
cs642

cryptography

adam everspaugh
 ace@cs.wisc.edu

computer security

today
Cryptography intro

Crypto primitives
/ Symmetric and asymmetric crypto
/ MACs
/ Digital signatures
/ Key exchange

Provable security

crypto
Cryptography: "hidden writing"

Study and practice of building security protocols that
resist adversarial behavior

Blend of mathematics, engineering, and computer
science

example 1

Internet

011010101
010101010
101010111
11101

011010101
010101010
101010111
11101

011010101
010101010
101010111
11101

US	
diplomatic	
cables

Doesn't want to reveal contents early
Wants info stored in a way that can be
quickly revealed at the right time

Modern cryptography enables this:
- Encrypt the file
- Store key in a safe place

example 2

ISP

Bank customer
backbonebackbone

ISP

Bank
 Webserver

Customer and bank want to communicate securely:
- Confidentiality
- Integrity
- Authenticity
- Sometimes: anonymity

(messages are private)
(messages aren't modified)
(is this the bank? is this the customer?)

(hide identities)

example 3

Encrypted hard drives

Corporate intellectual property
Customer financial records
Personal notes

Encrypt hard drives or individual files
- Confidentiality
- Even if attacker has physical access to device

Bitlocker, TrueCrypt, OSX, iOS, Seagate

cryptography

Cryptography is a powerful tool

Helps provide:
/ Confidentiality
/ Integrity
/ Authenticity
/ even more

Limitations
/ Not the (complete) solution to every security problem
/ Must be designed securely
/ Must be implemented properly
/ Must be used properly

kerckhoff's principle

A cryptosystem should be secure even if
everything about the system, except the
secret key, is public knowledge.
—Auguste Kerckhoffs, 19th century

http://en.wikipedia.org/wiki/File:Kerkhoffs.jpg

flavors
Symmetric cryptography
/ All parties have access to a shared random string
K, called the key

Asymmetric cryptography
/ Each party creates a pair of keys: a public key pk
and a secret key sk

primitives
Encryption
/ confidentiality
/ symmetric + asymmetric versions

Message authentication codes
/ integrity, authentication
/ symmetric

Digital signatures
/ integrity, authentication
/ asymmetric

Key exchange

conventions

Alice Bob

Protagonists

Eve
Mallory

Eavesdropper
(passive adversary)

Malicious Actor
(active adversary)

symmetric encryption

Alice Bob

Message (plaintext)

Eve

Encrypt

K
M

K K

Decrypt

K
MC

Ciphertext

asymmetric encryption

Alice Bob

Bob's public key

Eve

pkB

Encrypt
M

pkA,skA

Decrypt

skB

MC

Bob's secret key

pkB
pkB,skB

pkA

mac

Alice Bob
K K

Verify

K valid or 
invalid(M,T)

MAC

K
M T

Mallory

Authentication Tag

Message Authentication Code (MAC)
message integrity & authenticity / symmetric

digital signatures

Alice Bob

Verify

pkA valid or 
invalid(M,S)

Sign

skA

M S

Mallory

message integrity & authenticity / asymmetric

pkA,skA

pkB
pkB,skB

pkA

Signature

key exchange

Alice Bob

…

Eve

K K
Alice and Bob exchange messages in the presence of an
eavesdropper, and (magically) both generate an identical
secret (symmetric) key that Eve cannot know

think-pair-share

key transport

Alice Bob

Eve

K := rand()

pkA,skA

pkB
pkB,skB

pkA

Encrypt

pkB

K C
Decrypt

skB

K

Two main techniques for key exchange
1. Public key transport (shown here)
2. Diffie-Hellman key agreement

tls

bank.com

transport layer security (tls) protects
http connections (https)

Ciphersuite
 negatiation

Server
 authentication

Key exchange completed

ClientHello,	MaxVer,	Nc,	Ciphers/CompMethods

ServerHello,	Ver,	Ns,	SessionID,	Cipher/CompMethod

CERT	=	(pk	of	bank,	signature	over	it)

C

ChangeCipherSpec,		
{	Finished,	PRF(MS,	“Client	finished”	||	H(transcript))	}		

ChangeCipherSpec,		
{	Finished,	PRF(MS,	“Server	finished”	||	H(transcript’))	}		

MS	<-	PRF(PMS,	“master	secret”	||	Nc	||	Ns)

K1,K2	<-	PRF(MS,	“key	expansion”	||	Ns	||	Nc)

ancient history

1994

1995

SSL	ver	2
SSL	ver	2.0	designed	by	Hickman	at	Netscape	

Wagner,	Goldberg	break	SSL	ver	2

SSL	ver	3
Freier,	Karlton,	Kocher	design	SSL	ver	3.0

1998Bleichenbacher	breaks	RSA	PKCS	#1	encryption,	
used	in	SSL	ver	3

2001

TLS	ver	1	released	as	IETF	standard,	
based	on	SSL	3,	many	cryptographers	involved

TLS	ver	1.0

Vaudenay,	Klima	et	al.	padding	attacks

Rogaway	IV	re-use	insecurity
2002

1999

Brumley,	Boneh	remote	timing	attacks

2003

2006
TLS	ver	1.1	released	as	standard TLS	ver	1.1

…

iteration
TLS was built via "design-break-redesign-break"
iteration

Some amount iteration is fundamental

Designing secure protocols is really hard

/ the problems are rarely in the primitives

Many other tools have similar stories:
/ SSH, IPsec, kerberos, WEP + WPA (WiFi), GSM (cell
phone)

provable security
Provable security supplements "design-break-
redesign-break" iteration with a mathematical
approach

1. Design a cryptographic scheme
2. Provide a proof of it's security
[Shannon, 1946]

Formal definitions
- Scheme semantics  

and assumption
- Security

Security Proofs
- Scheme cannot be broken  

if assumption hold

enigma
Put yourself in Shannon's
place in 1946

Enigma is state of the art
cryptography developed
by the Germans

Broken by the Allies

otp
Shannon's one-time pad

Fix message length L

Kg: output random bit string K of length L

E(K,M) = M⊕K = C D(K,C) = C⊕K = M

security notion

Shannon's "perfect security" notion

Each message is equally likely to map to a given ciphertext

Also: seeing a ciphertext leaks nothing about what
message was encrypted

Dfn. A symmetric encryption is perfectly secure if for all
messages M,M' and ciphertexts C
Pr[E(K,M)=C] = Pr[E(K,M') = C]

where probabilities are over choice of K.

otp proof

Thm. OTP is perfectly secure.

For any C,M of length L:

Dfn. A symmetric encryption is perfectly secure if for all
messages M,M' and ciphertexts C
Pr[E(K,M)=C] = Pr[E(K,M') = C]

where probabilities are over choice of K.

Pr[E(K,M)=C] = 1/2L

Pr[E(K,M')=C] = 1/2L

Pr[E(K,M)=C] = Pr[E(K,M')]

limitations

bank.com
M⊕K

Eve Mallory

K must be as large as M
Reusing K for M,M' leaks M⊕M'
Message length is obvious
Mallory can make undetected modifications

provable security
Cryptography as a computational science
Use computational intractability as basis for
confidence

1. Design a cryptographic scheme
2. Provide a proof that no attacker with bounded

computational resources can break it
[Goldwasser, Micali, Blum, 1980s]

Formal definitions
- Scheme semantics 

and assumption
- Security

Security Proofs (reductions)
Breaking scheme

Breaking assumptions

provable security
Provable security yields
/ well-defined assumptions and security goals
/ designers (and attackers) can focus on assumptions

As long as assumptions hold, we can be confident in
security of a cryptographic scheme

typical assumptions
Underlying primitives are hard to break
/ Factoring of large composite numbers is intractable
/ RSA permutation is hard to invert
/ Block ciphers (AES,DES) are good pseudorandom
permutations (PRPs)

/ Hash functions are collision resistant

Confidence in primitives is gained by cryptanalysis,
public design competitions
/ design-break-redesign-break over the years

recap

Symmetric vs asymmetric cryptography

Primitives
/ symmetric/asymmetric encryption
/ message authentication codes
/ digital signatures
/ key exchange

Provable security

Shannon's one-time pad
/ security guarantees and limitations

Exit slips
/ 1 thing you learned
/ 1 thing you didn't understand

