threat(gosf[

All your irg&ya files amel cRGIYPE

moment, the cost of privatg or decrypt our
Your B t: 1FracxPsS FREMEF61YXVr2AqWiS2fs

H N
WORDPRESS INFECTIONS LEADING TO TESLACRYPT
RANSOMWARE

Follow @mike_mimoso

by Michael Mimoso

Website operators running sites on the WordPress platform need to be aware of a
massive string of infections that as of Thursday were poorly detected by security
products.

Researchers at Heimdal Security said the compromised sites redirect victims to other
domains hosting the Nuclear Exploit Kit, a potent collection of exploits for vulnerable
Adobe products (Flash, Reader, Acrobat), Internet Explorer and Microsoft Silverlight,
that has in the past, and in this case, been dropping ransomware on infected

computers. o _ o _ o
Sucuri said the infections it saw were characterized by encrypted malicious code

appended to the end of all legitimate JavaScript files. These infections hit only first-time
visitors to the compromised sites and sets a cookie that expires within 24 hours and
injects and invisible iFrame with “Admedia” or “advertising” in the path part of the URL,
Sucuri said.

€504z

memory olection

adam everspaugh
ace@cs.wisc.edu

vulnerabllities

* puffer overflow

* stack smashing

* heap overflow

* function pointer overwrite
* double-free

* printf format string vulnerabilities

orinciples
Principles of Secure Designs

* Compartmentalization
/ |solation
/ Least privilege

* Defense-in-depth
/ Use more than one security mechanism
/ Secure the weakest length
/ Fail securely

* Keep It simple
/ Economy of mechanism
/ Psychological acceptability
/ Good defaults

+ Open Design How can we defend against these

attacks?

today

* Defenses (and counter-attacks)

* Data execution prevention
/ return-into-libc
/ return-oriented programming

* Address space layout randomization
/and counter-attacks

* Sandboxing

text .data bss heap x & stack Env.

Low memory High memory
addresses addresses

/ attacker code ptr

buffer EBP EIP paraml param?2

caller local
vars

Does the CPU need to interpret stack info as instructions?

elp overwrite exploit

dep

* Data Execution Prevention (DEP)
/ Mark memory pages containing writable data
as "no execute"

* \Which pages”
/ Data pages in: heap, stack, .lbss, .text, env, pages

* Hardware support -- extra bit in page table entry
/Intel x86 -- XD bit (execute disabled)
/AMD x86 -- NX bit (no execute)
/ARM -- XN bit (execute never)

dep limitations

* Problems?
/ Breaks some existing applications and libraries

* Just-in-time (JIT) compllers
/ Microsoft's .NET framework
/ Java

* |f any dependent library in an application crashes with
DEP enabled, what's the app developer going to do?

Microsoft Visual Studio

Unhandled exce ption at 0x00030091 in test.exe: 0xC0000005: Access violation -
! \ writing location 0x00000001.

timeline

* Solaris/Sparc non-executable stack: 1997
* AMD NX bit - Athlon/Opteron - 2003

* Intel XD bit - Pentium 4 - 2004

* \\Windows XP Service Pack 2 supports DEP - August
2004

* 19 years later -- DEP Is quite effective

effectiveness

think-pair-share
Does DEP prevent:

* Overwriting EBP/EIP on stack? NO
* AlephOne's stack smashing attack” Yes

* Stack smashing that points to shellcode In Yes
heap or Env?

* Double-free exploit with shellcode in same Yes
location?

defeating dep

P?

How does an adversary defeat D

Must use existing memory pages containing code
lbc -- standard c library

INcluded In all processes

Contains system() -- runs commands

addr of | . addr of
unk?2
system() J "/bin/sh"

% buffer EBP EIP paraml param?2 Call\?;rlsocal

Overwrite EIP with address of system() function
junk?2 => nonsense EBP/EIP "saved" on stack
parameter to system() is ptr to "/bin/sh"

junk

Problem: system() drops privileges first.

return-into-libc

rop

* Return-oriented programming (ROP)
* Chaining together multiple return-into-libc calls

* Enables arbitrary code execution

Oxdeadbeef

™ pop %edx
ret

%esp

Figure 2: Load the constant Oxdeadbeef into %edx.

[The Geometry of Innocent Flesh on the Bone, Schacam]

rOp [not covered in lecture - fyi only]

™ movl 64(%eax), %eax
ret

™ pop %eax
ret '

%esp

Oxdeadbeef
+64)

Figure 3: Load a word in memory into %eax.

rop gadgets: short seguences o instructions

[The Geometry of Innocent Flesh on the Bone, Schacam]

[The Geometry of Innocent Flesh on the Bone, Schacam]

=2 |not covered in lecture - fyi only]

/bin

(word to zero)

-

. ™ lcall %gs:0x10(,0)
ret

]

* pop %ecx
pop %edx
ret

* pop %ebx

et
* add %ch, %al

ret
. ™ movl %eax, 24(%edx)

ret

L]

&

0x0b0b0ObOb

* pop %ecx
pop %edx
ret

. * xor %eax, %eax
%oesp ret

Figure 16: Shellcode.

rop shellcode

Buchanan et al., Blackhat 2008

Intended instruction | |

. Alternate instruction
C
45 seguence
d4
movl $0x00000001, -44(%ebp) Ol
00
00
00 o o
- } add %dh, %bh
c/
07
test $0x00000007, %edi 00
00 movl $0x0F000000, (%edi)
00
Of
. 95 } xchg %ebp, %eax
setnzb -6 (%ebp) 45) inc%ebp
c3 } ret

finding rop gadgets

* Data Execution Prevention

/ Prevents many basic attacks

/ Not guaranteed to prevent all attacks
/ Makes attacks much more difficult!

dep wrap-up

Low memory High memory
addresses addresses

> <
text .data .bss heap % K stack Env.
77 N

))
~ Random 16-bit offset « Random 24-bit offset -~ |

* Address space layout randomization (ASLR)

* Example: PaX implementation for Linux
/ Each time process is loaded, new offsets are
selected at random

aslr

defeating aslr

* How does an adversary defeat ASLR?

% Information disclosure that leaks offset
/e.q. printf of arbitrary pointer

* Really large nop sled
/ How big?

* Brute force the offset

[On the effectiveness of Address Space Layout Randomization, Shacham et al.]

Apache web server
with Oracle 9 PL/SQL
module

HTTP request
> apache

HTTP response

This module has a buffer overflow vulnerability, =~
but ASLR is enabled.

defeating aslr

[On the effectiveness of Address Space Layout Randomization, Shacham et al.]

HTTP request

>
"""" top of stack (higher addresses) |
0x01010101
OxDEADBEEF
guessed address of usleep() Apache web server
Attacker guesses where OxDEADBEEF with Oracle 9 PL/SQL
usleep() is located in 64 byte buffer, now filled with A’s module
memory :
bottom of stack (lower addresses)
Figure 2: Stack after one probe
Guess Is wrong Guess is right
Child process crashes, connection Child process sleeps for 0x01010101
closes immediately usecs, then closes connection

defeating aslr

[On the effectiveness of Address Space Layout Randomization, Shacham et al.]

HTTP request
> apache

top of stack (higher addresses)

0x01010101
OxDEADBEEF
guessed address of usleep() Apache web server

Attacker guesses where OxDEADBEEF with Oracle 9 PL/SQL
us|eep() is located in 64 byte buffer, now filled with A’s module
memaory :

bottom of stack (lower addresses)

Figure 2: Stack after one probe

How long does this take?

AsSsume:
/ address of usleep randomized with 16-bits
/ each request takes 70ms

defeating aslr

What does code do if canary value has been changed?

What are the costs?

attacker code ptr

/

caller local

t canary | EBP EIP paraml param2 vars

Insert "canary value" between local variables and control
data saved on stack

gcc stack protector => random value, same
for entire process

Check canary before exiting function

stack protector

DEP
ASLR
Stack protector

Which of these prevent overwriting data on the
stack?

Which of these are (probably) in-place on a modern
laptop, server, or smartphone”?

defense recap

sandpoxing

* Previous defenses make attacks harder, but are not
perfect

* Even when they are effective, sometimes they get
disabled

* \What else can we do?

* Assume the worst and try to limit impact of
compromised processes

* Confinement via sandboxing

{Threat model}

assets — attackers — vulnerabilities
attack vectors

¢

{Security model}

subjects — trusted components
countermeasures — security goals

Why might web browsers be desirable targets?
What's involved In a typical web stack?

think-pair-share

web browsers

Browser ‘
Manager
Trusted Process

Cookie, History, PW
databases

User input
Window management
Location bar
Network stack
TLS
Download manager
Clipboard

google chrome browser

As few permissions as possible,

. Browser
essentially: no system calls

Manager

Rendering
Engine

Rendering

Engine

HTML parsing,
CSS parsing,
JavaScript,
DOM,
rendering

HTML parsing,
CSS parsing,
JavaScript,
DOM,
rendering

2

“Each sandbox is a separate process

chrome sandpox

recap

* Data Execution Prevention
/ mark memory pages (esp the stack) as "do not
execute”
/ return-into-lib, return-oriented programming

* Address Space Layout Randomization
/and some methods to defeat it

* Stack protector
/insert and check "canary" values on the stack

* Sandboxing

Exit slips: 1 thing you learned; 1 thing you didn't understand

