

S642

adam everspaughComputer security ace@cs.wisc.edu

today

- Cryptography intro
- * Crypto primitives
 / Symmetric and asymmetric crypto
 / MACs
 / Digital signatures
 / Key exchange
- Provable security

crypto

- * Cryptography: "hidden writing"
- Study and practice of building security protocols that resist adversarial behavior
- Blend of mathematics, engineering, and computer science

Doesn't want to reveal contents early

Wants info stored in a way that can be quickly revealed at the right time

Modern cryptography enables this:

- Encrypt the file
- Store key in a safe place

example 1

Customer and bank want to communicate securely:

- Confidentiality (messages are private)
- Integrity (messages aren't modified)
- Authenticity (is this the bank? is this the customer?)
- Sometimes: anonymity (hide identities)

example 2

Encrypted hard drives

Corporate intellectual property
Customer financial records
Personal notes

Encrypt hard drives or individual files

- Confidentiality
- Even if attacker has physical access to device
 Bitlocker, TrueCrypt, OSX, iOS, Seagate

example 3

- Cryptography is a powerful tool
- Helps provide:
 / Confidentiality
 / Integrity
 / Authenticity
 / even more
- * Limitations
 - / Not the (complete) solution to every security problem
 - / Must be designed securely
 - / Must be implemented properly
 - / Must be used properly

cryptography

A cryptosystem should be secure even if **everything** about the system, except the secret key, is **public knowledge**.

—Auguste Kerckhoffs, 19th century

kerckhoff's principle

flavors

- * Symmetric cryptography
 / All parties have access to a shared random string
 K, called the key
- Asymmetric cryptography
 / Each party creates a pair of keys: a public key pk
 and a secret key sk

primitives

- * Encryption/ confidentiality/ symmetric + asymmetric versions
- * Message authentication codes /integrity, authentication /symmetric
- Digital signatures/ integrity, authentication/ asymmetric
- * Key exchange

conventions

symmetric encryption

asymmetric encryption

Message Authentication Code (MAC) message integrity & authenticity / symmetric

message integrity & authenticity / asymmetric

digital signatures

Alice and Bob exchange messages in the presence of an eavesdropper, and (magically) both generate an identical secret (symmetric) key that Eve cannot know

key exchange

Two main techniques for key exchange

- 1. Public key transport (shown here)
- 2. Diffie-Hellman key agreement

key transport

transport layer security (tls) protects http connections (https)

Key exchange completed

iteration

- * TLS was built via "design-break-redesign-break" iteration
- * Some amount iteration is fundamental
- * Designing secure protocols is really hard / the problems are rarely in the primitives
- Many other tools have similar stories:
 /SSH, IPsec, kerberos, WEP + WPA (WiFi), GSM (cell phone)

provable security

 Provable security supplements "design-breakredesign-break" iteration with a mathematical approach

- 1. Design a cryptographic scheme
- 2. Provide a proof of it's security [Shannon, 1946]

Formal definitions

- Scheme semantics and assumption
- Security

Security Proofs

- Scheme cannot be broken if assumption hold

enigma

- * Put yourself in Shannon's place in 1946
- * Enigma is state of the art cryptography developed by the Germans
- * Broken by the Allies

otp

- * Shannon's one-time pad
- * Fix message length L
- * Kg: output random bit string K of length L

$$E(K,M) = M \oplus K = C$$
 $D(K,C) = C \oplus K = M$

security notion

Dfn. A symmetric encryption is *perfectly secure* if for all messages M,M' and ciphertexts C

$$Pr[E(K,M)=C] = Pr[E(K,M')=C]$$

where probabilities are over choice of K.

- * Shannon's "perfect security" notion
- * Each message is equally likely to map to a given ciphertext
- * Also: seeing a ciphertext leaks nothing about what message was encrypted

otp proof

Dfn. A symmetric encryption is *perfectly secure* if for all messages M,M' and ciphertexts C

$$Pr[E(K,M)=C] = Pr[E(K,M')=C]$$

where probabilities are over choice of K.

- * Thm. OTP is perfectly secure.
- * For any C,M of length L:

$$Pr[E(K,M)=C] = 1/2^{L}$$

 $Pr[E(K,M')=C] = 1/2^{L}$

$$Pr[E(K,M)=C] = Pr[E(K,M')]$$

bank.com

K must be as large as M
Reusing K for M,M' leaks M⊕M'
Message length is obvious
Mallory can make undetected modifications

limitations

provable security

- * Cryptography as a computational science
- Use computational intractability as basis for confidence
 - 1. Design a cryptographic scheme
 - 2. Provide a proof that no attacker with bounded computational resources can break it [Goldwasser, Micali, Blum, 1980s]

Formal definitions

- Scheme semantics and assumption
- Security

Security Proofs (reductions)

Breaking scheme

Breaking assumptions

provable security

- Provable security yields
 / well-defined assumptions and security goals
 / designers (and attackers) can focus on assumptions
- As long as assumptions hold, we can be confident in security of a cryptographic scheme

typical assumptions

- * Underlying primitives are hard to break
 - / Factoring of large composite numbers is intractable
 - /RSA permutation is hard to invert
 - / Block ciphers (AES,DES) are good pseudorandom permutations (PRPs)
 - / Hash functions are collision resistant
- * Confidence in primitives is gained by cryptanalysis, public design competitions
 - / design-break-redesign-break over the years

- * Symmetric vs asymmetric cryptography
- * Primitives

```
/symmetric/asymmetric encryption
```

/message authentication codes

/ digital signatures

/key exchange

- * Provable security
- Shannon's one-time pad/ security guarantees and limitations
- Exit slips

/1 thing you learned

/1 thing you didn't understand

