

cs642

public key

adam everspaugh
 ace@cs.wisc.edu

computer security

cryptography

today
Hybrid encryption

Digital signatures, certificates

TLS overview

Passwords

hybrid encryption

Security goals?
/ Confidentiality, integrity, authenticity

Symmetric encryption: fast, hard to distribute keys

Public key encryption: slow, easy to distribute public keys

Alice Bob

email

Eve

hybrid encryption

Alice Bob
pkA,skA

pkB

pkB,skB

pkAEve

F(pkB,x), Ex(M)

x ←$ {0,1}k
F(pkB, x), Ex(M)

random key for this message

Encrypt under Bob's pubkey

Authenticated encryption scheme

Mallory

digital signatures

Alice Bob

Verify

pkA valid or 
invalid(M,S)

Sign

skA

M S

pkA,skA pkA
Trapdoor permutation
Fpk: X→X
F-1sk: X→X

Hash Fn
H: {0,1}*→X

Sign(skA, M):
 d = H(M)
 S = F-1(skA, d)

Verify(pkA, M, S):
 d' = F(pkA, S)
 if d' = H(M):
 ret VALID
 else:
 ret INVALID

think-pair-share

certificates

Problem: How does a client get the public key for a
website?

facebook.com

TLS

pkfb, skfb

cert signing

Cert=(X,S)
Sign

skCA

SCertificate Authority

pkCA, skCA

Domain: *.facebook.com
Pubkey: 04 DB D1 77 …

X

pkCA

certificates

http://letsencrypt.org

certificates
What does having a trusted TLS certificate prove?
/ That someone paid at least $0
/ Proved to an intermediate CA that they controlled a
given domain name for at least 5 minutes

/ If TLS established, proves they know the
corresponding private key to the pub key in cert

What could possibly go wrong?
/ Any CA secret key in chain could be compromised
/ Server secret key could be compromised
/ Typo-squatting domain (gmal.com)
/ Malicious root CA key installed on client
/ DNS chicanery during verification process

pkCA, skCA

think-pair-share

DigiNotar
Dutch CA DigiNotar compromised in 2011

Attackers generated fake certificates

Twitter.com was redirected to fake site

Attackers eavesdropped with man-in-the-middle
attacks
/ Iranian govt eavesdropping on dissidents

DigiNotar

How did compromise occur?

DigiNotar had crappy security
/ Out-of-date antivirus software
/ Poor software patching
/ Weak passwords
/ No auditing of logs
/ Poorly designed local network

eDellRoot
Dell shipped several computer systems with a self-
signed root CA certificate preinstalled
/ The cert also contained the CA secret key

Intended purpose: something to do with automated
support software

If certificate removed, automatically reinstalls on
reboot

eDellRoot

tls

ClientHello,	MaxVersion,	NonceC,	Supported	ciphersuites

ServerHello,	Version,	NonceS,	SessionID,	Ciphersuite

Certificate	=	(pkS,	domain	name,	signature,	cert	chain)

E(pkS,	PMS)

ChangeCipherSpec,	Finished,	 
			HMAC(MS,	“Client	finished”	||	H(transcript))

ChangeCipherSpec,	Finished,	 
				HMAC(MS,	“Server	finished”	||	H(transcript’))	

MS	<-	HMAC(PMS,	“master	secret”	||	Nc	||	Ns)
K1,K2	<-	HMAC(MS,	“key	expansion”	||	Ns	||	Nc)

Change	to	symmetric	cipher

Exchange	info	using	Ek1,	Ek2

blog.com

passwords

pw use cases

Encrypt
AES-GCM

IV
M

K

C,T

Encrypt
AES-GCM

IV
M

pw

C,T

Create account: 
username,pw

Password-based symmetric encryption

[server, desktop, or web service]

How does the server
store the pw?

pbkdf

PBKDF(pw, salt):

[password-based key derivation function]

H H Kpw || salt H

repeat c times
truncate if needed

pw-based encryption
Enc(pw,M,R):
salt || R’ = R
K = PBKDF(pw,salt)
C = Enc’(K,M,R’)
Return (salt,C)

Dec(pw,C):
salt || C’ = C
K = PBKDF(pw,salt)
M = Dec’(K,C’)
Return M

PBKDF + symmetric encryption → pw-based encryption

Enc'/Dec' is some authenticated encryption scheme,
 like AES-GCM

Attacks?

dictionary attack
DictionaryAttack(D,C,T):
for pw* in D:
 M* = Dec(pw*,C,T)
 if M* ≠ error:
 return pw,M*

Decrypt
AES-GCM

C
T

K

M or error

Given an authenticated encryption output (C,T),
dictionary D of possible password

Enumerate D in order of likelihood

Test each candidate password

pw distribution

From an Imperva study of released RockMe.com password database (2010)

Facebook’s Password Onion

$cur = ‘password’ 
$cur = md5($cur) 
$salt = randbytes(20) 
$cur = hmac_sha1($cur, $salt) 
$cur = remote_hmac_sha256($cur, $secret) 
$cur = scrypt($cur, $salt) 
$cur = hmac_sha256($cur, $salt)

24

recap

Hybrid encryption

Digital signatures

Certificates, problems

Password-based key derivation
/ Dictionary attacks

Exit slips
/ 1 thing you learned
/ 1 thing you didn't understand

