubble volume should remain constant over time.
We refer to this problem as the stationary bubble problem. Figure 2.3 shows the
bubble volume profiles over time with the proposed partitioned scheme. Note that

although the initial solution computed by this scheme is indeed constant, it quickly
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goes unstable at lower grid resolutions because of the forward Euler characteristic of
the partitioned scheme. For higher grid resolutions, the nonphysical growth is slower
as expected. For the one dimensional oscillating bubble problem, Figure 2.4(a) shows
the resulting volume profiles over time under grid refinement. The peak-to-peak
growth rates are shown in Figure 2.4(b) and the respective convergence orders are
shown in Table 2.1. Again, note that the partitioned scheme shows instability at
lower grid resolutions while converging to the “exact” solution under grid refinement.
The results for the two dimensional simulations are similar. Note that throughout
the paper the peak-to-peak growth/decay rate is defined as the slope of the best fit

line to the first few peaks in the bubble volume profile, whereas the convergence order

is computed for the peaks shown in the inset zoom ins.

resolutionl | resolution2 | resolution3 | convergence
order
400 800 1600 -.4076
800 1600 3200 1035
1600 3200 6400 3797
3200 6400 12800 5168

Table 2.1: Convergence orders for the volume profiles generated by the partitioned
scheme for the oscillating bubble problem.




Chapter 3

An iterative approach

Although the partitioned scheme proposed in Chapter 2 converges to correct ana-
lytical solutions under grid refinement, it shows instability at lower grid resolutions
because of its forward Fuler characteristic. The most logical next step is to try using
TVD Runge-Kutta methods for greater stability [54]. We approach this by applying
second order accurate TVD Runge-Kutta on the bubble pressure p, which is used as a
Dirichlet boundary condition in equation (2.4). Specifically, we take two full steps of
our method to compute the spatially constant density /3’[;““2 inside the bubble and use
the average (p} + py*2)/2 for computing the Dirichlet pressure p, = B(pf + pp?)/2.
Subsequently, we rewind the simulation to the beginning of the time step and use
this Dirichlet pressure boundary condition in the incompressible flow solve in equa-
tions (2.4) and (2.5) in order to obtain the divergence free incompressible velocity
field. Note that intermediate substeps can result in velocities that dictate a smaller
step size than that chosen at the beginning of the time step. Ignoring this can re-
sult in inaccurate solutions, so if this occurs we revert to the beginning of the time
step and start over using smaller step size. Figure 3.1 shows a comparison between
the forward Euler scheme, second order accurate TVD Runge-Kutta on the Dirichlet
pressure p, without modifying the time step, and the modified second order accurate

TVD Runge-Kutta which reverts the simulation to the beginning of the time step if

14
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Various Methods: CFL = .5, initial density = 1.

o | | I ' Forward Euler
TR S
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Figure 3.1: A comparison between numerical profiles for the one dimensional station-
ary bubble problem generated using the forward Euler scheme (red), second order
TVD Runge-Kutta (green), modified second order TVD Runge-Kutta which takes
time step restrictions imposed by intermediate velocities into account (blue), and
Brent’s method (magenta).

the CFL condition is violated. Note the intermittent spikes generated by the stan-
dard second order accurate TVD Runge-Kutta scheme, which are not present in the
modified rewinding version as it obeys the CFL time step restriction even at inter-
mediate steps. Also note that the modified second order accurate TVD Runge-Kutta
scheme does a much better job at tracking the constant solution than the forward

Euler version of the scheme.

The enhanced stability shown by the use of a second order accurate TVD Runge-
Kutta scheme on the Dirichlet pressure boundary condition py, used for the bubble

in solving equations (2.4) and (2.5) motivates consideration of a technique similar
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to [38] where our goal is to replace the p = BM/V Dirichlet boundary condition
with the pressure the bubble would have in the next time step after solving for the
incompressible velocities and advecting the bubble forward in time. Consider the

pressure evolution equation [15],
p+ii-Vp=—pc®V - i (3.1)

Since we assume that the air density inside the bubble is spatially constant, it follows
from p = Bp that Vp = 0 and thus

py = —pcV - it (3.2)

For a gas governed by the equation of state p = Bp, the sound speed c is defined as

c= p,,+];p; —VB (3.3)

implying that it is constant in time and space. Discretizing equation (3.2) in time
gives

p"th =" — Atp""'BV - @ (3.4)
where we set p to time ¢"*!. As mass is conserved over time M"*! = M™ = M. Using
p= Bp, p" = M/V™ and p"™! = M/V"* we obtain

BM BM  BM

Vn+1 Vn - _Vn—H

ALY - i@ (3.5)
or
AV = VALV - i (3.6)

where AV = V! — V" Using the divergence theorem, V"V - 4 inside the bubble is

equivalent to ¢ @ - 7idS. Letting @ be the average normal velocity on the boundary of
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the bubble and P be the perimeter of the bubble allows us to write
AV = AtPu (3.7)

Note that we use a piecewise linear reconstruction of the level set as described in [40]

for computing P and u.

Brent's Method: CFL = .125, initial density = 1. Brent's Method: CFL = .5, initial density = 1.
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Figure 3.2: Numerical profiles generated by the iterative scheme for bubble volume
over time under grid refinement for the stationary bubble problem in, (a) one spatial
dimension, (b) two spatial dimensions.

The initial guess for the iterative solver sets p = BM/V as a Dirichlet boundary
condition for projecting the incompressible velocities. These velocities are then used
to guess the bubble’s volume V™! using equation (3.7). Since mass is constant,
this predicts a new p"™! = Bp"™ = BM/V™"!. This pressure can again be set as
a Dirichlet boundary condition to project the incompressible velocities and improve

the guess for p"ti.

Through the iterative solver, we are looking for a fixed point
for this “function”, ie., p = f(p) or a root of g(p) = f(p) — p. Note that if the
input pressure is too large, the bubble expands and the predicted pressure drops, and
similarly if the input pressure is too small, the bubble contracts and the predicted
pressure increases. This allows us to place bounds on the solution. Basically, we start
with p* = BM/V™ and if f(p) is bigger, the initial guess for p is the left end-point
of our interval. Otherwise, if f(p) is smaller, this is taken as the right end-point of

the interval. As the iteration proceeds, we eventually identify both left and right
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end-points. Once we find a bounding interval we use Brent’s method [2] to find the

root.

Brent's Method: CFL = .125, initial density = 1.1 Brent's Method: peak-to-peak decay rate in 1D
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Brent's Method: CFL=.125, initial density=1.1 Brent's Method: peak-to-peak decay rate in 2D
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Figure 3.3: Numerical profiles generated by the iterative scheme for bubble volume
over time under grid refinement for the oscillating bubble problem in, (a) one spatial
dimension, and (c) two spatial dimensions. The peak-to-peak decay rates are shown in
(b) one spatial dimension, and (d) two spatial dimensions. Note the improved stability
achieved by the iterative method as compared to the forward Euler scheme. Also
note that the highest resolution simulation in (c¢) has not been run for the entire time
length because the bubble broke up into multiple bubbles due to Kelvin-Helmholtz
instability, breaking our underlying assumptions and making further computation
meaningless.

0 1200 1400 1600

Figures 3.2(a) and 3.2(b) show the numerical profiles generated by the iterative solver
for the bubble volume over time with increasing grid resolutions in one and two spatial

dimensions for the stationary bubble problem. Note the improved stability achieved
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resolutionl | resolution2 | resolution3 | convergence
order
200 400 800 9043
400 800 1600 1.0153
800 1600 3200 1.1083
1600 3200 6400 1.2136
3200 6400 12800 1.3847

resolutionl | resolution2 | resolution3 | convergence
order
200 400 800 1.0411
400 800 1600 1.1084

19

Table 3.1: Convergence orders for the volume profiles generated by the iterative
scheme for the oscillating bubble problem in one spatial dimension.

Table 3.2: Convergence orders for the volume profiles generated by the iterative
scheme for the oscillating bubble problem in two spatial dimensions.

by the iterative solver. For the sake of comparison, the iterative solver is also shown
labeled as Brent’s method in Figure 3.1. Next consider the oscillating bubble problem.
Figures 3.3(a) and 3.3(c) show the corresponding profiles for the bubble volume over
time under grid refinement. The peak-to-peak decay rates for both one and two spatial
dimensions are shown in Figures 3.3(b) and 3.3(d) while the respective convergence
orders are shown in Tables 3.1 and 3.2. Comparing Figures 2.4 and 3.3, note that
the explicit method diverges for low grid resolutions and eventually converges to the
“exact” solutions as the grid is refined. In contrast, the implicit solution overly damps
the phenomena on coarse grids while still converging to the “exact” solutions as the
grid is refined. Obviously one would prefer the implicit approach over the explicit one
so that although unresolved phenomena are not accurately resolved, i.e., the solution

is overdamped, they at least do not explode and corrupt the entire solution.



Chapter 4

Compressible-incompressible

coupling

Motivated by the method in [38] which proposes an elliptic solver for pressure for
compressible flow, our goal is to develop a fully monolithic solver which solves for air
and water pressures together. However, before doing this we first develop a full mono-
lithic solver that couples incompressible flow with fully non-linear compressible flow
including contact discontinuities like shocks and rarefactions building upon the parti-
tioned solver of [7]. They used a fully explicit scheme for the compressible fluid, and
the pressure in the compressible region was used as a Dirichlet boundary condition
when solving the incompressible Poisson equation for updating the incompressible
velocities. Near the interface, the ghost fluid method (GFM) [14] was used to treat
the boundary conditions in a manner that admitted sharp discontinuities while still
allowing for smooth discretizations across the interface. To achieve this, the inter-
face values of pressure and normal velocity were carefully determined noting that,
although these variables are continuous, they may possess kinks across the interface.
Small errors in the normal velocity of the incompressible fluid create small errors in
its divergence, which in turn can lead to large spurious pressure oscillations in the

incompressible region. While small errors in the velocity of the compressible fluid

20
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cause the same small errors in its density, these have little effect on the gas since the
gamma gas law equation of state is rather robust. Again, since the incompressible
flow’s pressure response is rather stiff, one can expect large variations in the incom-
pressible pressure near the interface which in turn can lead to poor predictions of the
interface pressure. While these errors in the interface pressure have a relatively small
effect on the heavier incompressible fluid, they can have a rather large effect on the
lighter compressible gas. Conversely, since the gamma gas law equation of state is
rather robust, the compressible pressure tends to be smooth near the interface and is
therefore a good candidate for the interface pressure. In view of these statements, [7]
proposed using the incompressible region to determine the interface normal velocity
and the compressible region to determine the interface pressure. In the presence of
surface tension, the compressible pressure is not used directly, but is first modified
according to the appropriate [p| = ok jump condition. Although the method of [7]
works well, it suffers from a strict time step restriction because the sound speed in the
compressible fluid dictates the size of the time step. In addition, the method of [7]

utilizes a partitioned coupling approach which can suffer from stability issues.

4.1 A semi-implicit formulation for compressible
flow
Let p be the density of the compressible fluid, w its velocity, £ the total energy, p the

pressure, and U = (p, pil, ') the compressible state vector. The inviscid compressible

Euler equations in multiple spatial dimensions are as follows

p pu
U +V-FU)=| pi | +V-| pivwi+p | =] 0 (4.1)
E (E+p)u

t

A semi-implicit formulation for solving these equations was recently proposed in [38],

where the flux vector F(U) was split into an advection part and a nonadvection part
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pu
Fi(U)=| pueu |,F(U)= D (4.2)
Eu pu

The advection part F;(U) was integrated explicitly to get intermediate values p*,
(pu)* and E*, and since pressure does not affect the continuity equation, it follows
that p"*' = p*. The original method of [38] used a modified ENO scheme for the
explicit update to avoid Gibbs phenomena. Recently, [21] proposed using the standard
ENO scheme [55] and a different method for computing the post-advected pressure
(pa, see below) which avoids this issue. We follow this improved approach. The
nonadvection momentum and energy updates are
—\n+1 -k
(ptd) At— ) _ g, (4.3)
Ertl _ g
— =

V- (pi) (4.4)

Motivated by the standard incompressible flow formulation, equation (4.3) is divided

by p"! to obtain

n+1
A (4.5)
pn+1
and its divergence is taken to obtain
v n+1
Voat =V-@ - AV - [ (4.6)
pn+1

Then the pressure evolution equation (3.1) is semi-discretized by fixing V - @ to time
t"*! through the time step and by treating the advection terms explicitly. Let e =
E/p—1-1/2 denote the internal energy per unit mass, then the advected pressure is

computed as p, = p* = p(p*, *) using the equation of state. Substituting p* into the
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semi-discretized form of equation (3.1), we obtain
p"t = p* — AtpPV - ittt (4.7)

Eliminating V-#"*! by combining equations (4.7) and (4.6) and rearranging the terms

gives

Vanrl
pn+1

Pt — A" (*)"V - ( ) =p* — Atp"(A)"V - @ (4.8)
where the term pc? has been fixed to the time ¢" value. By composing the p™(c?)"
terms into a diagonal matrix P = [At?p"(c?)"] and discretizing the gradient and

divergence operators, we obtain the following system of equations
[P+ G (") TGt = P 4+ G (4.9)

where G is the discretized gradient operator, —G* the corresponding discretized di-
vergence operator. The pressure is scaled by At, i.e., p = pAt, p is the density

interpolated to cell faces and @ denotes a density-weighted averaged face velocity, i.e.,

i+1/2 = v Uip12 = T4 ™ :
/2 2 o Pi 4 Pz:11

Note that the resulting matrix in equation (4.9) has an identity term in it, which
allows fast solvers like preconditioned conjugate gradient (PCG) to converge in rel-
atively few iterations. After solving equation (4.9) to obtain cell-centered pressure
values, they are applied in a conservative flux-based manner to update the interme-
diate momentum and energy. Face pressures are computed using density-weighted

averaging, i.e.,

n+1  n+1 4 pn+1 ~n+1

snl _ Pi Pigr i+1 Di 411
i+1/2 p?—l—l _’_p?_:_ll ( )
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and face velocities are computed by rewriting equation (4.5) using face-averaged quan-

tities as defined above.

a?_:—ll/2 = a:+1/2 - (ﬁ?:f/z)_lGHl/Zﬁn—'—l (4-12)
Here, G;;1/2 denotes the row of G corresponding to face i + 1/2. The flux-based
implicit update then takes the form

n+l  sntl n+1 ~n+l  sn+l ~ntl
(p)it! = (pid): — Pivijg “ Pz pogy _ g Pirnjptiniye 7 Picr2%iong
@ ’ Ar Z Az

(4.13)

4.2 Explicit coupling step

We use the level set method to track the interface between the compressible and
incompressible fluids. For the explicit part of the method, the interface boundary
conditions are treated as described in [7]. Various quantities need to be extrapolated
across the interface in either direction to define ghost node values. This is accom-
plished using constant extrapolation normal to the interface by solving the equation
I.+N-VI= 0, in fictitious time 7 for the different quantities I - we use the fast
extension method of [1]. To compute the compressible ghost node state we decompose
the extrapolated state vector into entropy, pressure and velocity, compute the cell cen-
tered incompressible velocity, and replace the normal component of the compressible
velocity field with the normal component of the incompressible cell centered velocity
field before reassembling entropy, pressure and velocity to obtain a ghost state for the
compressible flow. The explicit update for the compressible fluid consists of applying
only the advection fluxes from equation (4.2) using these ghost node values. In order
to properly handle uncovered cells a band of ghost node values is also updated in

time.

The incompressible flow update proceeds similarly as to what was described in Sec-
tion 2.1. The full incompressible velocity field is extrapolated across the interface into

the compressible region to obtain ghost node values, the advection terms are updated
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to obtain intermediate velocities, and the viscous terms are updated noting that the

compressible fluid is inviscid and thus cannot absorb any viscous stress.

Note that when applying viscosity to the incompressible fluid, the time ¢ velocities o4
and 0y are sometimes first projected to be divergence free, as noted in Section 2.1 after
equations (2.8) and (2.9). In our monolithic approach, the divergence free projection
is two-way coupled between the compressible and incompressible flow as given in
equations (4.20) and (4.21) below in Section 4.3. Thus, our strategy is to apply this
two-way coupled projection first and then use the resulting incompressible state to
add the effects of the viscous terms to the incompressible fluid. Interestingly, note
that this first coupled projection solve essentially gives the answer one would obtain if
the incompressible flow was inviscid. Thus for the viscous case, we essentially obtain
the inviscid solution first, rewind the compressible state vector U to its pre-projected
state, apply the viscous update to the incompressible region, and then apply the
coupled projection once again to obtain a final solution which includes the effects of

viscosity on the incompressible fluid.

4.3 Implicit coupling step

For the sake of exposition, we describe the implicit step in one spatial dimension. Mul-
tiple spatial dimensions are handled in a straightforward manner using a dimension-
by-dimension approach. Consider the situation depicted in Figure 4.1. Let pj,; denote
the interface pressure and 6 = |¢(x2)|/(|¢(x2)| + |@(x3)|) be the cell fraction between
the interface and the center of cell 2. Discretizing the incompressible flow Poisson

equation (2.4) for cell 3, we obtain

At (pZH — ittt ) v (4.14)

Az pidz p(1—0)Ax

Recall from Sections 2.1 and 4.1 that v refers to the face centered incompressible ve-

locity while  refers to the cell centered compressible velocity. Let I and C subscripts
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Figure 4.1: A global Poisson solve for coupling together compressible and incom-
pressible fluids. Compressible cells are shown with red borders, incompressible cells
are shown with blue borders. The interface is shown in green and the shared face is
colored black.

represent values from the incompressible and compressible sides of the interface. For
inviscid flow Vp/p is continuous across the interface [33] satisfying

Ver _ Vpe (4.15)

Pr e;
Although [33] showed this for two-phase incompressible flow, one can still derive
equation (2.1) for compressible flow from the equations for conservation of mass and
momentum and so it also holds for inviscid compressible flow and mixed compressible-
incompressible flow (as long as the strong form of the equations hold and derivatives
exist). For viscous flows things can be more complex, however, in our case we assume
the compressible flow is inviscid and that there is no viscous momentum transfer
from the incompressible to the compressible flow as mentioned in Section 2.1 (see
also Section 4.2) - allowing equation (4.15) to still hold. Approximating equation

(4.15) with one-sided differences, we obtain

n+1 n+1
Pint — P2 D3 — Dint

pcfAz pr(1—0)Ax

(4.16)
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where we take pc = py (one might also conceivably use pyi'). Solving equation

(4.16) for the interface pressure pi,; gives

~ Opepytt + (1 —0)ppyt!

int — 4.17
‘ Opc + (1 —0)p; (4.17)
Writing
p="0pc+(1—0)p; (4.18)
allows us to write
S A Nl M Rt (4.19)
pcfAx pAx (1—0)p;Ax '
and thus, equation (4.14) becomes
At (pitt =yt st -yt
= - = -V 4.20
Ax < prAzx pAx ! ( )

Next consider the compressible Poisson equation in cell 2. Note that cell 3 has a
valid compressible state vector after advection because we also update a band of
ghost cells near the interface (see Section 4.2). Let pit!, 5t denote the interpolated
face density obtained by averaging cell-centered values. Discretizing the compressible

Poisson equation (4.9) for cell 2 and using equation (4.19) gives

1 1 1 1 1
Py At (p’;}* -yt opy it > % Voo (421)

pE(R)At - Ax \ pAx A ) ph(E) AL

Note that equations (4.20) and (4.21) together form a symmetric positive definite

(SPD) system, allowing for the use of fast Poisson solvers such as PCG.

Besides using p in equations (4.20) and (4.21) to enforce the balance condition of
equation (4.15) we also desire a unique velocity at the shared face location xs 5 (shown
in black in Figure 4.1) for computing the term V - 9* in equation (4.20) and the term

V - 4* in equation (4.21). Since we have separate velocity fields for compressible and
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incompressible fluids, the values 43, and v}, at the shared face need not be equal,
even though theoretically the normal component of the velocity field is supposed to
be continuous across the interface. Thus, at the shared face we apply a force A to the
incompressible fluid and an equal and opposite force —\ to the compressible fluid so

t**

that the resulting time velocities at the shared face are equal, i.e.,

ﬁ;”glﬂg% = /5%1@5 — AAL, progls = prvgs + AAL (4.22)
Setting 45 = v37%, and solving for A gives

* n+1 ~x%
_ PIVy 5t Py5 Uss
- An-+1

pPr+ Pas

iy = v (4.23)
as our velocity at the shared face (note that since the incompressible density tends to
be much bigger than the compressible density, one could also use the incompressible
velocity and obtain similar results - we have tested this numerically). Also note that
the compressible face velocity is not an actual degree of freedom since the degrees of
freedom for compressible flow lie at cell centers. Hence, we add the momentum —\A¢
to both the compressible cell 2 and the compressible ghost cell 3, i.e., (pu)5* = (pu)5—
AAt and (pu)§* = (pu)s—AAt, so that the first equation of equation (4.22) is satisfied.
This is equivalent in spirit to adding —AAt to cell 2 and then re-extrapolating into
ghost cell 3. Finally, after changing the compressible state vector at cell 2, the velocity
U7 5 is recomputed to make it consistent with the new state in cell 2. In multiple
spatial dimensions, if a compressible cell borders multiple incompressible cells then it
would be updated multiple times, leading to the compressible velocity at the shared
face not matching the incompressible velocity. We use the updated incompressible

velocity v3% at the shared face in this case for greater accuracy.

After solving the coupled projection solve of equations (4.20) and (4.21), the incom-
pressible velocity at the shared face is updated to time t"! via
An+1 ﬁn—i-l

Tl+1: **_p?) 2 424
Vo5 Uy 5 —ﬁAx (4.24)
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For updating the compressible momentum at cell 2, we compute the face pressure ﬁg'gl

using the linear interpolant through p5™ and piy, i.e., pht’ = 5™ + (pine — poth) /20.
If 6 is too small for the denominator, we instead compute the slope using equation
(4.19) and obtain pj ! = pitt 4 ph T (ph Tt —pi*) /(25). The compressible momentum

at cell 2 is then updated as

2 2 Az

noting that (pu)3* includes the momentum update AAt¢. For the energy update,

equation (4.13) is still used with the face pressure pjt' as computed above and the

face velocity 445t! at the shared face computed using 4%% in equation (4.12). Note
that in the presence of surface tension, we modify the Poisson equations for both
the compressible cell 2 and the incompressible cell 3 by taking the jump ok into
account, as described in Section 2.1 (see also [33, 42]). Also note that in the presence
of surfactants, the surface tension coefficient ¢ can be variable and our method can

easily handle this scenario.

4.4 Time step restriction

The size of the overall time step is computed as the minimum of the incompressible

and the compressible time steps, i.e.,
At = amin{At;, Atc} (4.26)

where a denotes the CFL number. The incompressible time step At; is computed as
described in Section 2.1. The compressible time step Atc is computed as described
in [38]. In order to prevent Atc from becoming infinite for near zero velocities u”,

the term Vp/p is added which estimates the change in velocity at the end of a time
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step. Hence, the CFL condition becomes

n [Pz
U™ |max + _At
At (' et e C) <1 (4.27)

Ax

Equation (4.27) is a quadratic in Atc with two solutions

_’un’max - \/'un’%ax + 4';7—Z|AQZ <A < _’un|max + \/|u”|r2nax + 4‘2—2‘A$
te <

< 4.98
2|p2|/pc 2|pz|/pc (4.28)

Note that the lower limit in equation (4.28) is non-positive, and as At > 0, only
the upper bound needs to be enforced. As p, — 0, both the numerator and the
denominator vanish obtaining the typical bound of Ax/|u"|max Which is problematic
when |u"|max is small. We obtain a more convenient time step restriction which is not
plagued by either small |p,| or small |u"|max by replacing the second At in equation
(4.27) with the right hand bound from equation (4.28) to obtain

Atc |u”|max |un|max 2 |pﬂc|
=< 4 <1 4.2
2 Az * \/< Az * pclAx | — (4:29)

In two spatial dimensions, the following CFL restriction is obtained

2
Atc (u?max+ s, \/(Wﬂmx+ o) ] Dy ) S

2 Ax Ay Ax Ay poAx pclAy

4.5 Numerical Results

We used the gamma gas law equation of state p = (7 — 1)pe and an outer loop of
third order TVD Runge-Kutta in all these examples, noting that although the implicit
treatment of terms inside the RK loop generally leads to a loss of third order time

accuracy, greater stability is achieved. All examples use a CFL number of .5.
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4.5.1 One dimensional examples

Consider a computational domain of [0 m, 1 m]. The domain is filled with a com-
pressible gas with p = 1.226 kg/m3, u = 0 m/s, and p = 105 Pa. An incompressible
droplet of length .2 m is located at the center of the domain with p = 1000 kg/m?,
u =100 m/s, and p = 10° Pa. Since the incompressible droplet is moving rightwards
in an initially stationary gas, a shock wave forms in the gas ahead of it and a rarefac-
tion wave forms in the gas behind it. Figure 4.2 shows the density, velocity, pressure
and time step profiles, along with the fully explicit method of [7] run on the finest
grid of resolution 12800 for the sake of comparison. (Note that our implementation
of [7] gave a different result for this example, although agrees with [7] for all other
examples that they ran in both one and two spatial dimensions, leading us to believe
that there is probably a typo in the description of this example in [7].) Note that our
method converges to the highly refined explicit result as the grid is refined. Figure 4.3
shows similar results when the density of the incompressible droplet is p = 10 kg/m?.
The compressible gas slows down the lighter droplet faster and as a result secondary

rarefaction waves stretch between the droplet and the shock and rarefaction waves.

Note that our method can take a time step that is four times larger, however, the cost
of each time step is slightly larger because the compressible degrees of freedom have
been added to the incompressible Poisson solver. The overall speedup in wall clock
time will generally depend on the ratio of increased cost per time step as compared
to the decrease in the number of time steps - in this particular example, the code was
approximately three times faster. For some problems the speedups can be significantly
larger especially when one cares about phenomena that occur after the compressible
flow relaxes to smaller velocities - in this case the time steps could increase by several

orders of magnitude.

Consider a computational domain of [0 m, 1 m] filled with a compressible fluid with
density p = 1.58317 kg/m?, velocity u = 0 m/s, and pressure p = 98066.5 Pa. An
incompressible droplet of length .2 m is initially located at the center of the domain

with p = 1000 kg/m?, u = 0 m/s, and p = 98066.5 Pa. A shock wave is initially
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Moving Heavy Incompressible Droplet: Density Moving Heavy Incompressible Droplet: Velocity
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Figure 4.2: Numerical results for the moving incompressible droplet example, where
a droplet of density 1000 kg/m?® is travelling to the right in an initially stationary
compressible fluid at ¢ = 7.5 x 107* s. Note that the profiles converge to those
generated using the partitioned method of [7].

located at = .1 m with a post-shock state of p = 2.124 kg/m?, u = 89.981 m/s, and
p = 148407.3 Pa to the left of x = .1 m. The shock wave travels to the right impinging
on the incompressible droplet, causing both reflected and transmitted waves as shown
in Figure 4.4 at t = 1.75 x 1072 s. Note that the transmitted wave is too weak to
be seen in this example, although it can be clearly seen in Figure 4.5 where the

incompressible droplet has density p = 10 kg/m3.
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Moving Light Incompressible Droplet: Density
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Figure 4.3: Numerical results for the moving incompressible droplet example, where
a droplet of density 10 kg/m? is travelling to the right in an initially stationary
compressible fluid at ¢ = 7.5 x 107 s. Note that the profiles converge to those
generated using the partitioned method of [7].

4.5.2 Two dimensional examples

All two-dimensional examples include the effects of viscosity and surface tension with
coefficients p = .001137 kg/ms and o = .0728 kg/s?. These effects are not present in
the one dimensional examples shown in Section 4.5.1 because the incompressible flow

has constant velocity and the interface has no curvature.

Consider a computational domain of [0 m, 1 m|x[0 m, 1 m]. Similar to the one

0.0008
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Shock Impinging on Heavy Incompressible Droplet: Density Shock Impinging on Heavy Incompressible Droplet: Velocity
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Figure 4.4: Numerical results for the shock impinging on a heavy incompressible
droplet example at t = 1.75 x 1072 s, where a shock wave initially located at z = .1
m travels to the right impinging on an incompressible droplet of density 1000 kg/m?
generating both reflected and transmitted waves. Note that the profiles converge to
those generated using the partitioned method of [7].

dimensional case, the domain is filled with a compressible gas with p = 1.226 kg/m?,
u=v=0m/s, and p = 10° Pa. An incompressible droplet of radius .2 m is located
at the center of the domain with p = 1000 kg/m?®, u = 100 m/s, v = 0 m/s, and
p = 10° Pa. Since the compressible gas is initially stationary and the droplet is
moving rightwards, a shock wave forms in the gas in front of it, and a rarefaction

wave forms in the gas behind it. Figure 4.6(a) shows 50 equally spaced pressure
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Shock Impinging on Light Incompressible Droplet: Density Shock Impinging on Light Incompressible Droplet: Velocity

i
u
0L tho 400 | u400
rho 800 u 800
ho 1600 u1600
tho 3200 80 [ u3200 ]
rho 6400 — u6400 —
rho 12800 — ul2800 —
8 ]
60 - ]

SV S

- 1 0
0 , , , , 20 \ , , \
0 0.2 0.4 0.6 0.8 1 [ 0.2 0.4 0.6 0.8 1
(a) density (b) velocity
Shock Impinging on Light Incompressible Droplet: Pressure Shock Impinging on Light Incompressible Droplet: Time Step

22
0000 implicit

T T
p200 explicit —_
P 400 _
800
p1600 | 8e-07 |- 1
p3200
p6400
p12800 —
7e-07 ~

200000

180000 |

160000

140000

120000

100000

80000 . \ . \ , \ . \ . le-07 . , . , . . . .
0 0.1 02 03 04 05 06 07 08 09 1 0 00002 00004 00006 00008 0001  0.0012 00014 00016  0.0018
time

(c) pressure (d) time step

Figure 4.5: Numerical results for the shock impinging on a light incompressible droplet
example at t = 1.75x 1073 s, where a shock wave initially located at = .1 m travels to
the right impinging on an incompressible droplet of density 10 kg/m? generating both
reflected and transmitted waves. Note that the profiles converge to those generated
using the partitioned method of [7].

contours between .75 x 10° Pa and 1.5 x 10° Pa on a 1600 x 1600 grid at t = 5 x 10~*
s. Figure 4.6(b) shows the pressure contour of 1.1 x 10° at various grid resolutions
to show that the numerical profiles generated using our method converge to those
generated using the fully explicit method of [7] under grid refinement. The velocity
field is shown in Figure 4.6(c) where the incompressible velocities are shown in blue

and the compressible ones are shown in red. Figure 4.6(d) shows the initial location
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Figure 4.6: The moving incompressible droplet example in two spatial dimensions
inside a computational domain of [0 m, 1 m]x[0 m, 1 m], where an incompressible
droplet of density 1000 kg/m? and initial radius .2 m is travelling to the right in
an initially stationary compressible fluid. (a) 50 equally spaced pressure contours
between .75 x 10° Pa and 1.5 x 10° Pa on a 1600 x 1600 grid at t = 5 x 10~*
s, (b) pressure contour of 1.1 x 10° at ¢t = 5 x 107* s under grid refinement to
illustrate convergence to the result generated using the partitioned method of 7], (c)
velocity field at t = 5 x 10~* s where the incompressible velocities are shown in blue,
and compressible velocities are shown in red, and (d) the zero level set under grid
refinement at ¢t = 2.5 x 1072 s as compared to its initial location.
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Figure 4.7: The moving incompressible droplet example in two spatial dimensions
inside a computational domain of [0 m, 1 m]x[0 m, 1 m|, where an incompressible
droplet of density 10 kg/m? and initial radius .2 m is travelling to the right in an
initially stationary compressible fluid. (a) pressure contour of 1.1x10% at t = 5x 1074
s under grid refinement to illustrate convergence to the result generated using the
partitioned method of [7], (b) the zero level set under grid refinement at ¢t = 2.5x 1073
s as compared to its initial location, (c) the zero level set on a grid of resolution
800 x 800 at t = 2.5 x 107 s as compared to its initial location using the fully explicit
partitioned solver of [7], and (d) the zero level set on a grid of resolution 800 x 800
at t = 2.5 x 1073 s as compared to its initial location using our monolithic solver.
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of the zero level set as compared to its location at t = 2.5 x 1072 s. Figure 4.7(a)-(d)
show the results for the case when the incompressible droplet has p = 10 kg/m?. Note
that the lighter droplet undergoes larger deformation and also slows down at a faster
rate. Also note that, as observed in [7], the computations for the lighter droplet show
signs of Kelvin-Helmholtz instability as is apparent by the wiggles in the interface
location shown in Figure 4.7(b). This effect is less apparent on coarser grids because

of the artificial damping due to numerical viscosity.
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Figure 4.8: The moving incompressible droplet example in two spatial dimensions
inside a computational domain of [0 m, 1x107° m]x[0 m, 1x10™> m], where an
incompressible droplet of density 10 kg/m? and initial radius .2 x 107° m is travelling
to the right in an initially stationary compressible fluid. (a) one dimensional cross-
section of the pressure on an 800 x 800 grid at ¢t = 5 x 107 s, where the pressure
in the incompressible region is shown in blue and that in the compressible region is
shown in red, and (b) the zero level set under grid refinement at ¢t = 2.5 x 107% s as
compared to its initial location.

To demonstrate the effects of surface tension and viscosity, we also shrunk the domain
to [0 m, 1x107° m]x[0 m, 1x107° m]| for the case when the incompressible droplet
has density p = 10 kg/m?. Figure 4.8(a) shows a one dimensional cross-section of
the pressure at t = 5 x 107? s, where the pressure in the incompressible region is
shown in blue and that in the compressible region is shown in red. Note the jump

in pressure across the interface due to surface tension effects. Figure 4.8(b) shows
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the initial location of the zero level set as compared to its location at t = 2.5 x 1078
s. Note that the smaller droplet is deformed less and has a more spherical shape as

compared to the larger droplet shown in Figure 4.7(d).

Consider a computational domain of [0 m, 1 m|x[0 m, 1 m]. Similar to the one
dimensional case, the domain is filled with a compressible fluid with p = 1.58317
kg/m3 u =v =0 m/s, and p = 98066.5 Pa. An incompressible droplet with initial
state p = 10 kg/m3, v = v = 0 m/s, and p = 98066.5 Pa with radius .2 m is
located at the center of the domain. A shock wave is initially located at z = .1
m with a post-shock state of p = 2.124 kg/m?3, u = 89.981 m/s, v = 0 m/s, and
p = 148407.3 Pa to the left of + = .1 m. The shock wave travels to the right
impinging on the incompressible droplet, generating both reflected and transmitted
waves. Figure 4.9(a) shows 50 equally spaced pressure contours between 1 x 10° Pa
and 1.8 x 10° Pa on a 1600 x 1600 grid at ¢t = 1.25 x 1073 s. Figure 4.9(b) shows the
pressure contour of 1.62 x 10° Pa under grid refinement to illustrate convergence to
those generated using the fully explicit method of [7]. Figure 4.9(c) shows the velocity
field, where the incompressible velocities are shown in blue, and the compressible
velocities are shown in red. Figure 4.9(d) shows the initial location of the zero level
set as compared to its location at ¢ = 2.5 x 1073 s under grid refinment. Note that

the computations on the finer grids also show signs of Kelvin-Helmholtz instability.

4.6 Constant temperature formulation

We make an isothermal assumption, where the equations for conservation of mass
and momentum form a closed system and the equation for conservation of energy
decouples. In this case, the gamma gas law equation of state can be rewritten as
p = Bp, where B is essentially (v — 1)e which we set equal to the atmospheric
pressure, i.e., B = Patm/patm m°/kg, as described in Chapter 2. For this equation of
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Figure 4.9: The shock impinging on an incompressible droplet example in two spatial
dimensions inside a computational domain of [0 m, 1 m|]x [0 m, 1 m], where a shock
wave initially located at x = .1 m travels to the right impinging on an incompressible
droplet with p = 10 kg/m?® and initial radius .2 m generating both reflected and
transmitted waves. (a) 50 equally spaced contours between 1 x 105 Pa and 1.8 x 10°
Pa on a 1600 x 1600 grid at t = 1.25 x 1072 s, (b) pressure contour of 1.62 x 10°
Pa under grid refinement at t = 1.25 x 1072 s to illustrate convergence to the result
generated using the partitioned method of (7], (c) velocity field at ¢t = 1.25 x 1073 s
where the incompressible velocities are shown in blue, and the compressible velocities
are shown in red, and (d) the zero level set under grid refinement at t = 2.5 x 1073 s
as compared to its initial location.
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state, substituting equation (3.3), equation (4.8) becomes

vpn—l—l
pn+1

P — A2Bp"V - ( ) = Bp* — AtBp"V - @* (4.31)

where p* has been replaced with Bp*. Note that, as mentioned in Section 4.1, p* =
p"™1 and thus p* = Bp* = Bp™*l. Furthermore, if pc? in equation (4.8) is taken

1

to be at time t"*! instead of ", we can replace p" with p"! in equation (4.31) and

divide by Bp"*! to obtain

b e \V4 Y _ L V- a* 4.32
AtQBpn_i_lp - ‘ pn+1 —E_ U ( . )

which is the continuous analog of equation (4.9) for this equation of state.

4.6.1 Numerical results

Now reconsider the examples presented in Section 4.5.1 simulated using p = Bp as
the equation of state. We use the same ambient conditions for density and velocity
in all the examples, noting that the ambient pressures will be different since pressure
depends on density. Also, for the examples with prescribed shocks we choose to match
the shock speed prescribing a post-shock state of p = 1.97705 kg/m3 and u = 70.4023
m/s. Figures 4.12-4.15 show the numerical profiles generated using equation (4.32)
- a high resolution comparison to the fully explicit method of [7] is also shown in
the results. Note that the incompressibility assumption confines shock waves to the
compressible fluid, however, if one wishes to study phenomena such as when shock
waves impinge upon the compressible fluid or shock-induced bubble collapse then

fully two-phase compressible flow models should be used [32, 31].

Next consider the oscillating bubble problems introduced in Section 2.2. Here we
use the two-way coupled simulation techniques proposed in this section which couple
the incompressible flow solver to a full compressible flow solver that includes shocks

and rarefactions, albeit a somewhat simplified isothermal p = Bp equation of state.
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Partitioned Solver: CFL = .5, initial density = 1.1 Partitioned Solver: peak-to-peak growth rate
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Figure 4.10: Numerical profiles for bubble volume over time along with peak-to-peak
growth/decay rates for the oscillating bubble problem in one spatial dimension with
equation of state p = Bp generated by (a,b) the partitioned method of [7], and (c,d)
the monolithic solver.

resolutionl | resolution2 | resolution3 | convergence
order
200 400 800 1.1968
400 800 1600 1.1644
800 1600 3200 1.0506
1600 3200 6400 1.0000

Table 4.1: Convergence orders for the volume profiles generated by the partitioned
method of [7] for the oscillating bubble problem in one spatial dimension using the
equation of state p = Bp.
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resolutionl | resolution2 | resolution3 | convergence
order
200 400 800 -.08905
400 800 1600 .6740
800 1600 3200 .H688
1600 3200 6400 .6031
3200 6400 12800 .6033

Table 4.2: Convergence orders for the volume profiles generated by the monolithic
solver for the oscillating bubble problem in one spatial dimension using the equation
of state p = Bp.

resolutionl | resolution2 | resolution3 | convergence
order
100 200 400 3.3236
200 400 800 2.5883

Table 4.3: Convergence orders for the volume profiles generated by the partitioned
method of [7] for the oscillating bubble problem in two spatial dimensions using the
equation of state p = Bp.

resolutionl | resolution2 | resolution3 | convergence
order
100 200 400 9151
200 400 800 .6104

Table 4.4: Convergence orders for the volume profiles generated by the monolithic
solver for the oscillating bubble problem in two spatial dimensions using the equation
of state p = Bp.

Figure 4.10(a) shows the numerical profiles for the bubble volume over time generated
using the partitioned method of [7], while Figure 4.10(c) shows the profiles generated
using our proposed monolithic solver in one spatial dimension. Figures 4.10(b) and
(d) show the corresponding peak-to-peak growth/decay rates under grid refinement
while Tables 4.1 and 4.2 show the respective convergence orders. Note that the results
converge to the “exact” solution under grid refinement in both cases. Figure 4.11
shows the results for a two dimensional oscillating bubble. The respective convergence
orders are shown in Tables 4.3 and 4.4. Note that, unlike the one dimensional case,

the method of [7] also damps the solution on coarser grids, although converging to
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Figure 4.11: Numerical profiles for bubble volume over time along with peak-to-
peak decay rates for the oscillating bubble problem in two spatial dimensions with
equation of state p = Bp generated by (a,b) the partitioned method of [7], and (c,d)
the monolithic solver. Note that the highest resolution simulation in (a) has not
been run for the entire time length because of the significant computational overhead
incurred by the partitioned scheme of [7].

the “exact” solution under grid refinement.
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Moving Heavy Incompressible Droplet: Density
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Figure 4.12: Numerical results for the moving incompressible droplet example, where
a droplet of density 1000 kg/m? is travelling to the right in an initially stationary
compressible fluid with equation of state p = Bp at t = 7.5 x 10~* s. Note that the
profiles converge to those generated using the partitioned method of [7].
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Figure 4.13: Numerical results for the moving incompressible droplet example, where
a droplet of density 10 kg/m? is travelling to the right in an initially stationary
compressible fluid with equation of state p = Bp at t = 7.5 x 10~* s. Note that the
profiles converge to those generated using the partitioned method of [7].
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Shock Impinging on Heavy Incompressible Droplet: Density
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Shock Impinging on Heavy Incompressible Droplet: Velocity
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Figure 4.14: Numerical results for the shock impinging on a heavy incompressible
droplet example with equation of state p = Bp at t = 1.75 x 1073 s, where a shock
wave initially located at x = .1 m travels to the right impinging on an incompressible
droplet of density 1000 kg/m? generating both reflected and transmitted waves. Note
that the profiles converge to those generated using the partitioned method of [7].
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Figure 4.15: Numerical results for the shock impinging on a heavy incompressible
droplet example with equation of state p = Bp at t = 1.75 x 1073 s, where a shock
wave initially located at x = .1 m travels to the right impinging on an incompressible
droplet of density 10 kg/m? generating both reflected and transmitted waves. Note
that the profiles converge to those generated using the partitioned method of [7].



Chapter 5

Constant density and pressure

In this section continuing on from the isothermal assumption from Section 4.6, we
additionally make constant density and constant pressure assumptions to arrive at

our final method for simulating bubbles.

5.1 Constant density

We achieve constant density by redistributing the density in each bubble as the av-
erage density per bubble before the implicit pressure solve, exactly as is done for the
partitioned solver in Section 2.3. Note that a spatially constant density field does not

imply that pressure inside the bubbles is spatially constant as well.

Figure 5.1 shows the numerical profiles for the bubble volume over time along with
peak-to-peak decay rates under grid refinement for the oscillating bubble problems.
The respective convergence orders are shown in Tables 5.1 and 5.2. Note that the

profiles converge to the “exact” solutions under grid refinement.

49
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Figure 5.1: Numerical profiles for the bubble volume over time along with peak-to-
peak decay rates under grid refinement generated using the monolithic solver with
density redistribution to obtain constant density as well as an equation of state p = Bp
for the oscillating bubble problem in (a,b) one spatial dimension, and (c,d) two spatial
dimensions.

5.2 Constant pressure

We now present a simplified monolithic solver which solves for a constant pressure
pn+1

time-varying. In matrix terms, this corresponds to taking the Poisson matrix for the

inside the bubble with a single degree of freedom, i.e., spatially constant but

full system and collapsing all the rows and columns corresponding to cells in the same
bubble into a single row and column, adding overlapping matrix elements. This can

also be seen as summing equation (4.32) over the entire bubble to obtain
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resolutionl | resolution2 | resolution3 | convergence
order
200 400 800 9170
400 800 1600 1.0061
800 1600 3200 1.1145
1600 3200 6400 1.2446
3200 6400 12800 1.2756

Table 5.1: Convergence orders for the volume profiles generated by the monolithic
solver with density redistribution to obtain constant density for the oscillating bubble
problem in one spatial dimension using the equation of state p = Bp.

resolutionl | resolution2 | resolution3 | convergence
order
200 400 800 1.1948
400 800 1600 1.3827

Table 5.2: Convergence orders for the volume profiles generated by the monolithic
solver with density redistribution to obtain constant density for the oscillating bubble
problem in two spatial dimensions using the equation of state p = Bp.

:Zé—ZV-@* (5.1)

1€Q) SS9

1 ~n
;WYO“—ZV'(

vﬁn+1 )
n—+1
ieQ P
The first term on each side of the equality simply sums over the number of cells N
inside the bubble. The last term can be modified by multiplying and dividing by the
volume of a cell V; and converting the volume sum to a surface sum along the MAC

grid cell faces that border the bubble. If the average normal velocity on all these

faces is u and the perimeter of all these faces is P, we obtain

N st Vprtl N aP
At2Bpn+1p —ZV- ( ot AtV
i€Q ¢

(5.2)

Most of the terms in the final summation vanish since Vp is zero within the bubble,
leaving only terms corresponding to MAC grid faces that surround the bubble volume.

For each of these faces p"*! equals p as defined in equation (4.18). Note that the first
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Constant Pressure Solver: CFL = .125, initial density = 1.1 Constant Pressure Solver: peak-to-peak decay rate in 1D
0.245 Append: o
— 12800 —
6400
024 3200
1600
800 — -0.005
400
0.235 200 —
‘ ‘ 0.242
0.23 4 -0.01
0241 | 1 °
© 0225 B 2
g °
; Ul AR
S o2 ihh- ! fing R 3
I s
0239 L 4
0.215 4 -0.02
0.238 | 4
0.21 4
‘ l 0.237 | i 0,025 L
0205 1
0236
0.2 4 L + . -0.03 +
3 5 6 7 0 2000 4000 6000 8000 10000 12000 14000

resolution

(b)

Constant Pressure Solver: CFL=.125, initial density=1.1 Constant Pressure Solver: peak-to-peak decay rate in 2D
0.038

400x400

x
0.037 | 200x200 —— | 0.002 -

-0.004

00378 ] 0006 |
0.0376 1 1

-0.008
00374 | ]
00372 ] 001 |

0.037 1

-0.012
0.0368 | ]
0.0366 |- ] -0.014

04

-0.016

0.036 |-

0.035 |

volume
decay rate

0.034 |

0.033 |

0.032

0.031
0

] 800 1000 1200 1400 1600
time resolution

(c) (d)

Figure 5.2: Numerical profiles for the bubble volume over time along with peak-to-
peak decay rates under grid refinement generated by the constant pressure formulation
where all pressure unknowns are collapsed to a single degree of freedom for each
distinct bubble for the oscillating bubble problem in (a,b) one spatial dimension, and
(c,d) two spatial dimensions.

term on each side of equation (5.2) is based on the number of cells within the bubble
and the second term on each side of the equality is based on the number of MAC grid
faces surrounding the bubble. Reminder, p"™! in the first term denotes the bubble

density.

Note that the constant pressure formulation does not produce pressure gradients
within the bubble. Thus, the air velocities are updated through a second projection

solve as per equations (2.15) and (2.16) using the boundary incompressible velocities,
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Constant Pressure Solver: CFL=0.125, initial density = 1 Constant Pressure Solver: peak-to-peak decay rate in 1D
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Figure 5.3: Numerical profiles for the bubble volume over time along with peak-to-
peak decay rates under grid refinement generated by the constant pressure solver
for the external pressure field problem in (a,b) one spatial dimension, and (c¢,d) two
spatial dimensions. Note that the higher resolution simulations in (c) have not been
run for the entire time length because the bubble breaks up into multiple bubbles due
to Kelvin-Helmholtz instability, breaking our underlying assumptions and making
further computation meaningless.

as outlined in Section 2.3. Figure 5.2 shows the numerical profiles for the bubble vol-
ume over time along with peak-to-peak decay rates for the oscillating bubble problems
in one and two spatial dimensions respectively. Tables 5.3 and 5.4 show the respec-
tive convergence orders. Note that the profiles closely match those shown in Figures
3.3 and 5.1, verifying the correctness of the solver. We also consider the case where
the initial density inside the bubble is 1 kg/m?, and the outside air pressure is time-
varying as pam(t) = Bf(t), where f(t) = 1 — .2sin(2nt + 7/2). We refer to this
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Table 5.3: Convergence orders for the volume profiles generated by the constant
pressure solver for the oscillating bubble problem in one spatial dimension.

CONSTANT DENSITY AND PRESSURE

resolutionl | resolution2 | resolution3 | convergence
order
200 400 800 9154
400 800 1600 1.0061
800 1600 3200 1.1145
1600 3200 6400 1.2136
3200 6400 12800 1.3847

resolutionl | resolution2 | resolution3 | convergence
order
200 400 800 1.1701
400 800 1600 1.0426

Table 5.4: Convergence orders for the volume profiles generated by the constant
pressure solver for the oscillating bubble problem in two spatial dimensions.

problem as the external pressure field problem. Note that this problem is similar
in spirit to the excitation of an isolated gas bubble from a planar sinusoidal wave,
as studied in [17]. Figure 5.3 shows the resulting numerical profiles for the bubble
volume over time along with peak-to-peak decay rates generated using our method
in one and two spatial dimensions respectively, which converge to the “exact” so-
lutions under grid refinement. Tables 5.5 and 5.6 show the respective convergence
orders. Note that the “exact” solutions are computed using equations (A.4), (A.11)

and (A.18) in the appendix which are also valid for time-varying external pressures.

Table 5.5: Convergence orders for the volume profiles generated by the constant
pressure solver for the external pressure field problem in one spatial dimension.

resolutionl | resolution2 | resolution3 | convergence
order
200 400 800 1.0208
400 800 1600 1.1272
800 1600 3200 1.2518
1600 3200 6400 1.3991
3200 6400 12800 1.5850
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CONSTANT DENSITY AND PRESSURE

resolutionl | resolution2 | resolution3 | convergence
order
100 200 400 1.0661
200 400 800 1.1934
400 800 1600 1.3502

Table 5.6: Convergence orders for the volume profiles generated by the constant
pressure solver for the external pressure field problem in two spatial dimensions.

For the oscillating bubble and external pressure field problems, we also considered the
effects of surface tension and viscosity for a range of parameters from high to low, both
individually and in combination. Figures 5.4(a) and (b) show the numerical profiles
for the bubble volume over time for both these problems in two spatial dimensions
with coefficients ¢ = .0728 kg/s? and p = .2 kg/ms. To heighten the effects of surface
tension, the computational domain has been uniformly scaled down by a factor of
1073,

Constant Pressure Solver: CFL = .5, initial density = 1.1 Constant Pressure Solver: CFL = .5, initial density = 1
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Figure 5.4: Numerical profiles for the bubble volume over time under grid refinement
generated by the constant pressure solver under the effects of surface tension and
viscosity for the (a) oscillating bubble problem in two spatial dimensions, and (b)
external pressure field problem in two spatial dimensions.

As further validation of our method, we also considered the rising bubble examples
from [33]. Consider a computational domain of [—=1 m, 1 m] x [-1 m, 2 m| which is
initially filled with water except for a circular air bubble of radius 1/3 m centered at

the origin with density p = 1.226 kg/m®. The effects of surface tension and viscosity
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are present with coefficients y = .001137 kg/ms and o = .0728 kg/s?. The edges
of the computational domain have solid wall boundary conditions. Figure 5.5 shows
the positions of the air bubble at t = 0, t = .2, t = .35 and t = .5 seconds under
grid refinement. Note that the results are similar to those shown in Figures 3 and
4 from [33]. The finer grid computations at ¢ = .35 s and ¢ = .5 s show signs of
Kelvin-Helmholtz instability, as noted in [33]. To demonstrate the effects of surface
tension, we reduced the computational domain to [—.01 m, .01 m| x [—.01 m, .02 m]
and the radius of the air bubble to 1/300 m. Figure 5.6 shows the positions of the air
bubble at t = 0, t = .02, t = .035 and ¢ = .05 seconds under grid refinement. Note

that the results are similar to those shown in Figures 1 and 2 from [33].
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Figure 5.5: Level set profiles under grid refinement for an air bubble of initial radius
1/3 m rising inside a computational domain of [—1 m, 1 m] X [-1 m, 2 m] filled with
water with solid wall boundary conditions. Note that the computations at time ¢t = .5
s show signs of Kelvin-Helmholtz instability.
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Figure 5.6: Level set profiles for an air bubble of initial radius 1/300 m rising under
the effects of surface tension and viscosity inside a computational domain of [—.01 m,

.01 m] x [-.01 m, .02 m)] filled with water with solid wall boundary conditions.



Chapter 6

Momentum conservation

Consider an isolated incompressible droplet with no ambient pressure forces. When
solving equation (2.4) to make the velocities divergence free, a constant pressure along
the boundary leads to a net force of zero implying momentum conservation for the
droplet. When updating the velocity degrees of freedom on regular MAC grid faces
via equation (2.5), the interior cell-centered pressures are applied in a conservative
fashion to velocities at faces bordering interior cells, and as there is no net pressure
force along the boundary the projection step conserves momentum in each Cartesian
direction independently. That is, momentum is conserved during the projection step
for the velocity degrees of freedom that surround the cell-centered pressure degrees

of freedom.

During the velocity extrapolation step, if one computes ¢-values at faces by averaging
cell-centered ¢-values, then some of the faces involved in the momentum conserving
projection step above may be deemed outside the droplet and overwritten. This
violates momentum conservation and can be seen as moving the boundary inward
by one grid cell replacing the proper exterior constant pressure Dirichlet boundary
condition with a spurious internal pressure. Thus we do not use face-averaged ¢-
values, instead labeling every face adjacent to an interior cell center as interior to

the droplet. Similarly, the viscous solver uses the same velocity degrees of freedom

29
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with exterior Neumann boundary conditions. Currently, we do not use momentum
conserving advection [41] as the largest errors for momentum conservation occur when

applying surface tension.

In the presence of surface tension, there is additional momentum added for any veloc-
ity degree of freedom that lies between an interior and an exterior cell. We compute

curvature at a face as a ¢-weighted average of its cell-centered values, i.e.,

_ Kilpir| + Kiva o]

— 6.
5= TG+ o] (6.1)

The surface tension force per unit area at this face is sign(£1)ok, where sign(£1) is
chosen consistent with the outward unit normal in the Cartesian grid directions based
on which cells are interior and exterior to the level set. To properly conserve momen-
tum, the net force due to surface tension should sum to zero for each independent
bubble and droplet independently along each of the Cartesian directions. To enforce
this for each independent bubble and droplet, we compute the total surface tension
force per unit area along each Cartesian direction as ox®® = sign(£1)ory, and
subtract it off from the corresponding force for each face in a curvature-weighted

fashion. That is, the new jump for each face becomes

new

ok} = sign(£1)ory — Z':—‘fiﬂa/itm' (6.2)
Obviously alternatives to equation (6.2) exist, and it is not the form of the correction
but the fact that a correction needs to be made in order to conserve momentum that
we stress. In our simulations we noticed that the net surface tension force along the
boundary is close to zero for large well-resolved bubbles and water droplets. However,
for under-resolved droplets which are a few grid cells wide, we noticed that the net
surface tension force can be so far from zero that droplets can even change directions

in mid-air violating conservation of momentum.

Although we only apply the surface tension correction to closed surfaces, it appears

that one can use a similar strategy for open surfaces connected to boundaries as well.
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Consider for example a single circular bubble, if this bubble is cut in half then it
follows from the conservation of momentum that the force on the top half of the
bubble must equal the force on the bottom half. However, if we redrew the bottom
half of the bubble to any arbitrary curve, then the net force on this new bottom half
must still be equal to the net force on the top half. Essentially, the net force on the
bottom half of the bubble is independent of its shape and is somehow tied to the
boundary conditions on the top half. Therefore, for an open surface connected to the
boundary of the domain, with additional knowledge about contact angles, one could

likely compute a consistent measure for the net force on the open surface.
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Complex bubble breakup

To summarize, our method for simulating bubbles in free surface incompressible
flows is as follows. We use the level set method [50] to track the interface be-
tween the bubbles and the incompressible fluid. Initially, each bubble is assigned
a density (or mass) which is advected using the unconditionally stable conservative
semi-Lagrangian scheme of [41]. We advect the bubble density using air velocities
which are constructed and maintained in a separate velocity field, although one could
also use velocities extrapolated from the incompressible flow for increased efficiency
but lower accuracy. The velocity used for level set advection is a hybrid between the
incompressible flow velocity and the air velocity field. Even so, numerical smearing
and other errors cause the location of the zero level set and the location of the non-
zero bubble densities to drift apart over time. We address this issue as follows. First
we compute the total mass that belongs to a bubble as the sum of all the mass inside
the bubble and all the mass closest to that bubble. Then we use a flood fill algorithm
on that bubble to identify all grid cells belonging to that connected component. The
volume of this connected component is carefully computed using a piecewise linear
reconstruction of the level set as outlined in [40]. The mass is then uniformly re-
distributed inside the bubble to obtain a spatially constant bubble density. Before

advecting the incompressible velocities and the air velocities, they are extrapolated

62



CHAPTER 7. COMPLEX BUBBLE BREAKUP 63

across the interface in order to define ghost node values using the fast extension
method of [1]. The two velocity fields are then independently advected using the
second order accurate MacCormack method [53]. The level set function is advected
using the particle level set method of [11] and the semi-Lagrangian advection scheme
of [12]. To keep the level set a signed distance function we use the modified fast
marching method of [43]. Note that we also compute the advection terms in a thin
band of ghost cells so they are adequately defined when the interface moves. Also
note that we passively advect the bubble mass that is not close to any bubble using
the incompressible flow velocities in order to accurately track sub-grid level details.
When a bubble is about to merge with the ambient air near the free surface, dynamic
events can cause the bubble to open in one time step and close in the next. To ro-
bustly track the bubble density in these cases, we keep advecting the bubble mass

even if the bubble merges with the ambient air near the free surface.

Viscosity in the water is treated implicitly using Neumann boundary conditions at
the interface that the derivative of each component of the incompressible velocity is
zero. As described in Section 2.1, this is based on the assumption that the dynamics
inside the air bubbles contain little momentum and hence, they cannot absorb any
viscous momentum from the liquid. Thus, the jump in pressure due to viscosity is also
zero since the normal component of the viscous stress vanishes across the interface.
Finally, as we assume constant viscosity in the incompressible fluid, the equations for
the different components of the incompressible velocity decouple as in equations (2.6)
and (2.7) for two spatial dimensions. Note that the level set is advected to its new

tn+1

time position before the viscous update due to the need to prescribe interface

boundary conditions.

For the implicit step of our method, we use a coupled solve between a single degree of
freedom pressure for the bubble and the surrounding incompressible flow by solving
equation (5.2), as described in Section 5.2. The ambient air is taken to be a Dirichlet
boundary condition of p,y, = 101,325 Pa for which we use the second order cut-
cell method of [19]. In the presence of surface tension, the appropriate ox jumps

are added to pressure values near the interface. These pressure jumps are carefully
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Figure 7.1: Velocity field at ¢ = .5 s on a 80 x 120 grid for the rising bubble example
from [33] (and Figure 5.5) when the air velocities are (a) wiped out at the end of
every time step and computed from the boundary incompressible velocities using a
second projection solve, and (b) advected forward in time and updated using pressure
gradients from a second projection solve. The incompressible velocities are shown in
blue and the air velocities are shown in red. Note that the velocity field in (b) appears
much more continuous and smooth compared to the velocity field in (a).

computed noting that the net surface tension force on each bubble and each water
droplet must be zero, as described in Chapter 6. We use this pressure to update the
incompressible velocities via equation (2.5). This provides a very stable monolithic
coupling for interactions between bubbles and the surrounding incompressible flow.
The air velocities inside the bubbles are computed from the boundary incompressible
flow velocities using a second projection as in equations (2.15) and (2.16). One might
consider wiping out the air velocities at the end of every time step assuming that the

bubble has little momentum and thus, a very small influence on the incompressible
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velocity field. However, this destroys the temporal continuity of the overall flow field
as shown in Figures 7.1(a) and (b) for the rising bubble example from Figure 5.5.
Note that all the vorticity in the air velocities is confined near the boundaries in
Figure 7.1(a) which would give rise to a noisy level set as the simulation progresses.
In contrast, Figure 7.1(b) has a much better behaved velocity field which maintains

a smooth level set over time.

Finally, the size of the time step is computed using equation (2.10) where we add an
estimate for |Vp| using equation (2.14) which accounts for the change in velocity over
a time step. This term prevents the time step from becoming excessively large when
velocities are near zero and is similar in spirit to the idea proposed in [33] for body

forces and [38] for compressible flow.

7.1 Numerical results

Consider a computational domain of [—1 m, 1 m] x [—1 m, 2 m] which is initially filled
with water with density 1000 kg/m? where the free surface is located at y = 1.5 m. A
circular air bubble of radius 1/3 m is centered at the origin with density 1.364 kg/m?.
The effects of surface tension and viscosity are absent. Figure 7.2 shows the level set
att=0,t=.45,t=.9t=12,t=15,t=18,t=2.4,t =27 and t = 3 seconds
for two grids of resolutions 320 x 480 and 640 x 960 respectively. Note the small scale
details that our solver is able to resolve and accurately track over time. In order to
show convergence of our solver under grid refinement, we reduced the computational
domain to [—.01 m, .01 m] x [—.01 m, .02 m] and the radius of the bubble to 1/300 m,
and included the effects of surface tension and viscosity with coefficients o = .0728
kg/s? and p = .001137 kg/ms. The initial density of the air bubble is 1.227 kg/m3.
Figure 7.3 shows the level set at t =0, t = .02, t = .04 and ¢ = .08 seconds.

As further validation, we also simulated the rising bubble experiment corresponding
to Fig 1A from [25] where a bubble of radius .0061 m and initial density 1 kg/m?3
rises in a liquid of density 875.5 kg/m3. The computational domain is [—.1464 m,
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Figure 7.2: An air bubble of initial radius 1/3 m rising inside a computational domain
of [-1 m, 1 m] X [-1 m, 2 m] filled with water with a free surface initially located
at y = 1.5 m. The effects of surface tension and viscosity are absent. Note the small
scale details that our solver is able to resolve and accurately track over time.
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Figure 7.3: Level set profiles under grid refinement for an air bubble of initial radius
1/300 m rising inside a computational domain of [—.01 m, .01 m| x [—.01 m, .02 m]
filled with water with a free surface initially located at y = .015 m. The effects of
surface tension and viscosity are present.
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Figure 7.4: Rising bubble example from Fig. 1A of [25], (a) computed steady state
bubble shape and the streamlines inside the bubble and those in its wake, and (b)
time evolution of the position of the center of mass of the bubble.

1464 m] x [—.0732 m, .366 m] and the bubble is initially located at the origin.
The coefficient of viscosity is p = .118 kg/ms and the coefficient of surface tension
is 0 = .0322 kg/s®.. The edges of the computational domain have slip solid wall
boundary conditions. This example was also simulated in [57, 24] and our solver
gives similar results. Figure 7.4(a) shows the bubble at time ¢ = .6 s on a 512 x 768
grid along with the streamlines both inside the bubble and in its wake. Figure 7.4(b)
shows the time evolution of the position of the center of mass of the bubble. We
compared this data with the linear best fit for .6 < ¢ < .8 seconds. The slope of
the linear best fit is .2114 m/s whereas the expected slope is .215 m/s. We note
that the streamlines do not match the experimentally observed values due to the fact
that a highly simplified single pressure degree of freedom model is used for the air,
however, the steady state bubble rise speed is close to the experimentally measured
value in [25] and the steady state bubble shape is similar to that observed in [25] and
computed in [57, 24].
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7.1.1 Object interaction

When updating the incompressible flow velocities during advection, in the presence
of objects, we set velocity Dirichlet boundary conditions at cell faces whose centers
lie inside an object as these cell faces have well-defined velocities determined by the
object velocity. We then advect every face obtaining a well-defined incompressible
flow velocity field at time ¢*. As we consider interaction with objects that are fully
submerged initially, we initialize ¢ inside these objects to be the value when no
objects were present, i.e., treat them as water. Subsequently when advecting ¢, we
also update ¢ at grid cells whose centers lie inside an object. Air velocities are
handled similar to the incompressible flow velocities during advection with Dirichlet
boundary conditions at cell faces inside objects. As described in [41] (see also [23]),
for advecting the air density, we modify the forward and backward ray casting to
stop when it hits an object. Interpolation weights are computed at the surface point,
where weights coming from cells inside an object are discarded and the remaining
weights are rescaled to sum to 1. During the viscous solve, we set Dirichlet boundary
conditions at cell centers that lie inside objects. When solving for the pressure to
make the incompressible flow velocities divergence free, we set Neumann boundary
conditions at cell faces whose centers lie inside objects. Similarly, during the second
projection step for updating the air velocities, we set Neumann boundary conditions

at cell faces whose centers lie inside objects.

Consider a computational domain of [—1 m, 1 m] x [—1 m, 2 m| which is initially filled
with water with density 1000 kg/m? where the free surface is located at y = 1.5 m. A
circular air bubble of radius 1/3 m is centered at the origin with density 1.364 kg/m3.
The domain has nine circular objects with four objects located at (—.6 + .4k, .5),
where £ = {0,1,2,3} and the other five objects located at (—.8 + .4k,.9), where
k =1{0,1,2,3,4}. Figure 7.5 shows the level set at t = 0, t = .25, t = .5, t = .75,
t=1,t=125¢t=15¢t=175and t = 2.1 seconds for two grids of resolutions
320 x 480 and 640 x 960 respectively. As can be seen, the objects break up the
bubble into a large number of small bubbles which our solver is able to resolve and

efficiently track over time. We also show an example where the larger bubbles deform
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Figure 7.5: An inviscid air bubble of initial radius 1/3 m rising in the presence of
objects inside a computational domain of [—1 m, 1 m] x [—1 m, 2 m] filled with water
with a free surface initially located at y = 1.5 m. The objects break up the bubble
into a large number of small bubbles which our solver is able to resolve and efficiently
track over time.
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Figure 7.6: An air bubble of initial radius 1/30 m rising in the presence of objects
inside a computational domain of [—.1 m, .1 m| X [—.1 m, .2 m] filled with water with a
free surface initially located at y = .15 m. The effects of surface tension and viscosity
are present. Note that the smaller bubbles remain spherical because of larger surface
tension forces while the larger bubbles readily deform.



CHAPTER 7. COMPLEX BUBBLE BREAKUP 72

40x60 —— 40x60 ——
80x120 80x120
0.036 | 160x240 4 0.036 | 160x240 1
320x480 —— 320x480 ——
0032 E 0032 4
0.028 E 0.028 1
0.024 R 0.024 ]
0.02 | E 0.02 | 1
0.016 - . . . g 0.016 - . . . 1
0.012 . . e 0.012 | -
0.008 - g 0.008 - 1
0.004 - E 0.004 - 4
ot E o} 1
-0.004 g -0.004 4
-0.008 | E -0.008 | 4
<0.012 | E 0.012 | E
0,016 E 0.016 | ]
. A L L L L
0.01 o 0.01 -0.01 0 0.01
40x60 —— j T 40x60 —— T T
80x120 —— 80x120 ——
0.036 - 160x240 E 0.036 |- 160x240 —— g
320x480 320x480 ——
0.032 p 0.032
0.028 - g 0.028
0.024 g 0.024
0.02 | E 0.02
0.016 - . g 0.016
0.012 E 0012 |- p
0.008 - . . E 0.008 |- . . 4
0.004 - E 0.004 |- p
ot E ot 1
-0.004 | E -0.004 |- p
-0.008 g -0.008 |- 1
<0.012 | g 0012 g
0.016 g -0.016 |- 4
L L L . A L
-0.01 0 0.01 -0.01 0 0.01

t=.16s t=.225s

Figure 7.7: Level set profiles under grid refinement for an air bubble of initial radius
1/150 m rising in the presence of objects inside a computational domain of [—.02
m, .02 m| x [—.02 m, .04 m]| filled with water with a free surface initially located at
y = .03 m. The effects of surface tension and viscosity are present.
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while the smaller bubbles are able to preserve their shape due to surface tension
forces by reducing the computational domain to [—.1 m, .1 m] x [—.1 m, .2 m], the
radius of the bubble to 1/30 m with initial density 1.24 kg/m?, and adding the effects
of surface tension and viscosity with coefficients o = .0728 kg/s? and p = .001137
kg/ms. Figure 7.6 shows the level set at t = 0, ¢t = .1, t = 2, t = 3, t = 4,
t=.5,t=.6t=.7and t = .8 seconds for two grids of resolutions 160 x 240
and 320 x 480 respectively. Note that the smaller bubbles remain spherical because
of larger surface tension forces while the larger bubbles readily deform. In order to
show convergence under grid refinement in the presence of objects, we reduced the
computational domain to [—.02 m, .02 m| x [—.02 m, .04 m] and the radius of the
bubble to 1/150 m, and reduced the number of objects to five. Two objects are
located at (—.007 4 .014k,.01), where k = {0, 1} and the other three are located at
(—.014 +.014k, .018), where k = {0, 1,2}. The effects of surface tension and viscosity
are present with the same coefficient values as above. The initial density of the air
bubble is 1.229 kg/m?. Figure 7.7 shows the level set at ¢t = 0, t = .075, t = .16 and
t = .225 seconds.

Total Bubble Mass Total Bubble Volume

02

mass
volume

. L L . . L 0 . . .
0 02 04 06 08 1 12 14 0 02 04 06 08
time time

(a) (b)

Figure 7.8: Numerical profiles for the (a) total mass, and (b) total volume of the
bubbles for the rising bubble example in three spatial dimensions.
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t=1s t=14s

Figure 7.9: An air bubble rising in a water column with a free surface in the presence
of objects in three spatial dimensions. The effects of surface tension and viscosity are
absent.
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Figure 7.10: A close up of the three dimensional rising bubbles at ¢ = 1 seconds (see
Figure 7.9(c)). Note the large amount of topological detail that our solver is able to
resolve and accurately track over time.

7.1.2 Three spatial dimensions

Consider a computational domain of [-1 m, 1 m| x [-1 m, 2 m] x [-1 m, 1 m] which
is initially filled with water with density 1000 kg/m? where the free surface is located
at y = 1.5 m. An air bubble of radius 1/3 m and density 1.364 kg/m? is centered
at the origin. The effects of surface tension and viscosity are absent. To break up
the bubble into a large number of smaller bubbles, the domain also has 25 spherical
objects of radius .15 m centered at (—.8 +.4i,.5, —.8+.4j), where 4, j = {0, 1,2, 3,4}.
Figure 7.9 shows the level set at t =0, ¢ = .7, ¢t =1 and ¢t = 1.4 seconds simulated
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using a grid of resolution 256 x 384 x 256. A close up of the level set at ¢t = 1 seconds
is shown in Figure 7.10 illustrating the large amount of topological detail that our
solver is able to resolve and accurately track over time. Figures 7.8(a) and (b) show
the numerical profiles for the total bubble mass and volume demonstrating that the
proposed method allows bubbles to readily change in volume while conserving the
total bubble mass. This simulation took approximately two weeks for simulating 240
frames at 80 frames per second (i.e., a 3 second simulation) on a dual hexcore T7500

Dell workstation.



Chapter 8

Extensions to sub-grid scale

Although the Eulerian scheme proposed in Chapters 5 and 7 works for large well-
resolved bubbles, it cannot keep track of sub-grid scale bubbles since the level set loses
volume over time. To track these under-resolved bubbles, we propose a Lagrangian

formulation which is still strongly coupled to the surrounding flow.

8.1 Sub-grid bubbles

We use the equation of state P, = Bp, for the sub-grid bubbles with the constant B
chosen such that a density p, = 1.226 kg/m? gives a pressure P, = 101,325 Pa. We
assume that the sub-grid bubbles are spherical in shape with radius r, have a single
radial velocity degree of freedom v,., and a single pressure degree of freedom P, which

is coupled to all the surrounding fluid degrees of freedom in a monolithic fashion.

When solving for the bubble volumes, monolithic approaches are preferable to par-
titioned approaches because they do not require additional relaxation techniques for
stability and robustness (see e.g. [63, 34]). Therefore for stability reasons, we follow
an approach similar to that described in Chapter 5 which modelled a well-resolved

Eulerian level set bubble occupying N grid cells with the following equation,

7
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N P_(@)@: N  avpn
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A2Bp, " p J V. A V.At (8.1)

where At is the size of the time step, V. is the volume of a grid cell, 4" is the aver-
age radial velocity of the bubble, P™ is the surface area of the bubble, and (%) is

the average density-weighted pressure gradient across the bubble-water interface. We

would like to use a similar equation for the sub-grid bubbles as well so that they have
the same qualitative behavior as the level set bubbles and seamlessly convert into
them when they grow large enough. A brute force approach for achieving this by cre-
ating a mesh for each sub-grid bubble would result in increased complexity and poor
conditioning due to small control volumes. Instead, we make some approximations

noting that our resulting scheme gives adequate results as illustrated in Figure 8.1.

First, we substitute u" = v and N = V}"/V,, where V" is the volume of the bubble,

and rewrite equation (8.1) as,

‘/;7” P @E_ ‘/bn _U:upn
V.ARBp, "\ p V. VAR VAL

(8.2)

Notice as At — 0, the first term on each side of the equation must balance indicating
that the bubble pressure equals the equation of state pressure. Moreover, when the
bubble pressure is identical to the equation of state pressure these terms cancel, and in

order to remain at equilibrium with v}’ = 0 the term (%) P~ must also vanish. This

Ve
means that the bubble pressure tries to match the average external pressure from the

fluid when it is near radial equilibrium (n.b. equation (8.4)). Note that (%) is an

area-weighted average where the weights are computed based on the fraction of the
bubble’s surface area visible to a neighboring fluid cell and that cell’s pressure degree
of freedom p;. We estimate these weights w; as the weights each of the neighboring
eight cells would have in a tri-linear interpolation formula for the location of the

center of a bubble. Then



CHAPTER 8. EXTENSIONS TO SUB-GRID SCALE 79

~ iwiw ~ iwiw (8.3)

where Ax; is the distance between the sub-grid bubble center and the center of the
1th incompressible cell. We have found that we can make further approximations
replacing Azx; by a characteristic length Ax and replacing p by the bubble density py
as seen in the rightmost term in equation (8.3). Here Az is chosen as the length of a
grid cell in the case of our uniform grid. Although these approximations might appear
aggressive, they allow us to treat the sub-grid bubbles as point particles while keep-
ing the equations well-defined even for degenerate cases where the sub-grid bubbles

overlap each other or encompass a fluid degree of freedom. Note that

Zwi(pi_Pb):pavg_Pb (84)

where p,ye is the incompressible flow pressure linearly interpolated to the bubble’s
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Figure 8.1: Using equations (8.5) and (8.11), we solve the oscillating bubble problem
for a sub-grid bubble (radius = .3Az) on a 25 grid of dimensions 1m?® with (Left)
an initial density of 1.1 kg/m3, where the bubble starts with an initial volume of
7.238 cm?, converges to the predicted volume of 7.962 cm?, and closely approximates
the analytic bubble oscillation frequency as the size of the time step is refined, and
(Right) an initial density of 1,100 kg/m®, where the bubble starts with an initial
volume of .268 cm?® and expands three orders of magnitude, remaining stable even
when it grows beyond its incompressible neighbors. Note that the bubble remains
stable at all time steps in both cases.
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center. This provides some intuition as to why these approximations work. The term
on the right is a reasonable approximation to the gradient between the incompressible

flow pressure and the bubble’s pressure using the same characteristic length scale.

In summary, we use the following equation when solving for the pressure of a sub-grid
bubble,

8
‘/2) Pb _ E Z(p’t b)P _ ‘/E) UTP

V.At2Bp, AzpyV.  V.AE2 VAt (85)

Even with these approximations, we converge to the analytic bubble volume at sub-
grid resolutions and the simulation remains stable with large time steps. The de-
nominator p in equation (8.3) controls the bubble’s oscillation frequency. For any
given radius, it can be tuned such that the model closely matches the analytic bub-
ble oscillation frequency. Most of our sub-grid bubbles are seeded with radii in the
interval (.2Ax,.3Ax), and setting p = p, works quite well in this case as shown in
Figure 8.1(left). For more accuracy such as when simulating fluid sounds, one could
choose a better value for p or even make it a function of the bubble’s radius. We
leave this as future work since all our examples use large time steps and only rely on

the sub-grid bubbles converging to the right volume while remaining stable.

Note that we treat all sub-grid bubbles independently of each other when coupling to
the external fluid pressures. In addition, we set weights to zero when a neighboring
fluid degree of freedom is inside a kinematic object or is subject to a free surface
pressure boundary condition. This means that both kinematic objects and free air
cannot see the pressure from the sub-grid bubble which is fine. When a neighboring
fluid degree of freedom is inside a level set bubble, the level set pressure degree of
freedom can be coupled to the sub-grid bubble pressures, except that this increases the
density of the Poisson equation matrix repeatedly for every sub-grid bubble adjacent
to a single level set region - which we have observed increases the number of iterations
required by PCG for convergence. Therefore, we set weights to zero in this case as

well.
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As shown in [38], the divergence of the velocity field at time ¢t"*! is given by the
second and fourth terms in equations (8.1) and (8.2), and thus equation (8.5). Since
the volume-weighted divergence of a sub-grid spherical bubble is given by v, P, we

can write

3
VTP = VDM = ol P — AP wy

i=1

(pi - Pb)

Ao (8.6)

After solving a monolithically coupled Poisson equation for all the fluid and bubble

pressures, the right hand side of equation (8.6) is known. Using the definition of

n+1

mtl = dr*tl/dt, we analytically integrate

surface area P = 47 (r"*1)? and writing v

n+1

equation (8.6) from time ¢" to t"*! to obtain r"™'. Once r"*! is determined, we use

a backward Euler discretization of r"*! — r™ = Aty for computing v .

8.2 Coupling to Incompressible Flow

Consider an incompressible fluid containing many sub-grid bubbles with the inviscid

Navier-Stokes equation given by

— — — V —

ut—i—(u-V)u—f—?p:g (8.7)
where p is the average density, @ is the velocity, and g is the net body force acting
on the fluid. We discretize these equations on a MAC grid where we first explicitly

update

A7 +(u-VYu=4g (8.8)

with a semi-Lagrangian MacCormack method [53], and then solve for the pressure

via
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in order to update the intermediate velocity «@* using equation (2.5).

We lump the divergences of all the sub-grid bubbles into a column vector Dl g0
that they can affect the divergences of the individual fluid cells via Wﬁ”“, where W
is a weight matrix with W}, corresponding to the fraction of the divergence of bubble
k that is added to the divergence of cell 5. For simplicity of exposition, consider a
single bubble where we only consider one column of the weight matrix which we index

solely by the cell, i.e., for example W;. Then, equation (8.9) can be written as

-V

Vp V-a* WDt
= 8.10
5 At T A (8.10)
With the aid of equation (8.6), we discretize equation (8.10) for cell j with faces f as

follows

Py —P; (pi —B)P" _ V-u* v P
SN BB Ny, S W 8.11
W ;w Axp, V. At W V.At ( )

where ps refers to the pressure on the other side of the face f. For multiple bub-
bles, the second and fourth terms in equation (8.11) must be summed over all the
influencing bubbles k with W; replaced by Wj.

The weight matrix W can be chosen such that the resulting system of equations
(8.5) and (8.11) is symmetric positive definite allowing for the use of fast solvers such
as preconditioned conjugate gradient. In order to obtain symmetry, the coefficient
of P, in the second term in equation (8.11) must be the same as the coefficient
of p; in equation (8.5), and the coefficient of p; (when i # j) must be the same

as that for p; in the corresponding equation for cell . The first condition means
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that w; = W; 3.5 w; or W; = w;/ >, w;. Note that this relation automatically
satisfies the second condition for symmetry as well. Typically, since w; represents the
interpolation weight, Zle w; = 1 and we are simply using the interpolation weights
once again to define W. However, as pointed out in Section 8.1, objects, level set
bubbles and the free surface are not directly coupled to the sub-grid bubble’s pressure
discretization yielding weight values of zero and Z§:1 w; # 1. Technically, this means
that our sub-grid bubbles are not directly coupled to objects, level set bubbles, or
free surface pressure boundary conditions but are always assumed to be submerged

in the neighboring fluid degrees of freedom that happen to be present.

Finally, after solving for the pressure and updating the fluid velocities in the usual
manner, the translational velocity of the bubble is set to be the interpolated average
fluid velocity @ at the center of the bubble. One could make the bubble motion
more lively by applying additional forces such as buoyancy, vorticity confinement
or a random perturbation as done in [35] - we use buoyancy in our examples. For
greater accuracy, this new velocity can then be subtracted from the average velocities
to conserve the fluid momentum, although this step is not essential since the bubble

momenta is very small.



Chapter 9

Bubble-bubble interactions

When two sub-grid bubbles overlap, we merge them into a single bubble adding their
masses and volumes. The radial velocity of the bubble is chosen such that the net
divergence is equal to the sum of the divergences of the original bubbles. Additionally,
for increased realism, similar to [29] we apply an attraction force which is of the form
fattrace = Kmymy/ r?, where K is a constant, m;, ms are the masses of the two bubbles
and r is the distance between them. When a sub-grid bubble grows large enough such
that its radius covers more than two grid cells, we convert it to a level set function.
This is accomplished by rasterizing the sub-grid bubble onto the grid and adding its
mass to the level set region by computing the appropriate density. Note that the
divergence remains continuous during this process since the background fluid velocity
already contains the bubble’s divergence. Also, when a sub-grid bubble enters a level
set bubble we delete the sub-grid bubble and add its mass to the mass of the level
set region by modifying the density field.

If a level set bubble becomes smaller than a grid cell, it can lose mass because of
numerical errors during advection. However, the bubble mass cannot disappear be-
cause it is advected conservatively using the method of [41]. This stray mass was
distributed to the nearby bubbles as described in Chapter 2. However, such a scheme

can sometimes move the bubble mass too far away in a non-physical manner. Instead,
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Figure 9.1: A single level set bubble rises in a tall domain, undergoing topological
deformations and generating smaller level set as well as sub-grid bubbles during its
temporal evolution (150x500x 150 grid); about 1,200 sub-grid bubbles.

we propose to track this stray mass using sub-grid bubbles as shown in Figure 9.1.
To achieve this, we first run a greedy condensation procedure on the stray density
field by moving it in the direction of the gradient vectors for a few iterations. Then
for every cell with density above some threshold we seed a sub-grid bubble with the
appropriate mass. To correctly choose its volume, we set the steady state pressure
p = prgh (where p; is the density of the incompressible fluid and & is the depth of the
sub-grid bubble from the water surface) to be equal to the equation of state pressure
P, = Bp, = BM,/V}, and solve for Vj. Note that we do not use the incompressible
pressure for computing the bubble’s volume because it can oscillate wildly and even
go negative at times during the course of the simulation due to small numerical errors
in the velocity field - this is because of the well-known fact that the fluid pressure in
incompressible flow is more of a Lagrange multiplier than an actual pressure. Finally

note that even if our initial volume estimate has some errors, the monolithic coupling
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keeps the scheme stable and the bubble readily changes volume to an appropriate

value.

Figure 9.2: To preserve visual realism, we render a sub-grid bubble as a time-evolving
level set function by maintaining a dictionary of level sets acquired from a coarse
simulation and intersecting rays with them during the rendering process. Shown in
the figure is a sub-grid bubble rising on a 6x18x6 grid rendered (Left) as a sphere,
and (Right) at different points in time using our level set dictionary.

9.1 Time-evolving proxy geometry

Although sub-grid bubbles are monolithically coupled to the surrounding fluid, ren-
dering them as oscillating spheres next to fully deforming level set bubbles can look
visually disturbing. To avoid this, we render them as time-evolving level set functions
which have been pre-computed offline. This was achieved by maintaining a dictionary
of level sets acquired from a rising bubble simulated on a coarse grid. During the
rendering process these level sets are substituted within the bounding boxes of the
sub-grid bubbles and intersected with the rays, as shown in Figure 9.2. Bubble shapes

can also be handcrafted or created via superposition of certain basis functions [48] for
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use during the rendering process. Using this method for rendering a simulation with
hundreds of thousands of sub-grid bubbles can be computationally quite expensive.
However, we found that using this method on the largest few thousand bubbles added
negligible computational overhead while drastically increasing the visual realism, see

Figure 9.3(far right). Note that in some cases we have rendered the sub-grid bubbles

larger than their actual radii to increase the visual expression.

Figure 9.3: A cylindrical source inside a tall domain seeding tiny bubbles which grow
as they rise and merge together due to attraction forces, ultimately forming large sub-
grid and level set bubbles as they approach the surface (128 x640x128 grid); about
500,000 sub-grid bubbles. (Far right) shows the sub-grid bubbles in red and blue,
where red depicts the smaller spherical ones (Figure 9.2 left), and blue depicts those
rendered using the time evolving level set dictionary (Figure 9.2 right).

9.2 Solid object interaction

As described in Chapter 7, when advecting the fluid velocities, the object velocity is
set as a Dirichlet boundary condition at cell faces that lie inside the object. For level
set advection, objects are treated as water. i.e., the level set function ¢ is initialized
to be the value as if no objects were present and subsequently also updated at grid

cells that lie inside the object. For advecting the air mass, the forward and backward
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advection rays are clamped when they hit an object, as described in [23, 41]. The
surface point is used for computing the interpolation weights, where weights coming
from cells inside the object are discarded and the remaining weights are rescaled to
sum to 1. Similarly, when advecting the sub-grid bubbles we clamp the advection
rays to the object surface. During the pressure projection step, we set Neumann

boundary conditions at cell faces that lie inside thick objects, while for thin shells we

use visibility information as described in [23].

Figure 9.4: Same as Figure 9.3 except an armadillo moving up and down illustrating
complex object interaction.

As discussed in Section 8.1, if a sub-grid bubble has a neighbor that lies inside an
object then the weight w; is set to zero. This means that sub-grid bubble pressures
do not directly couple with solid objects. Although this is fine for kinematically cou-
pled objects, the method should be modified in order to properly handle interactions
with two-way coupled objects, increasing the overall complexity. We leave this as
interesting future work. Figure 9.4 shows a kinematically coupled armadillo moving
inside the underwater bubble simulation of Figure 9.3. Note that the larger level set
bubbles form earlier in this example because of the merging of the sub-grid bubbles

due to collisions with the armadillo.



Chapter 10

Bubble seeding

When considering fluid structure interactions with fast moving objects such as ship
propellers, lower pressure regions are generated near the object and some of the wa-
ter instantly vaporizes through cavitation [5] and forms bubbles. Since the density of
water is a thousand times larger than that of air, these bubbles quickly expand in size
becoming visible. The problem of modeling bubble generation has been addressed by
various authors for phenomena such as boiling [47, 37] or air entrainment [20, 29, 46].
While the former schemes predict bubble seeding locations using temperature and ob-
jects, the latter set of schemes use the escaped level set particles. As a result, all these
schemes are unsuitable for modeling cavitation. Note that it is extremely difficult to
vaporize pure water due to strong cohesion forces between the water molecules. Thus,
the major mechanism for cavitation is through nuclei that are very tiny bubbles (of
the order of microns) already present in water, or which are generated near rough
surfaces. When these bubbles enter lower pressure regions, they quickly grow in size

becoming visible to the naked eye.

Although lower pressure regions might appear to be good candidates for seeding bub-
bles, this idea does not work well in practice because the incompressible pressure
behaves like a Lagrange multiplier, as mentioned in Chapter 9. The incompressible

flow velocities, on the other hand, are much more reliable. We observed that the
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Figure 10.1: A cavitating propeller generates the characteristic helical pattern in its
wake.
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vorticity of the velocity field is a very good predictor for cavitating regions and thus,
we determine such regions by thresholding the vorticity magnitude. Note that one
should be careful when computing vorticity at fluid cells bordering objects because
the vorticity magnitude can be erroneously high due to Neumann boundary condi-
tions. To avoid this, we first extrapolate the fluid velocity inside objects and then
compute vorticity. We seed bubbles with small radii, zero radial velocity, and use the
steady state pressure for setting their mass, as described in Chapter 9. Once seeded,
these bubbles stably grow to their correct volume in a few time steps because of the
monolithic couping scheme. Figure 10.1 shows the characteristic helical pattern gen-

erated by a cavitating propeller simulated on a 256 x 512 x 256 grid, and Figure 10.2

shows a cavitating hydrofoil generating the typical Von Karman vortex street.

Figure 10.2: A fast moving hydrofoil generates the typical Von Karman vortex
street in its wake through cavitation. The vortex street is generated because of the
two-dimensional cross-sectional nature of the hydrofoil (1024x128x128 grid); about
600,000 sub-grid bubbles.

A nuclei in a lower pressure region keeps growing until it becomes large enough to
affect the surrounding pressure. The number of cavitating bubbles and their size is
determined by the nuclei density in water, a high nuclei density implying that there
are many cavitation sites in lower pressure regions and so each nuclei can only grow
by a small amount before it starts affecting the surrounding pressure - ultimately
manifesting as a mist of small bubbles. Solid objects affect the nuclei density in
proportion to their surface roughness, rougher surfaces generating more nuclei. Our
method allows us to emulate different nuclei densities by varying the magnitude of
the attraction forces between the sub-grid bubbles, a small magnitude implying a

higher nuclei density as less bubbles merge together and vice-versa (see Figure 10.3).
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Figure 10.3: Headforms with varying surface roughness to illustrate different nu-
clei densities in water ranging from a large number of small bubbles to a few large
bubbles (256x512x256 grid). Note that our results are qualitatively similar to the
experimental results on bubble cavitation shown in Figure B.3 in [61].
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Figure 10.4: Faucet pouring water showing air entrainment (200x400x200 grid);
about 300,000 sub-grid bubbles. Note that the size of the sub-grid bubbles was
accentuated to highlight the complex bubble interactions and the dynamic flow field.
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Figure 10.5: A fully simulated water dispenser (200x300x200 grid). As water exits
the spout the air pressure above the free surface decreases and some air gets entrained
from below to compensate for this pressure drop forming bubbles.

Although initially designed for simulating cavitation, we found that our vorticity-
based seeding mechanism works well for simulating air entrainment as well because
of high vorticity at the boundary between the faster impinging jet and the slower
surrounding flow. Figure 10.4 shows a faucet pouring water into a container entraining
bubbles. Figure 10.5 shows a fully simulated water dispenser where the free air above
the water surface expands whenever water pours out decreasing the air pressure. To
balance this pressure drop, some air gets entrained from below forming bubbles, and

the process continues.



Chapter 11

Conclusion and Future Work

We designed a method for simulating air bubbles in free surface incompressible flows.
To formulate our method, we first proposed a straightforward partitioned solver based
on mass tracking. We showed that such an approach suffers from stability issues which
have characteristics similar to partitioned (as opposed to monolithic) methods for
solid-fluid coupling [22, 52, 21]. These issues can be alleviated using outer iterations
on the partitioned solver, although the computation time increases drastically because
each time step can require ten or more Poisson solves. Hence, we took a monolithic
approach for the air-water problem similar to the solid-fluid coupling in [22, 52, 21] as
motivated by [38]. To design this approach, we revisited the partitioned solver of [7]
for coupling compressible and incompressible flow and devised a monolithic solver
using the ideas from [38] to couple together incompressible flow with fully non-linear
compressible flow including shocks and rarefactions. We then simplified this approach
greatly to make this approach in line with our straightforward partitioned approach
for simulating bubbles. This was achieved by setting both the bubble density and the
bubble pressure to be spatially constant, although time-varying. We demonstrated
the accuracy and robustness of this method on test problems as well as more realistic

problems in both one, two and three spatial dimensions.

Since the level set loses volume and cannot keep track of sub-grid scale details, we
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extended the above Eulerian formulation by tracking under-resolved bubbles using La-
grangian particles that are monolithically two-way coupled to the surrounding fluid.
We showed that despite the aggressive approximations made in Section 8.1, the pro-
posed sub-grid bubble model still closely approximates the analytic bubble oscillation
frequency and converges to the analytic volume as predicted by the Rayleigh-Plesset
equation while remaining stable even for large time steps. We proposed a novel
scheme for seamlessly interconverting between these small Lagrangian bubbles and
larger well-resolved Eulerian bubbles. We also introduced a novel seeding mechanism
to realistically generate bubbles when simulating fluid structure interaction with com-

plex objects such as ship propellers.

In the future, we would like to augment our solver with a sound simulation sys-
tem. Since we have already shown that our proposed model closely approximates the
analytic bubble oscillation frequency, we believe that such a system would produce
realistic fluid sound effects. It would be interesting to track bubbles using deform-
ing chimera grids [10] that also split and merge along with the bubbles to achieve
higher level of detail near the bubble-water interface. Another interesting avenue for
future work is to include lower-dimensional surface tension effects to model bubble-
bubble interactions such as bubble stacking. Eventually, we would like to integrate
our bubble solver into a full-fledged ship simulation to study effects of bubbles on

ship movements by two-way coupling the bubbly liquid with solid objects.



Appendix A

Oscillating bubble problems

Consider an infinitesimal element with volume df) and force per unit volume Vp,
implying that the total force on this element is Vpd(). The work done in displacing
this element in an infinitesimal time interval dt is given by VpdQ2 - d@ = VpdSQ - vdt.
The total work done dW in the time interval dt is the integral of this work over the

entire domain, i.e.,
dv - / Vp - 5dQdt — / V - (pi)dQat (A1)
Q Q

since V - v = 0. Using the divergence theorem, this integral is equivalent to the

following surface integral
dWw = pU - ndSdt (A.2)
o9

which we use in the following subsections.
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Appendix-I

Consider the one dimensional oscillating bubble problem introduced in Section 2.2
and Figure 2.1. Since the system is symmetric about the midpoint we only consider
the right-half of the domain. In one spatial dimension, water being incompressible has
a spatially constant velocity. Since there is no mass transfer between the air bubble
and the water this is also the velocity of the bubble-water interface, or the rate of
change of the radius of the bubble. Thus at time ¢, v(t) = R(t) at the interface of the
bubble of radius R(t). If [ is the length of the water region, then p;l is its mass. Let
pb(t) be the pressure inside the bubble and pam(t) be the pressure in the air at time
t. The total force on the water is given by py(t) — patm(t). This must equal the mass

times the acceleration R(t) of water, i.e.,

Po(t) = Patm(t) = prlR(t) (A.3)

Using an equation of state p = Bp, it follows that py(t) = Bpy(t) = BM/R(t), where
M is the constant mass of the bubble. Substituting this in equation (A.3) gives

R(t) 1 (BM

= m m - patm<t)) (A4>

Appendix-I1

Consider the oscillating bubble problem in two spatial dimensions as shown in Fig-
ure 2.2. Since the total volume of water is conserved, the radius of the water sphere

R, (t) is dependent on the radius of the bubble R(t). Let R° be the initial radius of
the bubble and R be that of the water drop. Then conservation of volume yields

T((Ry)* = (R")?) = m(Ry(t)* — R(t)?)
Ry(t) = V(R%)?+ R(t)? — (R)?
R,(t) = +/a?+ R(t)?, where a® = (R")* — (R°)? (A.5)
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In fact, the volume is conserved for any annulus with inner radius R(t) and outer

radius r, so that 7(r? — R(t)?) is constant and
ri- = R(t)R(t) (A.6)

At any point in time the kinetic energy of an annulus of infinitesimal thickness dr and
radius r is given by 1(p;2mrdr) - v(r)?, where v(r) =7 = R(t)R(t)/r from equation
(A.6). The total kinetic energy of water is obtained by integrating this from the
radius of the bubble R(t) to the outer radius of water R,(t), i.e.,

Ry (t)
K.E.(t) = pim / (R(R(t)/r)*rdr = mpr (R(t)R(1)* n(Ru (t)/R()) (A7)

R(t)

Equating the work done with the kinetic energy, and noting that equation (A.2)

applied to our annulus gives two terms of the form 27rr results in

t

/pb<7'>27TR<T)R(7')dT — patm(T)Qﬂ'Rw(T)Rw(T)dT = 7Tp[<R(t)R(t))2 In(R,(t)/R(t))

(A.8)

From equation (A.6), Ry (t)Ry(t) = R(t)R(t) for any time ¢ and thus

t

2 / (6(7) = Paum(T) R(T)R(7)dT = pr(R(DR(t))* In(v/a? + R(t)/R(t))  (A.9)

0

Differentiating both sides with respect to ¢t and simplifying gives

Po(H)—Daem(t) = pr(R(E)R(H)+R(t)*) In(\/a? + R(t)?/R(t))— 5a° pr R(t)*/ (> + R(1)?)
(A.10)
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Substituting py(t) = Bpy(t) = BM /(7 R(t)?) and rearranging gives

.. GE0; oo (o (VETEOR s

- _71‘?{?154)2 +patm(t) =0 (A'll)

Appendix-III

Finally, consider the three dimensional case. Equation (A.5) becomes
Ry (t) = /a3 + R(t)3, where a® = (R)* — (R°)? (A.12)
equation (A.6) becomes
r% = R(t)?R(t) (A.13)

and equation (A.7) becomes

Ry ()
K.E.(t) = 2mp; / (R()2R() /72 2dr = 2mpr R R(1)° (1/R(E) — 1/ Ru(t)) (A.14)
R(t)

Equating the work done with the kinetic energy, and noting that equation (A.2)

applied to our thickened shell gives two terms of the form 47?7 results in

/pb(T)47TR(T)2R(T)dT—patm(T)47TRw(T)2Rw(T)dT = 27Tp1R(t)4R(t)2(l/R(t)—l/Rw(t))

' (A.15)
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101
From equation (A.13), R2(t)R,(t) = R*(t)R(t) for any time t and thus
2 /(pb(T) — Pan(7))R(T)2R(7)dr = prR(£)*R(t)” <1/R(t) — 1/ a® + R(t)3>
’ (A16)

Differentiating both sides with respect to t and simplifying gives

2ol) — paenlt) = prER(D) (R@)_ _R@? )

Va3 + R(L)?

oo (3 R(t)? 2R(t)
+ piR(1) <§+ O R(t>3> (A.17)

Substituting py(t) = Bps(t) = BM/(37R(t)*) and rearranging gives

) R(t)? N R(t)? 2R(1)
i) (0 - b))
BM

e+ Pen) =0 (A.18)
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