

cs642
/operating system security

adam everspaugh
 ace@cs.wisc.edu

computer
security

principles
Principles of Secure Designs

Compartmentalization  
/ Isolation 
/ Least privilege

Defense-in-depth  
/ Use more than one security mechanism  
/ Secure the weakest length 
/ Fail securely

Keep it simple 
/ Economy of mechanism  
/ Psychological acceptability  
/ Good defaults

Open Design

poll Have you used UNIX
since noon today?

family tree
multics

 1960s
mit, at&t,
 bell labs, ge
~ 100 installations

unix 1970s
bell labs

 Ken Thompson,
Dennis Ritchie

linux freebsd many others

multics
 1960s
mit, at&t,
 bell labs, ge
~ 100 installations

 1970s
bell labs

 Ken Thompson,
Dennis Ritchie

linux freebsd many others

unix

family tree

poll Have you used UNIX
since noon today?

multics

Lots of design innovations - including lots of security
innovations

Segmentation and virtual memory

Shared memory multiprocessor (SMP)
F. Corbato, MIT

protection rings

Protection rings 0-7
in which processes execute

/ Lower number = higher privilege
/ Ring 0 is supervisor
/ Inherit privileges over higher levels

00
0

1 2

 Protection rings included in all typical CPUs today
 and
used by most operating systems

memory isolation
/ virtual memory

/ program and data stored in
segments

/ descriptor control field 
// read, write, execute

/ segments are access
controlled

pw storage
“I was no cryptanalyst … Joe [Weizenbaum] had
suggested I store the square of the password, but I
knew people could take square roots, so I squared
and ANDed with a mask to discard some bits.”  
– T. Van Vleck

Later ones used DES, but Multics predates DES

Today, UNIX systems store a HASH(pw)

enciphered passwords

reference monitor
Reference monitor or security kernel

/ Monitors all data access
/ Enforces security policy

Multics security policy: no flow from “high
classification” to “lower classification”

Process 1

TOP SECRET

Process 2

SECRET

Reference

Monitor

send M to P2

fail

red team / Karger and Schell,
 1974

Process 1

TOP SECRET

Process 2

SECRET
write to file A

OK

read from file B

OK

Reference

Monitor

Hard disk

Send:
1-bit: large write to file
0-bit: idle

Receive:
Read from disk, measure time 

longer read time = 1-bit
shorter read time = 0-bit

red team / Karger and Schell,
 1974

Process 1

TOP SECRET

Process 2

SECRET
write to file A

OK

read from file B

OK

Reference

Monitor

Hard disk

Send:
1-bit: large write to file
0-bit: idle

Receive:
Read from disk, measure time 

longer read time = 1-bit
shorter read time = 0-bit

Covert channel: circumvents reference monitor and
security policy

access control
galapagos-05.cs.wisc.edu

/home/ace
 /scripts
 /Pictures
 /upd-encryption

/home/rist
 /lectures
 /projects
 /gitbucket

/home/sscott
 /Projects
 /latex
 /rust

/etc/nginx  
 web-server-private-key.pem

access control

a b c d e

ace r,w - r,w, own - r

rist - - r r r,w

sscott w, own r r - -

kpat r r,w r,w - r

Objects (files)

Su
bj

ec
ts

 (u
se

rs
)

Access control matrix: [Lampson, Graham, Denning; 1971]

Permitted
 operations

access control list

a

b

c

d

e

O
bj

ec
ts

 (fi
les

)
ace r,w
rist -
sscott w, own
kpat r

ace -
rist -
sscott r
kpat r,w

ace -
rist r
sscott -
kpat -

roles
Role-based access control
Role = set of users
Individuals Roles Resources

engineering

marketing

human res

Server 1

Server 3

Server 2

Advantages:
/ many users, few roles  
/ individuals come-and-go frequently, groups are more stable

unix access control
View file permissions

access control list

unix access control
Unix uses role based access control

Role => group

Individual (or process) => user id (uid)

Special user ID: uid 0
/ root user
/ permitted to do anything
/ for any file: can read, write, change permissions, change
owners

unix file system

Each file assigned: owner and a group

Basic operations: read, write, execute

unix acl

rwx rwxrwx---
owner group others

setid

unix acls
rwx rwxrwx---
owner group otherssetid

/ Permissions set by owner (or root)

/ Determining if an action is permitted:
// if uid == 0 (root): allow anything
// else if uid == owner: use owner permissions
// else if uid in group: use group permissions
// else: use other permissions

/ Only owner, root can change permissions
/ This privilege cannot be delegated or shared

/ Setid bits – Discuss in a few slides

exercise
-rw-r--r-- 1 ace staff 1087 Aug 10 15:20 LICENSE.txt
-rw-r--r-- 1 ace staff 19 Aug 10 15:57 MANIFEST.in
-r---w-r-- 1 ace dev 1106 Aug 14 13:55 README.md
drwxr-xr-x 3 ace staff 102 Aug 13 07:27 dist
drwxr-xr-x 8 ace staff 272 Aug 13 10:47 safeid
drwxrwxr-x 9 ace staff 306 Aug 13 07:26 safeid.egg
-r-------- 1 ace web 40 Aug 10 15:56 setup.cfg
-rw--w-r-x 1 ace dev 1550 Aug 13 07:26 deploy.log

rwx rwxrwx
owner group othersgroup

owner

staff:*:29:ace,sscott,kpat,rist
web:*:31:ace,kpat,rist
dev:*:32:ace,sscott,pbriggs

Can sscott read the file README.md?
Can ace write to setup.cfg?
Which users can append to deploy.log?

process ids
process

RGID
EGID
SGID

Real User ID

/ same as the UID of parent
/ indicates who started this process

Effective User ID

/ current permissions for this process

RUID
EUID
SUID

Saved User ID

/ previous EUID so that it can be restored

Also: Real Group ID, Effective Group ID,

process IDs
Fork/exec 
/ new process inherits all three UIDs  
(except for setid bit explained later)

seteuid(newid) system call
/ changes EUID
/ can only change to saved UID or real UID
/ unless EUID == 0 in which case can set any ID

Also seteguid()

process
RUID
EUID
SUID

why?
Many UNIX systems store passwords in the  
 file /etc/shadow

Who should be able to read this file? Write this file?

Users change passwords using /usr/bin/passwd

What EUID does this process run as?

How can it write updates to the password file?

setid bits

setid

setuid: on execute, set EUID of new process to file
owner’s UID

setgid: on execute, set EGID of new process to file
owner’s GID

sticky bit (for directories)
When set, restricts deletion and renaming of files

--s -----s t
owner group others sticky

setuid/gid: Permits necessary privilege escalation

exercise

[ace:/usr/bin/]: ls -l
...
-rwsr-xr-x 1 root root 47032 Feb 17 2014 passwd 
...
-rwxr-sr-x 1 root tty 19024 Feb 12 2015 wall

think-pair-share

When passwd is started: what are the RUID, EUID, and SUID
values?

When wall is started: what are the RUID, EUID, and SUID?
What are the RGID, EGID, and SGID?

vulnerabilities
-rwsr-xr-x 1 root root 5090 Jan 16 2015 tmp-read

...
if (access("/tmp/myfile", R_OK) != 0) {
 exit(-1);
}
file = open("/tmp/myfile", "r");
read(file, buf, 1024);
close(file);
printf("%s\n", buf);

Q: Where’s the vulnerability?

tocttou
access("/tmp/myfile", R_OK)

open("/tmp/myfile", "r");

printf("%s\n", buf);

ln –sF /home/root/.ssh/id_rsa /tmp/myfile

Race condition between attacker and tmp-read

Vulnerability called: time-of-check to time-of-use  
 (TOCTTOU)

Prints root user's private SSH key

better
euid = geteuid();
ruid = getuid();
seteuid(ruid); // drop privileges
file = open("/tmp/myfile", "r");
read(file, buf, 1024);
close(file);
print("%s\n", buf);

better
euid = geteuid();
ruid = getuid();
seteuid(ruid); // drop privileges

file = open("/tmp/myfile", "r");
 error: errno=13 (Permission denied).

ln –sF /home/root/.ssh/id_rsa /tmp/myfile

EUID
0
0
19

/etc/passwd: ace:*:19: ...

19

What security design principle?
> Least privilege

setid

[Chen, Wagner, Dean. Setuid Demystified]

/ In practice, setid is even more complicated

Q: Violates which secure design principles?

setid

setid permits necessary privilege escalation

Source of many privilege escalation vulnerabilities
/ race conditions (tocttou)
/ control-flow hijacking

recap
Principles for Secure Designs

Multics: security design features, covert channel

Access control matrix and ACLs

Unix file access control

setid bits and seteuid system call

