

computer securitycs642
memory protection

adam everspaugh
 ace@cs.wisc.edu

vulnerabilities
buffer overflow

stack smashing

heap overflow

function pointer overwrite

double-free

printf format string vulnerabilities

principles
Principles of Secure Designs

Compartmentalization  
/ Isolation 
/ Least privilege

Defense-in-depth  
/ Use more than one security mechanism  
/ Secure the weakest length 
/ Fail securely

Keep it simple 
/ Economy of mechanism  
/ Psychological acceptability  
/ Good defaults

Open Design How can we defend against these
attacks?

today
Defenses (and counter-attacks)

Data execution prevention
/ return-into-libc
/ return-oriented programming

Address space layout randomization
/ and counter-attacks

Sandboxing

High	memory	
addresses

eip overwrite exploit

caller	local	
vars

param2param1EIPEBPbuffer

attacker	code ptr

.text .data .bss heap stack Env.

Low	memory		
addresses

Does the CPU need to interpret stack info as instructions?

dep
Data Execution Prevention (DEP)
/ Mark memory pages containing writable data  
as "no execute"

Which pages?
/ Data pages in: heap, stack, .bss, .text, env, pages

Hardware support -- extra bit in page table entry
/ Intel x86 -- XD bit (execute disabled)
/ AMD x86 -- NX bit (no execute)
/ ARM -- XN bit (execute never)

dep limitations
Problems?
/ Breaks some existing applications and libraries

Just-in-time (JIT) compilers
/ Microsoft's .NET framework
/ Java

If any dependent library in an application crashes with
DEP enabled, what's the app developer going to do?

timeline
Solaris/Sparc non-executable stack: 1997

AMD NX bit - Athlon/Opteron - 2003

Intel XD bit - Pentium 4 - 2004

Windows XP Service Pack 2 supports DEP - August
2004

19 years later -- DEP is quite effective

effectiveness

Does DEP prevent:

Overwriting EBP/EIP on stack?

AlephOne's stack smashing attack?

Stack smashing that points to shellcode in
heap or Env?

Double-free exploit with shellcode in same
location?

Yes

Yes

Yes

think-pair-share

No

defeating dep

How does an adversary defeat DEP?

Must use existing memory pages containing code
libc -- standard c library
included in all processes

Contains system() -- runs commands

return-into-libc

caller	local	
vars

param2param1EIPEBPbuffer

junk addr	of	
system()

junk2 addr	of		
"/bin/sh"

 Overwrite EIP with address of system() function
 junk2 => nonsense EBP/EIP "saved" on stack
 parameter to system() is ptr to "/bin/sh"

Problem: system() drops privileges first.

rop
Return-oriented programming (ROP)

Chaining together multiple return-into-libc calls

Enables arbitrary code execution

[The	Geometry	of	Innocent	Flesh	on	the	Bone,	Schacam]

rop

[The	Geometry	of	Innocent	Flesh	on	the	Bone,	Schacam]

rop gadgets: short sequences of instructions

[not covered in lecture - fyi only]

rop shellcode

[The	Geometry	of	Innocent	Flesh	on	the	Bone,	Schacam]

[not covered in lecture - fyi only]

finding rop gadgets

Buchanan	et	al.,	Blackhat	2008

Intended instruction
sequence

Alternate instruction
sequence

[not covered in lecture - fyi only]

dep wrap-up

Data Execution Prevention
/ Prevents many basic attacks
/ Not guaranteed to prevent all attacks
/ Makes attacks much more difficult!

aslr

Address space layout randomization (ASLR)

Example: PaX implementation for Linux
/ Each time process is loaded, new offsets are
selected at random

.text .data .bss heap stack

Low memory

addresses

High memory

addresses

Env.

Random 16-bit offset Random 24-bit offset

defeating aslr
How does an adversary defeat ASLR?

Information disclosure that leaks offset
/ e.g. printf of arbitrary pointer

Really large nop sled
/ How big?

Brute force the offset

defeating aslr

[On the effectiveness of Address Space Layout Randomization, Shacham et al.]

Apache web server

with Oracle 9 PL/SQL

module
apache

HTTP request

child
HTTP response

This module has a buffer overflow vulnerability,
but ASLR is enabled.

defeating aslr

[On the effectiveness of Address Space Layout Randomization, Shacham et al.]

Apache web server

with Oracle 9 PL/SQL

module

apache
HTTP request

child

Attacker guesses where

usleep() is located in

memory

Child process crashes, connection
closes immediately

Guess is wrong Guess is right
Child process sleeps for 0x01010101

usecs, then closes connection

defeating aslr

[On the effectiveness of Address Space Layout Randomization, Shacham et al.]

Apache web server

with Oracle 9 PL/SQL

module

apache
HTTP request

child

Attacker guesses where

usleep() is located in

memory

How long does this take?
Assume:
/ address of usleep randomized with 16-bits
/ each request takes 70ms

High	memory	
addresses

stack protector

caller	local	
vars

param2param1EIPEBPbuffer

attacker	code ptr

.text .data .bss heap stack Env.

Low	memory		
addresses

attacker	code ptr

Insert "canary value" between local variables and control
data saved on stack

 gcc stack protector => random value, same  
 for entire process

 Check canary before exiting function

What does code do if canary value has been changed? 
What are the costs?

canary

defense recap

DEP

ASLR

Stack protector

Which of these prevent overwriting data on the
stack?

Which of these are (probably) in-place on a modern
laptop, server, or smartphone?

sandboxing
Previous defenses make attacks harder, but are not
perfect

Even when they are effective, sometimes they get
disabled

What else can we do?

Assume the worst and try to limit impact of
compromised processes

Confinement via sandboxing

web browsers

{Threat model}
assets — attackers — vulnerabilities 

attack vectors

{Security model}
subjects — trusted components

 countermeasures — security goals

Why might web browsers be desirable targets?

think-pair-share
What's involved in a typical web stack?

google chrome browser

 Browser  
Manager

Trusted Process
Cookie, History, PW

databases

User input

Window management

Location bar

Network stack

TLS

Download manager

Clipboard

chrome sandbox

 Browser  
Manager

sandbox
Rendering

Engine 
 

HTML parsing,

CSS parsing,
JavaScript,

DOM, 
rendering

sandbox
Rendering

Engine 
 

HTML parsing,

CSS parsing,
JavaScript,

DOM, 
rendering

sandbox
chrome

extension

sandbox

Adobe Flash

IPC IPC IPC

As few permissions as possible,
essentially: no system calls

Each sandbox is a separate process

recap
Data Execution Prevention
/ mark memory pages (esp the stack) as "do not
execute"

/ return-into-lib, return-oriented programming

Address Space Layout Randomization
/ and some methods to defeat it

Stack protector
/ insert and check "canary" values on the stack

Sandboxing

Exit slips: 1 thing you learned; 1 thing you didn't understand

