
CS642: 
Computer	Security

X86	Review	
Process	Layout,	ISA,	etc.

Drew	Davidson	
davidson@cs.wisc.edu

From	Last	Time

• ACL-based	permissions	(UNIX	style)	
– Read,	Write,	eXecute	can	be	restricted	on	users	
and	groups	

– Processes	(usually)	run	with	the	permissions	of	the	
invoking	user

passwd

RUID:	
ace

/etc/shadow

write

EUID:	
root

input

Processes	are	the	front	line	of	system	security

• Control	a	process	and	you	get	the	privileges	of	
its	UID	

• So	how	do	you	control	a	process?	
– Send	specially	formed	input	to	process

passwd

RUID:	
ace

/etc/shadow

write

EUID:	
root

input

Privilege	Escalation	

article published
last Thursday!

Lecture	Roadmap

• Today	
– Enough	x86	to	understand	(some)	process	
vulnerabilities	
• Memory	Layout	

• Some	x86	instruction	semantics	

• Tools	for	inspecting	assembly	

• Next	Time	
– How	such	attacks	occur

Why	do	we	need	to	look	at	assembly?

We	understand	code	in	this	form

Vulnerabilities	exploited	in	this	form

int foo(){  
 int a = 0;
 return a + 7;
}

pushl %ebp
movl %esp, %ebp
subl $16, %esp
movl $0, -4(%ebp)
movl -4(%ebp), %eax
addl $7, %eax
leave
ret

Compiler

“WYSINWYX:	What	you	see	is	not	what	you	eXecute”	
[Balakrishnan	and	Reps	TOPLAS	2010]

X86:	The	De	Facto	Standard

• Extremely	popular	for	
desktop	computers	

• Alternatives	
– ARM:	popular	on	mobile	

–MIPS:	very	simple	

– Itanium:	ahead	of	its	
time

x86:	Popular	but	Crazy	

• CISC	(complex	instruction	set	computing)	
– Over	100	distinct	opcodes	in	the	set	

• Register	poor	
– Only	8	registers	of	32-bits,	only	6	are	general-
purpose	

• Variable-length	instructions	
• Built	of	many	backwards-compatible	revisions	
–Many	security	problems	preventable…	in	hindsight

A	Little	History

Intel	introduces	

8086	(16	bit)

1978 1982

80186	and	80286

1985

80386	(32-bit)

1989

i486	(32-bit)

Intel attempts to trademark

the number 486, gets denied

1993

Pentium

“five”
Science-y?

1995

Pentium	Pro

2003

AMD	makes	

x86-64	(64	bit)

…

This is not a joke.
It’s the real reason

Let’s	Dive	in	To	X86!

X86

Registers

ESI

EDI

ESP

EBP

DX

CX

BX

AX

EDX

ECX

EBX

EAX AL

BL

CL

DL

AH

BH

CH

DH

(stack	pointer)

(base	pointer)

32	bits

Process	memory	layout

.text	

– Machine	code	of	executable	
.data	

– Global	initialized	variables	
.bss	

– Below	Stack	Section	
			global	uninitialized	vars

.text .data .bss heap stack
Free	

memory Env

heap	
– Dynamic	variables	

stack	
– Local	variables	
– Function	call	data	

Env	

– Environment	variables	
– Program	arguments

High	memory		
addresses

Low	memory		
addresses

Grows	upward Grows	downward

Heap	and	Stack	Design

heap stack
Free	

memory

High	memory		
addresses

Low	memory		
addresses

Grows		
upward

Grows		
downward

• Allow	for	more	efficient	use	of	finite	free	memory	
– Growing	in	opposite	directions		allows	extra	flexibility	at	runtime	

• Stack	
– Local	variables,	function	bookkeeping	

• Heap	
– Dynamic	memory

Heap	and	Stack	Design

heap stack
Free	

memory

High	memory		
addresses

Low	memory		
addresses

Grows		
upward

Grows		
downward

• Allow	for	more	efficient	use	of	finite	free	memory	
– Growing	in	opposite	directions		allows	extra	flexibility	at	runtime	

• Stack	
– Local	variables,	function	bookkeeping	

• Heap	
– Dynamic	memory

stack

Heap	and	Stack	Design

heap stack
Free	

memory

High	memory		
addresses

Low	memory		
addresses

Grows		
upward

Grows		
downward

• Allow	for	more	efficient	use	of	finite	free	memory	
– Growing	in	opposite	directions		allows	extra	flexibility	at	runtime	

• Stack	
– Local	variables,	function	bookkeeping	

• Heap	
– Dynamic	memory

heap

Heap	and	Stack	use:	Example

Free	
memory

High	memory		
addresses

Low	memory		
addresses

main():	
				call	foo()	
				call	bar()	
foo():	
			f_glob	=	malloc(0x100)	
			call	bar()	
bar()	
			b_loc	=	7;

mainfoobar
70x100	bytes

bar
7

Reminder:	These	are	conventions

• Dictated	by	compiler	

• Only	instruction	support	by	processor	
– Almost	no	structural	notion	of	memory	safety	
• Use	of	uninitialized	memory	

• Use	of	freed	memory	

• Memory	leaks	

• So	how	are	they	actually	implemented?

Instruction	Syntax

subl	$16,	%ebx

movl	(%eax),	%ebx

Examples: • Instruction	ends	with	
data	length	

• opcode,	src,	dst	

• Constants	preceded	by	$	

• Registers	preceded	by	%	

• Indirection	uses	()	

Register	Instructions:	sub

• Subtract	from	a	
register	value

%eax								7

re
gi
st
er
s

m
em

or
y

subl	%eax,	%ebx

%ebx								9 2

Frame	Instructions:	push

• Put	a	value	on	the	
stack	
– Pull	from	register	

– Value	goes	to	%esp	
– Subtract	from	%esp	

• Example:

pushl	%eax

%eax								7

re
gi
st
er
s

m
em

or
y

Framepushl	%eax

%esp								N%ebp								M

%eax								7

re
gi
st
er
s

m
em

or
y

Frame

%esp								N-4%ebp								M

7

Frame	Instructions:	pop

• Take	a	value	from	the	
stack	
– Pull	from	stack	pointer	

– Value	goes	from	%esp	

– Add	to	%esp

%eax								9

re
gi
st
er
s

m
em

or
y

Framepopl	%eax

%esp								K%ebp								M

%eax								7

re
gi
st
er
s

m
em

or
y

Frame

%esp								K+4%ebp								M

7

7

Control	flow	instructions:	jmp
• %eip	points	to	the	
currently	executing	
instruction	(in	the	
text	section)	

• Has	unconditional	
and	conditional	
forms	

• Uses	relative	
addressing

%eip								K

re
gi
st
er
s

m
em

or
y

Framejmp	-20

%esp								N%ebp								M

%eip								K-20

re
gi
st
er
s

m
em

or
y

Frame

%esp								N%ebp								M

Control	flow	instructions:	call

• Saves	the	current	
instruction	pointer	to	
the	stack	

• Jumps	to	the	
argument	value

%eip								K

re
gi
st
er
s

m
em

or
y

FrameA:	call	FOO

%esp								N%ebp								M

%eip								FOO

re
gi
st
er
s

m
em

or
y

FrameFOO:	(1st	of	foo)

%esp								N-4%ebp								M

A+2

Control	flow	instructions:	ret

• Pops	the	stack	into	
the	instruction	
pointer

%eip								K

re
gi
st
er
s

m
em

or
y

FrameK:	ret

%ebp								M %esp								N

A

%eip								A

FrameA:	(caller	instr)

%ebp								M %esp								N
+4re

gi
st
er
s

m
em

or
y

Stack	instructions:	leave

• Equivalent	to		
	 movl	%ebp,	%esp	
	 popl	%ebp

re
gi
st
er
s

m
em

or
y

Stackleave

%ebp								M %esp								N

A

%ebp								A %esp								M

re
gi
st
er
s

m
em

or
y

Stack

Implementing	a	function	call

Stack	
data

main:	
			…	
			subl				$8,	%esp	
			movl				$2,	4(%esp)	
			movl				$l,	(%esp)	
			call				foo	
			addl				$8,	%esp	
			…	

(main) (foo)

foo:	
			pushl			%ebp	
			movl				%esp,	%ebp	
			subl				$16,	%esp	
			movl				$3,	-4(%ebp)	
			movl				8(%ebp),	%eax	
			addl				$9,	%eax	
			leave	
			ret		

eip
eip
eip
eip

eip

main	
eip+2

main	
ebp

esp

ebp

esp

21

esp esp%eax 110

eip
eip
eip
eip
eip
eip
eip

3

esp

ebp

eip

Function	Calls:	High	level	points

• Locals	are	organized	into	stack	frames	
– Callees	exist	at	lower	address	than	the	caller	

• On	call:	
– Save	%eip	so	you	can	restore	control	
– Save	%ebp	so	you	can	restore	data	

• Implementation	details	are	largely	by	
convention	
– Somewhat	codified	by	hardware

Data	types	/	Endianness

• x86	is	a	little-endian	architecture

%eax 0xdeadbeef

pushl	%eax

esp

0xde0xad0xbe0xef

esp

4	bytes 1 1 1 1

Arrays

bar:	
		pushl		%ebp	
		movl			%esp,	%ebp	
		subl			$5,	%esp	
		movl			8(%ebp),	%eax	
		movl			%eax,	4(%esp)	
		leal			-5(%ebp),	%eax	
		movl			%eax,	(%esp)	
		call			strcpy	
		leave	
		ret

(bar)
caller	
eip+2

caller	
ebp

void	bar(char	*	in){ 
		char	name[5];	
		strcpy(name,	in);	
}

&in

.text .data

HEAP

esp

ebp

‘D’	
0x44

‘r’	
0x72

‘e’	
0x65

‘w’	
0x77

‘\0’	
0x00

Assembly	Code	Tools

• Let’s	look	at	some	
programs	for	observing	
these	phenomena

Tools:	GCC

gcc	–O0	–S	program.c	–o	program.S	–m32	

gcc	–O0	–g	program.c	–o	program	–m32

Tools:	GDB

gdb	program	
(gdb)	run	
(gdb)	decompile	foo	
(gdb)	quit

Tools:	objdump

objdump	–Dwrt	program

Tools:	od

od	–x	program

Memory	Safety:	Why	and	Why	Not

• The	freedom	from	these	
shenanigans	

• X86	has	little	inbuilt	
notion	of	memory	safety	
– Compiler	or	analysis	can	

Summary

• Basics	of	x86	
– Process	layout	
– ISA	details	
– Most	of	the	instructions	that	you’ll	need	

• Introduced	the	concept	of	a	buffer	overflow	

• Some	tools	to	play	around	with	x86	assembly	

• Next	time:	exploiting	these	vulnerabilities

