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today
Cryptography intro 

Crypto primitives 
/ Symmetric and asymmetric crypto 
/ MACs 
/ Digital signatures 
/ Key exchange 

Provable security



crypto
Cryptography: "hidden writing" 

Study and practice of building security protocols that 
resist adversarial behavior 

Blend of mathematics, engineering, and computer 
science



example 1

Internet

011010101
010101010
101010111
11101

011010101
010101010
101010111
11101

011010101
010101010
101010111
11101

US	
diplomatic	
cables

Doesn't want to reveal contents early 
Wants info stored in a way that can be 
quickly revealed at the right time

Modern cryptography enables this: 
- Encrypt the file 
- Store key in a safe place



example 2

ISP

Bank customer
backbonebackbone

ISP

Bank  
   Webserver

Customer and bank want to communicate securely: 
- Confidentiality 
- Integrity 
- Authenticity 
- Sometimes: anonymity

(messages are private)
(messages aren't modified)
(is this the bank? is this the customer?)

(hide identities)



example 3

Encrypted hard drives

Corporate intellectual property 
Customer financial records 
Personal notes

Encrypt hard drives or individual files 
- Confidentiality 
- Even if attacker has physical access to device

Bitlocker, TrueCrypt, OSX, iOS, Seagate



cryptography

Cryptography is a powerful tool 

Helps provide: 
/ Confidentiality 
/ Integrity 
/ Authenticity 
/ even more 

Limitations 
/ Not the (complete) solution to every security problem 
/ Must be designed securely 
/ Must be implemented properly 
/ Must be used properly



kerckhoff's principle

A cryptosystem should be secure even if 
everything about the system, except the 
secret key, is public knowledge.
—Auguste Kerckhoffs, 19th century 

http://en.wikipedia.org/wiki/File:Kerkhoffs.jpg


flavors
Symmetric cryptography 
/ All parties have access to a shared random string 
K, called the key 

Asymmetric cryptography 
/ Each party creates a pair of keys: a public key pk 
and a secret key sk



primitives
Encryption 
/ confidentiality 
/ symmetric + asymmetric versions 

Message authentication codes 
/ integrity, authentication 
/ symmetric 

Digital signatures 
/ integrity, authentication 
/ asymmetric 

Key exchange



conventions

Alice Bob

Protagonists

Eve
Mallory

Eavesdropper 
(passive adversary)

Malicious Actor 
(active adversary)



symmetric encryption

Alice Bob

Message (plaintext)

Eve

Encrypt

K
M

K K

Decrypt

K
MC

Ciphertext



asymmetric encryption

Alice Bob

Bob's public key

Eve

pkB

Encrypt
M

pkA,skA

Decrypt

skB

MC

Bob's secret key

pkB
pkB,skB

pkA



mac

Alice Bob
K K

Verify

K valid or 
invalid(M,T)

MAC

K
M T

Mallory

Authentication Tag

Message Authentication Code (MAC)  
message integrity & authenticity / symmetric



digital signatures

Alice Bob

Verify

pkA valid or 
invalid(M,S)

Sign

skA

M S

Mallory

message integrity & authenticity / asymmetric

pkA,skA

pkB
pkB,skB

pkA

Signature



key exchange

Alice Bob

…

Eve

K K
Alice and Bob exchange messages in the presence of an  
eavesdropper, and (magically) both generate an identical 
secret (symmetric) key that Eve cannot know

think-pair-share



key transport

Alice Bob

Eve

K := rand()

pkA,skA

pkB
pkB,skB

pkA

Encrypt

pkB

K C
Decrypt

skB

K

Two main techniques for key exchange 
1. Public key transport (shown here) 
2. Diffie-Hellman key agreement



tls

bank.com

transport layer security (tls) protects 
http connections (https)

Ciphersuite  
  negatiation

Server  
  authentication

Key exchange completed

ClientHello,	MaxVer,	Nc,	Ciphers/CompMethods

ServerHello,	Ver,	Ns,	SessionID,	Cipher/CompMethod

CERT	=	(pk	of	bank,	signature	over	it)

C

ChangeCipherSpec,		
{	Finished,	PRF(MS,	“Client	finished”	||	H(transcript))	}		

ChangeCipherSpec,		
{	Finished,	PRF(MS,	“Server	finished”	||	H(transcript’))	}		

MS	<-	PRF(PMS,	“master	secret”	||	Nc	||	Ns	)

K1,K2	<-	PRF(MS,	“key	expansion”	||	Ns	||	Nc	)



ancient history

1994

1995

SSL	ver	2
SSL	ver	2.0	designed	by	Hickman	at	Netscape	

Wagner,	Goldberg	break	SSL	ver	2

SSL	ver	3
Freier,	Karlton,	Kocher	design	SSL	ver	3.0

1998Bleichenbacher	breaks	RSA	PKCS	#1	encryption,	
used	in	SSL	ver	3

2001

TLS	ver	1	released	as	IETF	standard,	
based	on	SSL	3,	many	cryptographers	involved

TLS	ver	1.0

Vaudenay,	Klima	et	al.	padding	attacks

Rogaway	IV	re-use	insecurity
2002

1999

Brumley,	Boneh	remote	timing	attacks

2003

2006
TLS	ver	1.1	released	as	standard TLS	ver	1.1

…



iteration
TLS was built via "design-break-redesign-break" 
iteration 

Some amount iteration is fundamental 

Designing secure protocols is really hard

/ the problems are rarely in the primitives 

Many other tools have similar stories: 
/ SSH, IPsec, kerberos, WEP + WPA (WiFi), GSM (cell 
phone)



provable security
Provable security supplements "design-break-
redesign-break" iteration with a mathematical 
approach

1. Design a cryptographic scheme 
2. Provide a proof of it's security 
[Shannon, 1946]

Formal definitions 
- Scheme semantics  

and assumption 
- Security

Security Proofs 
- Scheme cannot be broken  

if assumption hold



enigma
Put yourself in Shannon's 
place in 1946 

Enigma is state of the art 
cryptography developed 
by the Germans 

Broken by the Allies



otp
Shannon's one-time pad 

Fix message length L 

Kg: output random bit string K of length L

E(K,M) = M⊕K = C D(K,C) = C⊕K = M



security notion

Shannon's "perfect security" notion 

Each message is equally likely to map to a given ciphertext 

Also: seeing a ciphertext leaks nothing about what 
message was encrypted

Dfn. A symmetric encryption is perfectly secure if for all 
messages M,M' and ciphertexts C 
Pr[ E(K,M)=C ]  =  Pr[ E(K,M') = C ] 

where probabilities are over choice of K.



otp proof

Thm. OTP is perfectly secure. 

For any C,M of length L:

Dfn. A symmetric encryption is perfectly secure if for all 
messages M,M' and ciphertexts C 
Pr[ E(K,M)=C ]  =  Pr[ E(K,M') = C ] 

where probabilities are over choice of K.

Pr[ E(K,M)=C ] = 1/2L

Pr[ E(K,M')=C ] = 1/2L

Pr[ E(K,M)=C ] =  Pr[ E(K,M')]



limitations

bank.com
M⊕K

Eve Mallory

K must be as large as M 
Reusing K for M,M' leaks M⊕M' 
Message length is obvious 
Mallory can make undetected modifications



provable security
Cryptography as a computational science 
Use computational intractability as basis for 
confidence

1. Design a cryptographic scheme 
2. Provide a proof that no attacker with bounded 

computational resources can break it 
[Goldwasser, Micali, Blum, 1980s]

Formal definitions 
- Scheme semantics 

and assumption 
- Security

Security Proofs (reductions)
Breaking scheme

Breaking assumptions



provable security
Provable security yields 
/ well-defined assumptions and security goals 
/ designers (and attackers) can focus on assumptions 

As long as assumptions hold, we can be confident in 
security of a cryptographic scheme



typical assumptions
Underlying primitives are hard to break 
/ Factoring of large composite numbers is intractable 
/ RSA permutation is hard to invert 
/ Block ciphers (AES,DES) are good pseudorandom 
permutations (PRPs) 

/ Hash functions are collision resistant 

Confidence in primitives is gained by cryptanalysis, 
public design competitions 
/ design-break-redesign-break over the years



recap

Symmetric vs asymmetric cryptography 

Primitives 
/ symmetric/asymmetric encryption 
/ message authentication codes 
/ digital signatures 
/ key exchange 

Provable security 

Shannon's one-time pad 
/ security guarantees and limitations 

Exit slips 
/ 1 thing you learned 
/ 1 thing you didn't understand


