
Happy	May	the	4th!!!!1!



Android	Security

CS	642	

Drew	Davidson	

Some	Slides	taken	from	John	Mitchell



Lecture	Roadmap

• What	is	Android?	
– History	

– Design	

• Exploits	
– System	Defenses	

• Other	Attacks	
– Threats	

– Defenses



What	is	Android?

• A	lot	of	things	to	different	people	
– The	fabled	gPhone	

• Invites	comparison	to	the	iPhone	

– An	internet	of	things	(IoT)	platform		
– An	operating	system	for	your	car?	

• Too	big	to	explain	in	this	lecture	
– We’ll	introduce	some	security	features	
as	needed	

– More	to	learn



(Ancient)	History	of	Android

• 2003:	Andy	Rubin	
cofounds	Android	Inc	to	
build	a	web-connected	
smartphone	

• 2005:	Google	acquires	
Android	Inc	

• 2007:	iPhone	Gen	I	
released	

• 2008:	HTC	Dream	(G1)	
released



Android	Design

• More	than	an	
Operating	System	
– A	specialized	Linux	
distro,	at	the	lowest	
level	

– A	framework	for	
running	Android	
“apps”	

– An	entire	ecosystem	
for	smartphone	users

} Android	Open		
Source	Project

} Apps	
App	Store	(Google	Play)	
Development	tools	
Closed-Source	Components



From	Google	to	You

Google OEM

Service	Provider

Users



Android	Exploits



What	is	an	Android	Exploit?

• Working	definition:	
An	action	that	occurs	in	contravention	of	the	security	
model	of	an	Architecture	

• Examples:	
– Privilege	Escalation:	User	code	runs	as	root	

– Data	Exfiltration:	App	steals	another’s	data	

– DOS:	App	renders	device	unusable



Multi-Layered	Architecture



Application	Design

• Each	app	runs	within	an	independent	instance	
of	the	Dalvik	Virtual	Machine	(DVM)	
– Apps	largely	run	bytecode	

– Each	app	runs	as	its	own	user,	i.e.	there	is	a	
separate	UID	for	each	app



App	Deployment



Intra-Application	Security

• Signed	code	
– Prevents	out-of-band	rewrites	

• Java-style	Sandbox	protections	
– Bytecode	verifier	prevents	ill-formed	programs	
– Runtime	checks	against	buffer	overflows,	etc.	
– Could	use	the	security	manager	for	policies	

• Android	Lifecycle,	App	Killer	
– System	may	pause	an	app	
– System	may	kill	an	app	with	too	many	resources



Inter-Application	Security

• OS	level	protections	
– Separate	UIDs	give	apps	distinct	privileges	

– Minimizes	privilege	escalation	

• Binder	IPC	
– Kernel	mediates	communication	between	apps	

– Receiving	app	must	register	for	incoming	messages



OS	Protection

• ASLR	
– Makes	it	statistically	impossible/improbable	to	
know	if	you’re	smashing	the	stack	effectively	

• Dlmalloc	
– Makes	it	much	harder	to	spray	the	heap



Google	Play	(Store)

• Largest	distribution	
channel	for	apps	
– Kill	switch	

– Google	Bouncer	

– “Wisdom”	of	the	
crowds



Exploits	Still	Happen

• Confused	deputy	
– Stagefright	

• Data	exfiltration	
– Sensor	side-channels	

• Microphone,	Gyroscope	

– App	misconfiguration	
• Facebook	Debug	log	

• Denial	of	Service	
– Exception	loops	
– Battery	drain



Other	Threats



Shady	Code

• The	previous	definition	of	exploit	was	
somewhat	weak	
– What	happens	when	the	security	model	is	
insufficient?	

• Enable	“PII	attacks”	
– Broadly,	attacks	that	leverage	your	personally	
identifiable	information



Shady	Code	Defenses

• Android	Permissions	
– Install-time	permissions



Shady	Code	Defenses

• Android	Permissions	
– Runtime	

– Update-Time



Category Permission Description

Your	Accounts AUTHENTICATE_ACCOUNTS Act	as	an	account	authenticator

MANAGE_ACCOUNTS Manage	accounts	list

USE_CREDENTIALS Use	authentication	credentials	

Network	Communication INTERNET Full	Internet	access

ACCESS_NETWORK_STATE View	network	state

Your	Personal	Information READ_CONTACTS Read	contact	data

WRITE_CONTACTS Write	contact	data

System	Tools WRITE_SETTINGS Modify	global	system	settings

WRITE_SYNC_SETTINGS Write	sync	settings	(e.g.	Contact	sync)

READ_SYNC_SETTINGS Read	whether	sync	is	enabled

READ_SYNC_STATS Read	history	of	syncs

Your	Accounts GET_ACCOUNTS Discover	known	accounts

Extra/Custom	 WRITE_SECURE_SETTINGS Modify	secure	system	settings



What’s	the	Problem	with	Permissions?

• Admittedly,	a	step	up	over	the	Desktop	
– Arguably,	table	stakes	for	such	a	personal	device	

• “Permission	entanglement”	
– You	may	control	when	a	permission	is	used,	but	not	
how	

• Permissions	are	per-app	thus	shared	with	libraries	

• A	single	permission	may	be	used	in	various	ways	

• Composite	effect	of	permissions	exceed	sum



Fixing	Shady	Code

• Fewer	easy	answers	
– One	person’s	privacy	violation	is	another’s	feature	

• Location-aware	advertising?



Now	Entering	the	Realm	of	Research

• What	follows	is	a	
discussion	of	research	
prototypes	
– Unlike	above,	there	are	
occasionally	obvious	
reasons	NOT	to	do	these	
things



Data	flow	analysis

• Label	the	uses	of	
permissions	in	the	
program	
– Sources:	produce	
sensitive	information	

– Sinks:	interact	with	
untrusted	entities	

• We’d	like	to	know	how	
these	endpoints	interact	

• Tools	
– FlowDroid	

– Stamp



Example	Endpoint	permissions

SinksSources	
• Account	data	
• Audio	
• Calendar	
• Call	log	
• Camera	
• Contacts	
• Device	Id	
• Location	
• Photos	(Geotags)	
• SD	card	data	
• SMS

• Internet	(socket)	

• SMS	

• Email	

• System	Logs	

• Webview/Browser	

• File	System	

• Broadcast	Message



Possible	Flows

Sources Sinks

INTERNETREAD_CONTACTS

WRITE_SETTINGSREAD_SYNC_SETTINGS

WRITE_CONTACTSREAD_SYNC_STATS

GET_ACCOUNTS WRITE_SECURE_SETTINGS

WRITE_SETTINGSINTERNET



Implementing	Dataflow	Analysis

• Identify	what	methods	use	which	permissions	
– No	canonical	map!	

• Identify	what	permissions	actually	do	
– Is	it	a	source?	Sink?	BOTH?	

• View	the	program	as	a	Program	Dependence	Graph	
– Edges	represent	flows	of	control	or	data	

– Nodes	represent	abstract	regions	of	code	

– Requires	a	program	semantics	/	abstraction



Dataflow	Analysis	Example

FB 
API

Write 
Conta

cts

Send 
Internet 

Source: 
FB_Data

Sink: 
Contact_Book

Sink: Internet
Read 
Conta

cts
Source: 
Contacts



Limitations	of	Dataflow	Analysis

• Technical	
– Over-approximate	

– Requires	deep	knowledge	of	the	system	
• Impractical	without	some	manual	modelling,	at	least	on	
Android	

• Practical	
	 …ideas?



(Dynamic)	Taint	Tracking

• Not	the	most	media-savvy	name	

• Extend	the	system	to	record	the	provenance	of	
data	
– Is	it	tainted	by	an	input	source?	

• Tools	
– TaintDroid



Limitations	of	Dynamic	Taint	Tracking

• Technical	limitations	
– Misses	control	dependencies	

• Practical	limitations	
– Slows	execution	

• Could	use	it	solely	as	an	offline	analysis



App	Rewriting

• Change	the	behavior	of	the	app	
– Reverse	engineer	it	

– Make	some	changes	

– Recompile	it



DroidWeave

• To	the	board!



Conclusion

• Good	luck	on	Finals!	

• If	you’re	graduating,	good	luck	in	life!


