Happy May the 4thI1111]

“|JSE THE FORCE,

HARRY”
~Gandatf




Android Security

CS 642
Drew Davidson
Some Slides taken from John Mitchell



Lecture Roadmap

 What is Android?
— History
— Design
* Exploits
— System Defenses
* Other Attacks
— Threats

— Defenses




What is Android?

* Alot of things to different people
— The fabled gPhone

* |nvites comparison to the iPhone
— An internet of things (loT) platform
— An operating system for your car?

* Too big to explain in this lecture

— WEe'll introduce some security features
as needed

— More to learn



(Ancient) History of Android

2003: Andy Rubin
cofounds Android Inc to
build a web-connected
smartphone

2005: Google acquires
Android Inc

2007:1IPhone Gen |
released

2008: HTC Dream (G1)
releasec




Android Design

 More than an
Operating System

— A specialized Linux 1

distro, at the lowest
level Android Open

Source Project
— A framework for
running Android

o ’)
apps Apps
— An entire ecosystem App Store (Google Play)

£ h Development tools
or Smartp one users Closed-Source Components



From Google to You

Service Provider

{mu verizon’




Android Exploits




What is an Android Exploit?

* Working definition:

An action that occurs in contravention of the security
model of an Architecture

 Examples:
— Privilege Escalation: User code runs as root
— Data Exfiltration: App steals another’s data

— DOS: App renders device unusable



Multi-Layered Architecture

APPLICATIONS

Home Contacts Phone Browser

APPLICATION FRAMEWORK

Activity Window Content View Notification
Manager Manaqger Providers System Manaqger

Package Telephony Resource Location XMPP

Manager Manager Manager Manager Service

LIBRARIES ANDROID RUNTIME

Surface Media SOLite Core

‘Annnr)r‘r Framework Libraries

libc

LINUX KERNEL

Camera Bluetooth Flash Memory Binder (IPC)
Driver Driver Driver Oriver

Keypad WiFi Audio Power
Driver Driver Drivers Management




Application Design

* Each app runs within an independent instance
of the Dalvik Virtual Machine (DVM)

— Apps largely run bytecode

— Each app runs as its own user, i.e. there is a
separate UID for each app



A
pp Deployment

i

)
g4




Intra-Application Security

* Sighed code

— Prevents out-of-band rewrites

e Java-style Sandbox protections
— Bytecode verifier prevents ill-formed programs
— Runtime checks against buffer overflows, etc.
— Could use the security manager for policies

* Android Lifecycle, App Killer
— System may pause an app
— System may kill an app with too many resources



Inter-Application Security

* OS level protections
— Separate UIDs give apps distinct privileges
— Minimizes privilege escalation
* Binder IPC
— Kernel mediates communication between apps

— Receiving app must register for incoming messages



OS Protection

* ASLR

— Makes it statistically impossible/improbable to
know if you're smashing the stack effectively

e DImalloc
— Makes it much harder to spray the heap



Google Play (Store)

e Largest distribution

channel for apps |

— Kill switch k

— Google Bouncer /

— “Wisdom” of the GOOg[Q p|ay

crowds



Exploits Still Happen

* Confused deputy
— Stagefright
e Data exfiltration

— Sensor side-channels
* Microphone, Gyroscope

— App misconfiguration ~
* Facebook Debug log ~

 Denial of Service
— Exception loops

— Battery drain



Other Threats




Shady Code

* The previous definition of exploit was
somewhat weak

— What happens when the security model is
insufficient?

* Enable “PIl attacks”

— Broadly, attacks that leverage your personally
identifiable information



Shady Code Defenses

2 w4l o38

* Android Permissions
— Install-time permissions ER Starbucks

Identity
Contacts
Location

Photos/Media/Files

Wi-Fi connection
information

Device ID & call
information

Google Play




Shady Code Defenses

e Android Permissions
— Runtime

— Update-Time

¢




Category

Your Accounts

Network Communication

Your Personal Information

System Tools

Your Accounts

Extra/Custom

Permission

AUTHENTICATE_ACCOUNTS

MANAGE_ACCOUNTS

USE_CREDENTIALS

INTERNET

ACCESS_NETWORK_STATE

READ_CONTACTS

WRITE_CONTACTS

WRITE_SETTINGS

WRITE_SYNC_SETTINGS

READ_SYNC_SETTINGS

READ_SYNC_STATS

GET_ACCOUNTS

WRITE_SECURE_SETTINGS

Description
Act as an account authenticator

Manage accounts list
Use authentication credentials

Full Internet access

View network state

Read contact data

Write contact data

Modify global system settings

Write sync settings (e.g. Contact sync)
Read whether sync is enabled
Read history of syncs

Discover known accounts

Modify secure system settings



What’s the Problem with Permissions?

 Admittedly, a step up over the Desktop

— Arguably, table stakes for such a personal device

* “Permission entanglement”

— You may control when a permission is used, but not
how

e Permissions are per-app thus shared with libraries
* A single permission may be used in various ways

e Composite effect of permissions exceed sum



Fixing Shady Code

* Fewer easy answers

— One person’s privacy violation is another’s feature

* Location-aware advertising?



Now Entering the Realm of Research

* What follows is a
discussion of research
prototypes

— Unlike above, there are
occasionally obvious
reasons NOT to do these
things




Data flow analysis

 Label the uses of * Tools
permissions in the — FlowDroid
program — Stamp

— Sources: produce
sensitive information

— Sinks: interact with
untrusted entities

 We'd like to know how
these endpoints interact



Example Endpoint permissions

Sources Sinks

® Account data ® [nternet (socket)
® Audio ® SMS

® (Calendar ® Email

® (Calllog ® System Logs

® Camera ® \Webview/Browser
® (Contacts ® File System

® Deviceld ® Broadcast Message
® |ocation

® Photos (Geotags)

® SD card data

® SMS



Possible Flows

Sources Sinks
READ_CONTACTS :| INTERNET
\
\
READ_SYNC SETTINGS > WRITE_SETTINGS

READ_SYNC_STATS WRITE_CONTACTS
) i
GET_ACCOUNTS ~ >WE_SECURE_SETTINGS
INTERNET J WRITE_SETTINGS




Implementing Dataflow Analysis

* |dentify what methods use which permissions

— No canonical map!

* |dentify what permissions actually do
— Is it a source? Sink? BOTH?

* View the program as a Program Dependence Graph
— Edges represent flows of control or data

— Nodes represent abstract regions of code
— Requires a program semantics / abstraction



Dataflow Analysis Example

FB
API

Read
Conta
cts

Source:
FB_ Data

Source:
Contacts

Write
Conta —pp
cts

Send
Internet

Contact_Book

Sink:

—>

Sink: Internet




Limitations of Dataflow Analysis

e Technical
— Over-approximate

— Requires deep knowledge of the system

* Impractical without some manual modelling, at least on
Android

* Practical

...ideas?



(Dynamic) Taint Tracking

 Not the most media-savvy name

e Extend the system to record the provenance of
data
— Is it tainted by an input source?

* Tools
— TaintDroid



Limitations of Dynamic Taint Tracking

e Technical limitations
— Misses control dependencies
* Practical limitations

— Slows execution

e Could use it solely as an offline analysis



App Rewriting

* Change the behavior of the app
— Reverse engineer it
— Make some changes
— Recompile it



DroidWeave

e To the board!



Conclusion

e Good luck on Finals!

 |f you're graduating, good luck in life!



