arstechnica

“Internet of Things” security is hilariously
broken and getting worse

Shodan search engine is only the latest reminder of why we need to fix loT security.

by J.M. Porup (UK) - Jan 23, 2016 9:30am CST

3 Shore | Tweet | B o | 124

Shodan, a search engine for the Internet of Things (loT), recently launched a new section that lets
users easily browse vulnerable webcams.

The feed includes images of marijuana plantations, back rooms of banks, children, kitchens, living
rooms, garages, front gardens, back gardens, ski slopes, swimming pools, colleges and schools,
laboratories, and cash register cameras in retail stores, according to Dan Tentler, a security researcher
who has spent several years investigating webcam security.

“It's all over the place,” he told Ars Technica UK. "Practically everything you can think of.”

We did a quick search and turned up some alarming results:

The cameras are vulnerable because they use the Real Time Streaming Protocol (RTSP, port 554) to
share video but have no password authentication in place. The image feed is available to paid Shodan
members at images.shodan.io. Free Shodan accounts can also search using the filter port:554

has screenshot:true.

Shodan crawls the Internet at random looking for IP addresses with open ports. If an open port lacks
authentication and streams a video feed, the new script takes a snap and moves on.

computer
C S security

/operating system security

adam everspaugh
ace@cs.wisc.edu

orinciples

Principles of Secure Designs

* Compartmentalization
/ |solation
/ Least privilege

* Defense-in-depth
/ Use more than one security mechanism
/ Secure the weakest length
/ Fail securely

* Keep it simple
/ Economy of mechanism
/ Psychological acceptability
/ Good defaults

* Open Design

Have you used UNIX

since noon today"”? p O | |

family tree

1960s
Multics mit atad,

oell labs, ge
~ 100 Installations

Ken Thompson, 1970s :
Dennis Ritchie bell lalbs unix

Q INUX *ifree

p0sd many others

/\

Mac OS X

AaANo=k0ID

family tree

UNIx

Have you used UNIX

since noon today"”? p O | |

Multics

* |Lots of design innovations - including lots of security
iInnovations

* Segmentation and virtual memory

* Shared memory multiprocessor (SMP)

F. Corbato, MIT

porotection rings

Protection rings O-7)
IN which processes execute

/ Lower number = higher privilege
/ Ring O is supervisor
/ Inherit privileges over higher levels

Protection rings included in all typical CPUs today
and
used by most operating systems

memory Isolation

/virtual memory

/program and data stored in
segments

/ descriptor control field
// read, write, execute

/ segments are access
controlled

SEGMENT 0

SEGMENT 1

SEGMENTN

e

DSEG

DBR

oW Storage

enciphered passwords

“ was no cryptanalyst ... Joe [Weizenbaum| had
suggested | store the square of the password, but |
knew people could take square roots, so | squared
and ANDed with a mask to discard some bits.”

— [. Van Vleck

* |ater ones used DES, but Multics predates DES

* Joday, UNIX systems store a HASH(pw)

reference monitor

Reference monitor or security kernel
/ Monitors all data access
/ Enforces security policy

Multics security policy: no flow from “high
classification” to “lower classification”

TOP SECRET SECRET

Process 1 send M to P2 Refer?nce
Monitor

fail

Process 2

red team

/ Karger and Schell,
1974

TOP SECRET SECRE
write to file A EE e read from file B-
Monitor Process 2
OK OK
Send: H Receive:

1-bit: large write to file Read from disk, measure time
O-bit: idle

longer read time = 1-Dbit
shorter read time = O-bit

red team

/ Karger and Schell,
1974

TOP SECRET SECRE
) TS ¢ write to file A SEEENTH read from file B
Monitor Process 2
OK OK
Send: Receive:

1-bit: large write to file

Read from disk, measure time

Covert channel: circumvents reference monitor and

security policy

access control

galapagos-05.cs.wisc.edu Q’y‘

a 4

/home/ace /home/rist /home/sscott
/scripts /lectures /Projects
/Pictures /projects / latex
/upd—encryption /gitbucket /rust
/etc/nginx

web-server-private-key.pem

access control o

Objects (files) operatlons

rist

sscott

Subjects (users)

kpat

Access control matrix: [Lampson, Granam, Denning; 1971

access control list

ace

rist
sscott

kpat

Objects (files)

ace

rist
sscott

kpat

roles

* Role-based access control
* Role = set of users

Individuals Roles Resources
- . =
'“I /' engineering /; = Server 1
_» marketing ™ Server 2

=+ Server 3
» human res —

Advantages:
/ many users, few roles
/ individuals come-and-go frequently, groups are more stable

UNIX access control

- View file permissions

LN

Shell
[ace@lotus:safeid]: 1s -1

total 40
| -rw-r--r-- 1 ace staff 1087 Aug 10 15:20 LICENSE.txt

i T] ace staff 19 Aug 10 15:57 MANIFEST.in
-rW-poer-- ace staff 1106 Aug 14 13:55 README.md
drwxn-xr-x ace staff 102 Aug 13 07:27 dist

drwx{-xr-x ace staff 272 Aug 13 10:47 safeid
drwxir-xr-x ace staff 306 Aug 13 07:26 safeid.egg-info
-rw-r--r-- ace staff 49 Aug 10 15:56 setup.cfg

-rw-g--r-- ace staff 1550 Aug 13 07:26 setup.py
[ace@iotus:safeid]: |}

™ access control List

UNIX access control

* Unix uses role based access control
* Role => group
* |ndividual (or process) => user id (uid)

* Special user ID: uid O

/ root user

/ permitted to do anything

/ for any file: can read, write, change permissions, change
OwWners

unix file system

O O Shell
[ace@lLotus:safeid]: 1s -1

total 40

-rW-r--r-- ace staff 1087 Aug 10 15:20 LICENSE.txt
-rw-r--r-- ace staff 19 Aug 10 15:57 MANIFEST.1in
-rwW-r--r-- ace staff 1106 Aug 14 13:55 README.md
drwxr-xr-x ace staff 102 Aug 13 07:27 dist
drwxr-xr-x ace staff 272 Aug 13 10:47 safeid

drwxr-xr-x ace staff 306 Aug 13 07:26 safeid.egg-info
~rW=r--r---71 dace.-start 49 Aug 10 15:56 setup.cfg
-rw-r--r-% 1 ace jstaff 7550 Aug 13 07:26 setup.py
[ace@Lotus:sufeid]: g

Fach file assigned: owner and a group

Basic operations: read, write, execute

Unix acl

e Shell

[ace@lLotus:safeid]: 1s -1

tokal 40
‘-rw-r--r-- 1 ace staff 1087 Aug 10 15:20 LICENSE.txt
-rW-r--pr-- ace staff 19 Aug 10 15:57 MANIFEST.in

= PR g™ == ace staff 1106 Aug 14 13:55 README.md
drwxr-xr-x ace staff 102 Aug 13 07:27 dist

drwxr-xr-x ace staff 272 Aug 13 10:47 safeid
drwxr-xr-x ace staff 306 Aug 13 07:26 safeid.egg-info
-r'w-r--r-- ace staff 49 Aug 10 15:56 setup.cfg

-rW-r--pr-- ace staff 1550 Aug 13 07:26 setup.py
[ace@Lotus:safeid]: |}

--- WX TI'WX WX
\)\)\)

|
owner group others
setid

Unix acls

--- WX I'WX I'WX
\) \)\)
|
setid owner group others

/ Permissions set by owner (or root)

/ Determining if an action is permitted:
/I if uid == O (root): allow anything
/I else if uid == owner: use owner permissions
/I else if uid in group: use group Permissions
/I else: use other permissions

[Only owner, root can change permissions
/[This privilege cannot be delegated or shared

| Setid bits — Discuss in a few slides

exerclse WX TWX | TWX

Y Y Y
- group owner group others

ownerm &j

ace staff 1087 Aug 10 15:20 LICENSE.txt

—rwér—%r——
= [= = ace staff 19 Aug 10 15:57 MANIFEST.in
-P-=-W-r-- ace dev 1106 Aug 14 13:55 README.md

ace staff 102 Aug 13 07:27 dist

ace staff 272 Aug 13 10:47 safeid

ace staff 306 Aug 13 07:26 safeid.egg
- = ace web 40 Aug 10 15:56 setup.cfg
-rw--w-r-x 1 ace dev 1550 Aug 13 07:26 deploy.log

drwxr-xr-x
drwxr-xr-x
drwxrwxr-x

O 0o WER R,k PRE

I
—
I
I
I
I
|
I
I
I

=

staff:*:29:ace,sscott,kpat, rist
web:*:31:ace,kpat,rist
dev:*:32:ace,sscott,pbriggs

Can sscott read the file README.md?
Can ace write to setup.cfg?
Which users can append to deploy.log?

DroCess IJs

o U

CD(I'I'ID

W

Real User ID
/ same as the UID of parent

JID RG
JID SG
/ indicates who started this process

Effective User ID
/ current permissions for this process

Saved User ID
/ previous EUID so that it can be restored

Also: Real Group ID, Effective Group ID,

orocess 1Ds Rjg

D

D M
C

* Fork/exec
/ new process inherits all three UIDs
(except for setid bit explained later)

* seteuid(newid) system call
/ changes EUID
/ can only change to saved UID or real UID
/unless EUID == 0 in which case can set any ID

* Also seteguid()

why*?

* Many UNIX systems store passwords in the
file /etc/shadow

* \Who should be able to read this file”? Write this file”
* Users change passwords using /usr/bin/passwd
* What EUID does this process run as?

* How can it write updates to the password file”?

setid bits

setlo s s ee- it

Y Y)\
owner group others

sticky
* setuid: on execute, set EUID of new process to file

owner’s UID

* setgid: on execute, set EGID of new process to file
owner’s GID

* sticky bit (for directories)
* \WWhen set, restricts deletion and renaming of files

setuid/gid: Permits necessary privilege escalation

exerclse

think-pair-share

[ace:/usr/bin/]: 1s -1
-rwsr-xr-x 1 root root 47032 Feb 17 2014 passwd

-rwxr-sr-x 1 root tty 19024 Feb 12 2015 wall

When passwd is started: what are the RUID, EUID, and SUID
values”

When wall is started: what are the RUID, EUID, and SUID?
What are the RGID, EGID, and SGID?

vulnerabllities

-rwsr-xr-x 1 root root 5090 Jan 16 2015 tmp-read

if (access("/tmp/myfile", R _OK) != @) {
exit(-1);

s

file = open("/tmp/myfile", "r");

read(file, buf, 1024);

close(file);

printf("%s\n", buf);

Q: Where’s the vulnerability?

tocttou

access("/tmp/myfile", R_OK)

t n —sF /home/root/.ssh/id _rsa /tmp/myfile

open("/tmp/myfile", "r");

printf("%s\n", buf);

Race condition between attacker and tmp-read

Prints root user's private SSH key

Vulnerabillity called: time-of-check to time-of-use
(TOCTTOU)

petter

euid = geteuid();

ruid = getuid();

seteuid(ruid); // drop privileges
file = open("/tmp/myfile", "r");
read(file, buf, 1024);

close(file);

print("%ss\n", buf);

petter

EUID /etc/passwd: ace:*:19: ...

O euid = geteuid();
O ruid = getuid();
19 seteuid(ruid); // drop privileges

t ln —sF /home/root/.ssh/id_rsa /tmp/myfile

19 file = open("/tmp/myfile", "r");
error: errno=13 (Permission denied).

What security design principle®?
> [east privilege

setlo

/ In practice, setid is even more complicated

T T

|R_1.5=1.S=o))setmam @:oe 13 1))sew-am

| satuld(0) ‘ satuld(0)

|H-1.E=O.S-(D <R=0.E-1.S-§)semsam (R_1.E=o.s-1> <R-O E-OS 1)

—_ ——
l \ l
\ setuid(0) setuvd(Ol setund[Ol -1‘ " selu»d[O]

satu.dm (R-O.E-o.s- S)satmd(O) 'semudm

\wd(l] /

“TR=1,E=1,8=17" setuid(0) setui(1)

seluid(1)

Q: Violates which secure design principles?

[Chen, Wagner, Dean. Setuid Demystified]

setia

* setid permits necessary privilege escalation

* Source of many privilege escalation vulnerabilities
/ race conditions (tocttou)
/ control-flow hijacking

recap

* Principles for Secure Designs

* Multics: security design features, covert channel
* Access control matrix and ACLs

* Unix file access control

* setid bits and seteuid system call

