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Abstract
Conventional cryptographic services such as

hardware-security modules and software-based key-
management systems offer the ability to apply a
pseudorandom function (PRF) such as HMAC to inputs
of a client’s choosing. These services are used, for
example, to harden stored password hashes against
offline brute-force attacks.

We propose a modern PRF service called PYTHIA de-
signed to offer a level of flexibility, security, and ease-
of-deployability lacking in prior approaches. The key-
stone of PYTHIA is a new cryptographic primitive called
a verifiable partially-oblivious PRF that reveals a por-
tion of an input message to the service but hides the
rest. We give a construction that additionally supports
efficient bulk rotation of previously obtained PRF val-
ues to new keys. Performance measurements show that
our construction, which relies on bilinear pairings and
zero-knowledge proofs, is highly practical. We also give
accompanying formal definitions and proofs of security.

We implement PYTHIA as a multi-tenant, scalable
PRF service that can scale up to hundreds of millions
of distinct client applications on commodity systems. In
our prototype implementation, query latencies are 15 ms
in local-area settings and throughput is within a factor
of two of a standard HTTPS server. We further report
on implementations of two applications using PYTHIA,
showing how to bring its security benefits to a new en-
terprise password storage system and a new brainwallet
system for Bitcoin.

1 Introduction

Security improves in a number of settings when appli-
cations can make use of a cryptographic key stored on
a remote system. As an important example, consider
the compromise of enterprise password databases. Best
practice dictates that passwords be hashed and salted be-

fore storage, but attackers can still mount highly effective
brute-force cracking attacks against stolen databases.

Well-resourced enterprises such as Facebook [41]
have therefore incorporated remote cryptographic oper-
ations to harden password databases. Before a password
is stored or verified, it is sent to a PRF service external
to the database. The PRF service applies a cryptographic
function such as HMAC to client-selected inputs under
a service-held secret key. Barring compromise of the
PRF service, its use ensures that stolen password hashes
(due to web server compromise) cannot be cracked using
an offline brute-force attack: an attacker must query the
PRF service from a compromised server for each pass-
word guess. Such online cracking attempts can be mon-
itored for anomalous volumes or patterns of access and
throttled as needed.

While PRF services offer compelling security im-
provements, they are not without problems. Even large
organizations can implement them incorrectly. For ex-
ample, Adobe hardened passwords using 3DES but in
ECB mode instead of CBC-MAC (or another secure PRF
construction) [26], a poor choice that resulted in disclo-
sure of many of its customers’ passwords after a breach.
Perhaps more fundamental is that existing PRF services
do not offer graceful remediation if a compromise is de-
tected by a client. Ideally it should be possible to cryp-
tographically erase (i.e., render useless via key deletion)
any PRF values previously used by the client, without
requiring action by end users and without affecting other
clients. In general, PRF services are so inaccessible and
cumbersome today that their use is unfortunately rare.

In this paper, we present a next-generation PRF ser-
vice called PYTHIA to democratize cryptographic hard-
ening. PYTHIA can be deployed within an enterprise to
solve the issues mentioned above, but also as a public,
multi-tenant web service suitable for use by any type of
organization or even individuals. PYTHIA offers several
security features absent in today’s conventional PRF ser-
vices that are critical to achieving the scaling and flexibil-
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ity required to simultaneously support a variety of clients
and applications. As we now explain, achieving these
features necessitated innovations in both cryptographic
primitive design and system architecture.

Key features and challenges. We refer to an entity us-
ing PYTHIA as a client. For example, a client might be
a web server that performs password-based authentica-
tion for all of its end users. Intuitively, PYTHIA allows
such a client to query the service and obtain the PRF out-
put Y = Fk(t,m) for a message m and a tweak t of the
client’s choosing under a client-specific secret key k held
by the service. Here, the tweak t is typically a unique
identifier for an end user (e.g., a random salt). In our
running password storage example, the web server stores
Y in a database to authenticate subsequent logins.

PYTHIA offers security features that at, first glance,
sound mutually exclusive. First, PYTHIA achieves mes-
sage privacy for m while requiring clients to reveal t to
the server. Message privacy ensures that the PRF ser-
vice obtains no information about the message m; in our
password-storage example, m is a user’s password. At
the same time, though, by revealing t to the PRF ser-
vice, the service can perform fine-grained monitoring of
related requests: a high volume or otherwise anomalous
pattern of queries on the same t would in our running ex-
ample be indicative of an ongoing brute-force attack and
might trigger throttling by the PRF service.

By using a unique secret key k for each client, PYTHIA
supports individual key rotation should the value Y be
stolen (or feared to be stolen). With traditional PRF
services and password storage, such key rotation is a
headache, and in many settings impractical, because it
requires transitioning stored values Y1, . . . , Yn (one for
each user account) to a new PRF key. The only way to
do so previously was to have all n users re-enter or reset
their passwords. In contrast, the new primitive employed
for Fk in PYTHIA supports fast key rotation: the server
can erase k, replace it with a new key k′, and issue a
compact (constant-sized) token with which the client can
quickly update all of its PRF outputs. This feature also
enables forward-security in the sense that the client can
proactively rotate k without disrupting its operation.

PYTHIA provides other features as well, but we defer
their discussion to Section 2. Already, those listed above
surface some of the challenging cryptographic tensions
that PYTHIA resolves. For example, the most obvious
primitive on which to base PYTHIA is an oblivious PRF
(OPRF) [29], which provides message privacy. But for
rate-limiting, PYTHIA requires clients to reveal t, and ex-
isting OPRFs cannot hide only a portion of a PRF input.
Additionally, the most efficient OPRFs (c.f., [31]) are not
amenable to key rotation. We discuss at length other re-

lated concepts (of which there are many) in Section 7.

Partially-oblivious PRFs. We introduce partially
oblivious PRFs (PO-PRFs) to rectify the above ten-
sion between fine-grained key management and bulk key
management and achieve a primitive that supports batch
key rotation. We give a PO-PRF protocol in the random
oracle model (ROM) similar to the core of the identity-
based non-interactive key exchange protocol of Sakai,
Ohgishi, and Kasahara [47]. This same construction
was also considered as a left-or-right constrained PRF
by Boneh and Waters [14]. That said, the functional-
ity achieved by our PO-PRF is distinct from these prior
works and new security analyses are required. Despite
relying on pairings, we show that the full primitive is fast
even in our prototype implementation.

In addition to a lack of well-matched cryptographic
primitives, we find no supporting formal definitions that
can be adapted for verifiable PO-PRFs. (Briefly, previous
definitions and proofs for fast OPRFs rely on hashing in
the ROM before outputting a value [19, 31]; in our set-
ting, hashing breaks key rotation.) We propose a new as-
sumption (a one-more bilinear decisional Diffie-Hellman
assumption), give suitable security definitions, and prove
the security of the core primitive in PYTHIA under these
definitions (in the appendix). Our new definitions and
technical approaches may be of independent interest.

Using PYTHIA in applications. We implement
PYTHIA and show that it offers highly practical per-
formance on Amazon EC2 instances. Our experiments
demonstrate that PYTHIA is practical to deploy using off-
the-shelf components, with combined computation cost
of client and server under 12 milliseconds. A single
8-core virtualized server can comfortably support over
1,000 requests per second, which is already within a fac-
tor of two of a standard HTTPS server in the same con-
figuration. (Our PYTHIA implementation performs all
communication over TLS.) We discuss scaling to han-
dle more traffic volume in the body; it is straightforward
given current techniques.

We demonstrate the benefits and practicality of
PYTHIA for use in a diverse set of applications. First is
our running example above: we build a new password-
database system using a password “onion” that com-
bines parallelized calls to PYTHIA and a conventional
key hashing mechanism. Our onion supports PYTHIA
key rotation, hides back-end latency to PYTHIA during
logins (which is particularly important when accessing
PYTHIA as a remote third-party service), and achieves
high security in a number of compromise scenarios.

Finally, we show that PYTHIA provides valuable fea-
tures for different settings apart from enterprise pass-
word storage. We implement a client that hardens a type
of password-protected virtual-currency account called a
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Figure 1: Diagram of PRF derivations enabled by
PYTHIA. Everything inside the large box is operated by
the server, which only learns tweaks and not the shaded
messages.

“brainwallet” [15]; use of PYTHIA here prevents offline
brute-force attacks of the type that have been common in
Bitcoin.

Our prototype implementation of PYTHIA is built with
open-source components and itself is open-source. We
have also released Amazon EC2 images to allow com-
panies, individuals, and researchers to spin-up PYTHIA
instances for experimentation.

2 Overview and Challenges

We now give a high-level overview of PYTHIA, the moti-
vations for its features, what prior approaches we inves-
tigated, and the threat models we assume. First we fix
some terminology and a high-level conceptual view of
what a PRF service would ideally provide. The service
is provisioned with a master secret key msk. This will
be used to build a tree that represents derived sub-keys
and, finally, output values. See Figure 1, which depicts
an example derivation tree associated with PYTHIA as
well as which portions of the tree are held by the server
(within the large box) and which are held by the client
(the leaves). Keys of various kinds are denoted by cir-
cles and inputs by squares.

From the msk we derive a number of ensemble keys.
Each ensemble key is used by a client for a set of re-
lated PRF invocations — the ensemble keys give rise
to isolated PRF instances. We label each ensemble key
in the diagram by K[w]. Here w indicates a client-
chosen ensemble selector. An ensemble pre-key K[w] is
a large random value chosen and held by the server. To-
gether,msk and K[w] are used to derive the ensemble key
kw = HMAC(msk,K[w]). A table is necessary to sup-
port cryptographic erasure of (or updates to) individual
ensemble keys, which amounts to deleting (or updating)
a table entry.

Each ensemble key can be used to obtain PRF outputs

of the form Fkw(t,m) where F is a (to-be-defined) PRF
keyed by kw, and the input is split into two parts. We
call t a tweak following [33] and m the message. Look-
ing ahead t will be made public to PYTHIA while m will
be private. This is indicated by the shading of the PRF
output boxes in the figure.

Deployment scenarios. To motivate our design choices
and security goals, we relay several envisioned deploy-
ment scenarios for PYTHIA.

Enterprise deployment: A single enterprise can deploy
PYTHIA internally, giving query access only to other sys-
tems they control. A typical setup is that PYTHIA fields
queries from web servers and other public-facing sys-
tems that are, unfortunately, at high risk of compromise.
PRF queries to PYTHIA harden values stored on these
vulnerable servers. This is particularly suited to storing
check-values for passwords or other low-entropy authen-
tication tokens, where one can store Fkw(t,m) where t
is a randomly chosen, per-user identifier (a salt) andm is
the low-entropy password or authentication token. Here
w can be distinct for each server using PYTHIA.

Public cloud service: A public cloud such as Ama-
zon EC2, Google Compute Engine, or Microsoft Azure
can deploy PYTHIA as an internal, multi-tenant service
for their customers. Multi-tenant here means that differ-
ent customers query the same PYTHIA service, and the
cloud provider manages the service, ensemble pre-key
table, etc. This enables smaller organizations to obtain
the benefits of using PYTHIA for other cloud properties
(e.g., web servers running on virtual machine instances)
while leaving management of PYTHIA itself to experts.

Public Internet service: One can take the public cloud
service deployment to the extreme and run PYTHIA in-
stances that can be used from anywhere on the Internet.
This raises additional performance concerns, as one can-
not rely on fast intra-datacenter network latencies (sub-
millisecond) but rather on wide-area latencies (tens of
milliseconds). The benefit is that PYTHIA could then be
used by arbitrary web clients, for example we will ex-
plore this scenario in the context of hardening brainwal-
lets via PYTHIA.

One could tailor a PRF service to each of these set-
tings, however it is better to design a single, application-
agnostic service that supports all of these settings si-
multaneously. A single design permits reuse of open-
source implementations; standardized, secure-by-default
configurations; and simplifies the landscape of PRF ser-
vices.

Security and functionality goals. Providing a single
suitable design requires balancing a number of security
and functionality goals. The most obvious requirements
are for a service that: provides low-latency protocols
(i.e., single round-trip and amenable for implementation
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as simple web interfaces); scales to hundreds of millions
of ensembles; and produces outputs indistinguishable
from random values even when adversaries can query the
service. To this list of basic requirements we add:

• Message privacy: The PRF service must learn noth-
ing about m. Message privacy supports clients that
require sensitive values such as passwords to remain
private even if the service is compromised, or to
promote psychological acceptability in the case that
a separate organization (e.g., a cloud provider) man-
ages the service.

• Tweak visibility: The server must learn tweak t to
permit fine-grained rate-limiting of requests.1 In the
password storage example, a distinct tweak is as-
signed to each user account, allowing the service to
detect and limit guessing attempts against individ-
ual user accounts.

• Verifiability: A client must be able to verify that
a PRF service has correctly computed Fkw for a
ensemble selector w and tweak/message pair t,m.
This ensures, after first use of an ensemble by a
client, that a subsequently compromised server can-
not surreptitiously reply to PRF queries with incor-
rect values.2

• Client-requested ensemble key rotations: A client
must be permitted to request a rotation of its en-
semble pre-key K[w] to a new one K̂[w]. The server
must be able to provide an update token ∆w to roll
forward PRF outputs under K[w] to become PRF
outputs under K̂[w], meaning that the PRF is key-
updatable with respect to ensemble keys. Addition-
ally, ∆w must be compact, i.e., constant in the num-
ber of PRF invocations already performed under w.
Clients can mandate that rotation requests be au-
thenticated (to prevent malicious key deletion). A
client must additionally be able to transfer an en-
semble from one selector w to another selector w′.

• Master secret rotations: The server must be able to
rotate the master secret key msk with minimal im-
pact on clients. Specifically, the PRF must be key-
updatable with respect to the master secret keymsk
so that PRF outputs under msk can be rolled for-
ward to a new master secret m̂sk. When such a
rotation occurs, the server must provide a compact
update token δw for each ensemble w.

• Forward security: Rotation of an ensemble key or

1In principle, the server need only be able to link requests involv-
ing the same t, not learn t. Explicit presentation of t is the simplest
mechanism that satisfies this requirement.

2This matters, for example, if an attacker compromises the commu-
nication channel but not the server’s secrets (msk and K[w]). Such an
attacker must not be able to convince the client that arbitrary or incor-
rect values are correct.

master secret key results in complete erasure of the
old key and the update token.

Two sets of challenges arise in designing PYTHIA.
The first is cryptographic. It turns out that the combi-
nation of requirements above are not satisfied by any ex-
isting protocols we could find. Ultimately we realized
a new type of cryptographic primitive was needed that
proves to be a slight variant of oblivious PRFs and blind
signatures. We discuss the new primitive, and our effi-
cient protocol realizing it, in the next section. The second
set of challenges surrounds building a full-featured ser-
vice that provides the core cryptographic protocol, which
we treat in Section 4.

3 Partially-oblivious PRFs

We introduce the notion of a (verifiable) partially-
oblivious PRF. This is a two-party protocol that allows
the secure computation of Fkw(t,m), where F is a PRF
with server-held key kw and t,m are the input values.
The client can verify the correctness of Fkw(t,m) rel-
ative to a public key associated to kw. Following our
terminology, t is a tweak and m is a message. We say
the PRF is partially oblivious because t is revealed to the
server, but m is hidden from the server.

Partially oblivious PRFs are closely related to, but dis-
tinct from, a number of existing primitives. A standard
oblivious PRF [29], or its verifiable version [31], would
hide both t and m, but masking both prevents granular
rate limiting by the server. Partially blind signatures [1]
allow a client to obtain a signature on a similarly par-
tially blinded input, but these signatures are randomized
and the analysis is only for unforgeability which is insuf-
ficient for security in all of our applications.

We provide more comparisons with related work in
Section 7 and a formal definition of the new primitive in
Appendix B. Here we will present the protocol that suf-
fices for PYTHIA. It uses an admissible bilinear pairing
e : G1 × G2 → GT over groups G1,G2,GT of prime
order q, and a pair of hash functions H1 : {0, 1}∗ → G1

and H2 : {0, 1}∗ → G2 (that we will model as ran-
dom oracles). More details on pairings are provided in
Appendix B. A secret key kw is an element of Zp. The
PRF F that the protocol computes is:

Fkw(t,m) = e
(
H1(t), H2(m)

)kw
.

This construction coincides with the Sakai, Ohgishi, and
Kasahara [47] construction for non-interactive identity-
based key exchange, where t and m would be different
identities and kw a secret held by a trusted key authority.
Likewise, this construction is equivalent to the left-or-
right constrained PRF of Boneh and Waters [14]. The
contexts of these prior works are distinct from ours and
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PRF-Cl (w, t,m)
PRF-Srv (msk)

r←$ Zq

x← H2(m)r

w, t, x-
x̃← e(H1(t), x)

kw ← HMAC(msk,K[w])

pw ← gkw

y ← x̃kw

pw, y, π�
π←$ ZKP(DLg(pw) = DLx̃(y))

If pw matches &
π verifies then

Ret y1/r

Else Ret ⊥

Figure 2: The partially-oblivious PRF protocol used
in PYTHIA. The value π is a non-interactive zero-
knowledge proof that the indicated discrete logs match.
The client also checks that pw matches ones seen previ-
ously when using selector w.

PRF-Cl (w, t,m)
PRF-Srv (msk)

w, t,m-
x̃←H3(t‖m)

kw ← HMAC(msk,K[w])

pw ← gkw

y ← x̃kw

pw, y, π�
π←$ ZKP(DLg(pw) = DLx̃(y))

If pw matches &
π verifies then

Ret y
Else Ret ⊥

Figure 3: The unblinded PRF protocol supported by
PYTHIA. Differences from the partially-oblivious pro-
tocol in Figure 2 are shown in bold.

our analyses will necessarily be different, but we note
that all three settings similarly exploit the algebraic struc-
ture of the bilinear pairing. See Section 7 for further dis-
cussion of related work.

The client-server protocol that computes Fkw(t,m) in
a partially-oblivious manner is given in Figure 2. There
we let g be a generator of G1. We now explain how the
protocol achieves our requirements described in the last
section.

Blinding the message: In our protocol, the client
blinds the message m, hiding it from the server, by rais-
ing it to a randomly selected exponent r←$ Zq . As
e
(
H1(t), H2(m)r

)
= e
(
H1(t), H2(m)

)r
, the client can

unblind the output y of PRF-Srv by raising it to 1/r. This

protocol hides m unconditionally, as H2(m)r is a uni-
formly random element of G2.

Verifiability: The protocol enables a client to verify that
the output of PRF-Srv is correct, assuming the client has
previously stored pw. The server accompanies the output
y of the PRF with a zero-knowledge proof π of correct-
ness.

Specifically, for a public key pw = gkw , where g
is a generator of G1, the server proves DLg(pw) =
DLx̃(y). Standard techniques (see, e.g., Camenisch and
Stadler [20]) permit efficient ZK proofs of this kind in the
random oracle model. 3 The notable computational costs
for the server are one pairing and one exponentiation in
GT ; for the client, one pairing and two exponentiations
in GT . 4

Efficient key updates: The server can quickly and
easily update the key kw for a given ensemble selec-
tor w by replacing the table entry s = K[w] with a
new, randomly selected value s′, thereby changing kw =
HMAC(msk, s) to k′w = HMAC(msk, s′). It can then
transmit to the client an update token of the form ∆w =
k′w/kw ∈ Zq .

The client can update any stored PRF value
Fkw(t,m) = e

(
H1(t), H2(m)

)kw by raising it to ∆w;
it is easy to see that Fkw(t,m)∆w = Fk′w(t,m).

The server can use the same mechanism to update
msk, which requires generating a new update token for
each w and pushing these tokens to clients as needed.

Unblinded variants. For deployments where oblivious-
ness of messages is unnecessary, we can use a faster, un-
blinded variant of the PYTHIA protocol that dispenses
with pairings shown in Figure 3. The only changes are
that the client sends m to the server, there is no unblind-
ing of the server’s response, and, instead of computing

x̃← e(H1(t), x)

the server computes

x̃← H3(t ‖m) .

All group operations in this unblinded variant are over a
standard elliptic curve group G = 〈g〉 of order q and we
use a hash function H3 : {0, 1}∗ → G.

An alternative unblinded construction would be to
have the server apply the Boneh-Lynn-Shacham short
signatures [13] to the client-submitted t ‖m; verification
of correctness can be done using the signature verifica-
tion routine, and we can thereby avoid ZKPs. This BLS

3Some details: The prover picks v←$ Zq and then computes t1 =
gv and t2 = x̃v and c ← H3(g, pw, x̃, y, t1, t2). Let u = v − c ·k.
The proof is π = (c, u). The verifier computes t′1 = gu · pcw and
t′2 = x̃uyc. It outputs true if c = H3(g, pw, x̃, y, t′1, t

′
2).

4The client’s pairing can be pre-computed while waiting for the
server’s reply.
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Command Description
Init(w [, options]) Create table entry K[w] (for ensemble

key kw)

Eval(w, t,m) Return PRF output Fkw (t,m)

Reset(w, authtoken) Update K[w] (and thus kw); return
update token ∆w

GetAuth(w) Send one-time authentication token
authtoken to client

Figure 4: The basic PYTHIA API.

variant may save a small amount of bandwidth.
These unblinded variants provide the same services

(verifiability and efficient key updates) and security with
the obvious exception of the secrecy of the message m.
In some deployment contexts an unblinded protocol may
be sufficient, for example when the client can maintain
state and submit a salted hash m instead of m directly.
In this context, the salt should be held as a secret on the
client and never sent to the server.

4 The PYTHIA Service Design

Figure 4 gives the high-level API exposed by PYTHIA
to a client. We now describe its functions in terms of
the lifecycle of an ensemble key. We assume a security
parameter n specifying symmetric key lengths; a typical
choice would be n = 128.

We defer to later sections the underlying client-server
protocols and to Appendix A details on key lifecycle
management options, additional API calls for token man-
agement and ensemble transfer, and a discussion of mas-
ter secret key rotation.

Ensemble initialization. To begin using the PYTHIA
service, a client creates an ensemble key for selector w
by invoking Init(w [, options]). PYTHIA generates a
fresh, random table entry K[w]. Recall that ensemble
key kw = HMAC(msk,K[w]). So Init creates kw as
a byproduct.

Ideally, w should be an unguessable byte string. (An
easily guessed one may allow attackers to squat on a key
selector, thereby mounting a denial-of-service (DoS) at-
tack.) For some applications, as we explain below, this
isn’t always possible. If an ensemble key for w already
exists, then the PYTHIA service returns an error to the
client. Otherwise, the client receives a message signify-
ing that initialization is successful.
Init includes a number of options we detail in Ap-

pendix A.

PRF evaluation. To obtain a PRF value, a client can
perform an evaluation query Eval(w, t,m), which re-
turns Fkw(t,m). Here t is a tweak and m is a mes-
sage. To compute the PRF output, the client and server

perform a one-round cryptographic protocol (meaning a
single message from client to server, and one message
back). We present details in Section 3, but remind the
reader that t is visible to the server in the client-server
protocol invoked by Eval, while m is blinded.

The server rate-limits requests based on the tweak t,
and can also raise an alert if the rate limit is exceeded.
We give example rate limiting policies in Section 5.

Ensemble-key reset. A client can request that an en-
semble key kw be reset by invoking Reset(w). This reset
is accomplished by overwriting K[w] with a fresh, ran-
dom value. The name service returns a compact (e.g.,
256-bit) update token ∆w that the client may use to up-
date all PRF outputs for the ensemble. It stores this to-
ken locally, encrypted under a public key specified by the
client, as explained below.

Note that reset results in erasure of the old value of kw.
Thus a client that wishes to delete an ensemble key kw
permanently at the end of its lifecycle can do so with a
Reset call.
Reset is an authenticated call, and thus requires the

following capability.

Authentication. To authenticate itself for API calls, the
client must first invoke GetAuth, which has the server
transmit an (encrypted) authentication token authtoken
to the client out-of-band. The token expires after a pe-
riod of time determined by a configuration parameter in
PYTHIA. Our current implementation uses e-mail for
this, see Appendix A for more details. Of course, in
some deployments one may want authentication to be
performed in other ways, such as tokens dispensed by
administrators (for enterprise settings) or simply given
out on a first-come-first-serve basis for each ensemble
identifier (for public Internet services).

4.1 Implementation
We implemented a prototype PYTHIA PRF service as
a web application accessed over HTTPS. All requests
are first handled by an nginx web server with uWsgi as
the application server gateway that relays requests to a
Django back-end. The PRF-Srv functionality is imple-
mented as a Django module written in Python. Storage
for the server’s key table and rate-limiting information is
done in MongoDB.

We use the Relic cryptographic library [2] (written
in C) with our own Python wrapper. We use Barreto-
Naehrig 254-bit prime order curves (BN-254) [4]. These
curves provide approximately 128-bits of security.

In our experiments the service is run on a single (vir-
tual) machine, but our software stack permits compo-
nents (web server, application sever, database) to be dis-
tributed among multiple machines with updates to con-
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figuration files.
For the purpose of comparison, we implemented three

variants of the PYTHIA service. The first two are the un-
blinded protocols described in Section 3. In these two
schemes, the client sendsm in the clear (possibly hashed
with a secret salt value first) and the server replies with
y = H1(t ‖m)k. In the first scheme, denoted UNB,
the server provides p = gk1 and a zero-knowledge proof
where g1 is a generator of G1. The second scheme, de-
noted BLS, uses a BLS signature for verification. The
server provides p = gk2 where g2 is a generator of G2 and
the client verifies the response by computing and com-
paring the values: e(y, g2) = e(H1(t ‖m), p).

Our partially-oblivious scheme is denoted PO.
For the evaluation below we use a Python client im-

plementing PRF-Cl for all three schemes using the same
libraries indicated above for the server and httplib2 to
perform HTTPS requests.

4.2 Performance

For performance and scalability evaluation we hosted
our PYTHIA server implementation on Amazon’s Elastic
Compute Cloud (EC2) using a c4.xlarge instance which
provides 8 virtual CPUs (Intel Xeon third generation,
2.9GHz), 15 GB of main memory, and solid state storage.
The web server, nginx, was configured with basic set-
tings recommended for production deployment including
one worker process per CPU.

Latency. We measured client query latency for each
protocol using two clients: one within the same Amazon
Web Service (AWS) availability zone (also c4.xlarge)
and one hosted at the University of Wisconsin–Madison
with an Intel Core i7 CPU (3.4 GHz). We refer to the first
as the LAN (local-area network) setting and the second
as the WAN (wide-area network) setting. In the LAN set-
tings we used the AWS internal IP address. All queries
were made over TLS and measurements include the time
required for clients to blind messages and unblind results
(PO), as well as verify proofs provided by the server (un-
less indicated otherwise). All machines used for evalua-
tion were running Ubuntu 14.04.

Microbenchmarks for group operations appear in
Figure 5 and Figure 6 shows the timing of individual op-
erations that comprise a single PRF evaluation. All re-
sults are mean values computed over 10,000 operations.
These values were captured on an EC2 c4.xlarge instance
using the Python profiling library line profiler. The most
expensive operations, by a large margin, are exponentia-
tion in Gt and the pairing operation. By extension, PO
sign, prove, and verify operations become expensive.

We measured latencies averaged over 1,000 PRF re-
quests (with 100 warmup requests) for each scheme and

Time (µs)
Group Group Op Exp Hashing
G1 5.7 175 77
G2 6.7 572 210
GT 9.8 1145 –

pairing operation (e) takes 1005 µs

Figure 5: Time taken by each operation in BN-254
groups. Hashing times are for 64-byte inputs.

Server Op Time (ms)
Table 1.2

Rate-limit 0.9
UNB BLS PO

Sign 0.3 0.3 1.5
Prove 0.5 0.3 2.5

Client Op UNB BLS PO
Blind - - 0.3

Unblind - - 1.2
Verify 0.9 2.0 4.0

Figure 6: Computation time for major operations to
perform a PRF evaluation. Table retrieves K[w] from
database; Rate-limit updates rate-limiting record in
database; and Sign generates the PRF output;

the results appear in Figure 7. Computation time domi-
nates in the LAN setting due to the almost negligible net-
work latency. The WAN case with cold connections (no
HTTP KeepAlive) pays a performance penalty due to the
four round-trips required to set up a new TCP and TLS
connection. While even 400 ms latencies are not pro-
hibitive in our applications, straightforward engineering
improvements would vastly improve WAN timing: us-
ing TLS session resumption, using lower-latency secure
protocol like QUIC [46], or even switching to a custom
UDP protocol (for an example one for oblivious PRFs,
see [5]).

Throughput. We used the distributed load testing tool
autobench to measure maximum throughput for each
scheme. We compare to a static page containing a typi-
cal PRF response served over HTTPS as a baseline. We
used two clients in the same AWS region as the server.
All connections were cold: no TLS session resumption
or HTTP KeepAlive. Results appear in Figure 8. The
maximum throughput for a static page is 2,200 connec-
tions per second (cps); UNB and BLS 1,400 cps; and PO
1,350 cps. Thus our PYTHIA implementation can handle
a large number of clients on a single EC2 instance. If
needed, the implementation can be scaled with standard
techniques (e.g., a larger number of web servers and ap-
plication servers on the front-end with a distributed key-
value store on the back-end).

Storage. Our implementation stores all ensemble pre-
key table (K) entries and rate-limiting information in
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Latency (ms)
LAN WAN

Scheme Cold Hot No π Cold Hot No π
UNB 7.0 3.8 2.4 389 82 80
BLS 7.9 4.9 2.4 392 85 80

PO 14.9 11.8 5.2 403 96 84
RTT ping 0.1 82

Figure 7: Average latency to complete a PRF-Cl with
client-server communication over HTTPS. LAN: client
and server in the same EC2 availability zone. WAN:
server in EC2 US-West (California) and client in Madi-
son, WI. Hot connections made with HTTP KeepAlive
enabled; cold connections with KeepAlive disabled. No
π: KeepAlive enabled; prove and verify computations
are skipped.
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Figure 8: Throughput of PRF-Srv requests and a static
page request over HTTPS measured using two clients
and a server hosted in the same EC2 availability zone.

MongoDB. A table entry is two 32 byte values: a SHA-
256 hash of the ensemble selector w and its associated
value K[w]. In MongoDB the average storage size is 195
bytes per entry (measured as the average of 100K en-
tries), including database overheads and indexes. This
implementation scales easily to 100 M clients with under
20 GB of storage.

To rate-limit queries, our implementation stores tweak
values along with a counter and a timestamp (to ex-
pire old entries) in MongoDB. Tweak values are also
hashed using SHA-256 which ensures entries are of con-
stant length. In our implementation each distinct tweak
requires an average of 144 bytes per entry (including
overheads and indexes). Note however that rate limit-
ing entries are purged periodically as counts are only
required for one rate-limiting period. Our implementa-
tion imposes rate-limits at hour granularity. Assuming a
maximum throughput of 2,000 requests per second, rate-
limiting storage never exceeds 1 GB.

All told, with only 20 GB stored data, PYTHIA can
serve over 100 M clients and perform rate-limiting at

PW-Onion(pw)

h1 ← MD5(pw)

sa←$ {0, 1}160

h2 ← HMAC[SHA-1](h1, sa)

h3 ← PRF-Cl(h2) = HMAC[SHA-256](h2,msk)

h4 ← scrypt(h3, sa)

h5 ← HMAC[SHA-256](h4)

Ret (sa, h5)

Figure 9: The Facebook password onion. PRF-Cl(h2)
invokes the Facebook PRF service HMAC[SHA-
256](h2,Ks) with PRF-service secret key Ks.

hour granularity. Thus fielding a database for PYTHIA
can be accomplished on commodity hardware.

5 Password Onions

Web servers and other systems frequently store pass-
words in hashed form. A password onion is the result of
additionally invoking a PRF service to harden the hash.
In currently suggested onions, one sequentially combines
local hashing and application of the PRF service.

We now present a service that we have implemented
on top of PYTHIA for managing password onions. First,
we describe the limitations of contemporary systems
as exemplified by a recently disclosed architecture em-
ployed by Facebook [42]. Then we show how our
password-onion system, which was easily engineered on
top of PYTHIA, can address these limitations.

In what follows, we use the term “client” or “web
server” to denote the server performing authentication
and storing derived values from passwords and “PRF
server” to denote the PYTHIA service.

5.1 Facebook password onion
An example of a contemporary system, used by Face-
book, is given in Figure 9.5 Their PRF service applies
HMAC using a service-held secret and returns the result.
In this architecture, an adversary that compromises the
web server and the password hashes it stores must still
mount an online attack against the PRF service to com-
promise accounts. This is a big advance on the hashing-
only practices that are commonly used.

The Facebook architecture nevertheless has some
shortcomings. It is easy to see from Figure 9 that Face-
book’s system, like most contemporary PRF services,
lacks several important features present in PYTHIA. One

5This figure is of “archaeological” interest. It appears that vul-
nerabilities in MD5 led to the addition of a layer of processing un-
der SHA-1; when vulnerabilities were found in SHA-1, Facebook then
added layers of SHA-256. As we explain later, full-blown replacement
of MD5 and SHA-1 with SHA-256 was not easily accomplished.
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is message privacy: the Facebook PRF service applies
HMAC to h2. This is the salted hash of the password,
and so learning the salt as well as compromising the PRF
service suffices to re-enable offline brute-force attacks.
This threat is avoided by PYTHIA due to blinding.

Another feature is batch key updates. In fact, the Face-
book PRF service doesn’t permit autonomous key up-
dates at all, in the sense of an update to msk that can be
propagated into PRF output updates. Should the client
(password database) be compromised, the only way to
reconstitute a hash in an existing password onion is to
wait until a user logs in and furnishes pw. It is not
clear whether the Facebook PRF service performs granu-
lar rate-limiting, although no such capability is indicated
in [41]. PYTHIA, as we shall see, addresses all of these
issues by design in our password onion system.

The Facebook onion also presents a subtle perfor-
mance issue. By applying cryptographic primitives se-
rially, the time to hash a password equals the time for
local computations, call it tlocal, plus the time for the
round-trip PRF service call, call it tprf . An attacker that
compromises the web service and PRF service incurs no
network latency, and thus may gain a considerable ad-
vantage in guessing time over an honest web server. In
our PYTHIA-based password onion service, we address
this issue by observing that it is possible to avoid seri-
alization of key derivation functions on the web server
and the PRF service call. That is, we introduce in our
PYTHIA-based service the idea of parallelizable pass-
word onions.

5.2 PYTHIA password onion
The onion algorithm we construct for PYTHIA is shown
in Figure 10. For PYTHIA, the output of PRF-Cl is
an element of a group GT . To use this service, a
web server stores (h, sa) upon password registration;
it verifies a proffered password pw′ by checking that
UpParOnion(w, sa, pw′) = h. Written out we have that:

h = uz = e(H1(sa), H2(pw))kwz.

This design ensures that the key update functions in the
PYTHIA API may be used to update onions as well. For
example, to update an ensemble key kw to k′w, the service
computes and furnishes to the web server an update token
∆w = k′w/kw. The web server may compute h∆w for
each stored value h.

Parallelization. Password verification here is paral-
lelizable in the sense that z and u may be computed in-
dependently and then combined. Such parallel imple-
mentation of the onion achieves a password verification
latency of max{tlocal, tprf} (plus a single exponentia-
tion), as opposed to tlocal + tprf in a serialized imple-
mentation.

UpParOnion(w, sa, pw)

z ← PBKDF(pw, sa)

u← PRF-Cl(w, sa, pw)

h← uz

Ret (h, sa)

Figure 10: An updatable, parallelizable password onion.
PRF-Cl returns elements of a group G. The value w is a
unique PRF-service identifier for the web server (e.g., a
random 256-bit string) and sa is a random per-user salt
value.

A web server generally aims to achieve a verification
latency equal to some latency target T that is high enough
to slow offline brute-force attacks, but low enough not to
burden users. For a parallelized onion a web server can
meet its latency target by setting tlocal, tprf ≈ T . At the
same time an offline attacker that has compromised the
web server and PYTHIA must perform about tlocal+tF >
T work to check a single password guess, where tF is
the computation time of Fkw (i.e., tprf minus network
latency). An attacker can parallelize, but her total work
still goes up relative to the serial onion approach for the
same latency target T .

We estimate the security improvement of parallel
onions over serial onions using our benchmarks from
Section 4.2. We fix a login latency budget of T =
300 ms.6 The latency costs for a PYTHIA query with
hot connections are 12 ms (LAN) and 96 ms (WAN). If
one performs computations serially with a fixed T then
PBKDF computations need to be reduced by 4% (LAN)
and 32% (WAN) compared to the parallel approach. In
the event that the PYTHIA server and password database
are compromised, the serial onion enables speedup of of-
fline dictionary attacks by the same percentages.

Rate limiting and logging. The transparency of tweaks
enables the PYTHIA PRF service in this setting to execute
any of a wide range of rate-limiting policies with per-
account visibility (in contrast to what may be in Face-
book an account-blind PRF service). As an example
demonstrating the flexibility of our architecture, in our
implementation PYTHIA performs a tiered rate-limiting:
for a given account (t), it limits queries to at most 10 per
hour per account, and at most 300 per month. (In ex-
pectation, guessing a random 4-digit PIN would require
1.4 years under this policy.) It logs violations of these
thresholds. In a production environment, it could also
send alerts to security administrators.

We emphasize that a wide range of other rate-limiting
policies is possible. We also point out that PYTHIA’s rate

6This is the default setting for Python’s bcrypt and scrypt modules,
though all PBDKFs are tunable so one can choose T to be any value
desired.
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limiting supplements that normally implemented at the
web server for remote login requests. PYTHIA performs
rate limiting and may issue alerts even if the web server
is compromised.

Key update. The key update calls in the PYTHIA API,
and the ability to rotate either kw or msk efficiently,
propagates up to the password onion service. Key up-
dates instantly invalidate the web server’s existing pass-
word database—a useful capability in case of compro-
mise. A compromised database becomes useless to an
attacker attempting to recover passwords, even with the
ability to query PYTHIA. Using a key update token, the
web server can then recover from compromise by re-
freshing its database.

We created a client simulator with MongoDB and
the mongoengine Python module. With this we bench-
marked key updates with 100,000 database entries. The
client requested a key update from PYTHIA, received the
update token ∆w, and updated each database entry. The
complete update required less than 1 ms per entry, and
terminated in less than 97 seconds for all 100,000 en-
tries. For a larger database we assume updates scale lin-
early, and so an update for 1 million users completes in
under 17 minutes.

The web server need not need lock the database to per-
form updates; it can execute them in parallel with normal
login operations. Doing so does require additional ver-
sioning information for each entry to indicate the version
of kw (in the simplest form, whether or not it has received
the latest update).

Database replication. Password databases can be repli-
cated with a key transfer using the API call Transfer (see
Appendix A). In this replication each new copy uses a
unique ensemble key selector and thus a cryptograph-
ically independent PRF service key. Given a database
w, {(sa1, h1), . . . , (sad, hd)} with d users, the adminis-
trator invokes Transfer(w,w′) to obtain a token ∆w→w′ .
The client computes h′i = h

∆w→w′
i for i ∈ [1..d] and

sends the new database (w′, {(sa1, h
′
1), . . . , (sad, h

′
d)})

to the new server. The client does not modify salt values,
which allows PYTHIA to link online guessing attacks car-
ried out from multiple compromised web servers. Repli-
cation in this way costs database copy time plus 1 ms per
entry to apply the update token, thus making it on the
order of minutes for hundreds of thousands of users.

6 Hardened Brainwallets

Brainwallets are a common but dangerous way to se-
cure accounts in the popular cryptocurrency Bitcoin, as
well as in less popular cryptocurrencies such as Litecoin.
Here we describe how the PYTHIA service can be used

directly as a means to harden brainwallets. This appli-
cation showcases the ease with which a wide variety of
applications can be engineered around PYTHIA.

How brainwallets work. Every Bitcoin account has an
associated private / public key pair (sk, pk). The private
key sk is used to produce digital (ECDSA) signatures
that authorize payments from the account. The public
key pk permits verification of these signatures. It also
acts as an account identifier; a Bitcoin address is derived
by hashing pk (under SHA-256 and RIPEMD-160) and
encoding it (in base 58, with a check value).

Knowledge of the private key sk equates with control
of the account. If a user loses a private key, she therefore
loses control over her account. For example, if a high en-
tropy key sk is stored exclusively on a device such as a
mobile phone or laptop, and the device is seized or physi-
cally destroyed, the account assets become irrecoverable.

Brainwallets offer an attractive remedy for such phys-
ical risks of key loss. A brainwallet is simply a password
or passphrase P memorized by a Bitcoin account holder.
The private key sk is generated directly from P . Thus
the user’s memory serves as the only instrument needed
to authorize access to the account.

In more detail, the passphrase is typically hashed using
SHA-256 to obtain a 256-bit string sk = SHA-256(P ).
Bitcoin employs ECDSA signatures on the secp256k1
elliptic curve; with high probability (≈ 1 − 2−126), sk
is less than the group order, and a valid ECDSA pri-
vate key. (Some websites employ stronger key derivation
functions. For example, WrapWallet by keybase.io [32]
derives sk from an XOR of each of PBKDF2 and scrypt
applied to P and permits use of a user-supplied salt.)

Since a brainwallet employs only P as a secret, and
does not necessarily use any additional security mea-
sures, an attacker that guesses P can seize control of a
user’s account. As account addresses are posted publicly
in the Bitcoin system (in the “blockchain”), an attacker
can easily confirm a correct guess. Brainwallets are thus
vulnerable to brute-force, offline guessing attacks. Nu-
merous incidents have come to light showing that brain-
wallet cracking is pandemic [15].7

6.1 A PYTHIA-hardened brainwallet

PYTHIA offers a simple, powerful means of protecting
brainwallets against offline attack. Hardening P in the
same manner as an ordinary password yields a strong key
P̃ that can serve in lieu of P to derive sk.

To use PYTHIA, a user chooses a unique identifier id,
e.g., her e-mail address, an account identifier acct, and a

7At one point, rumor had it that cracking brainwallets was more
profitable than “mining,”, the basic process of generating fresh Bit-
coins.
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passphrase P . The identifier acctmight be used to distin-
guish among Bitcoin accounts for users who wish to use
the same password for multiple wallets. The client then
sends (w = id, t = id ‖ acct,m = P ) to the PYTHIA
service to obtain the hardened value Fkw(t,m) = P̃ .
Here, id is used both as an account identifier and as part
of the salt. Message privacy in PYTHIA ensures that the
service learns nothing about P . Then P̃ is hashed with
SHA-256 to yield sk. The corresponding public key
pk and address are generated in the standard way from
sk [8].

PYTHIA forces a would-be brainwallet attacker to
mount an online attack to compromise an account. Not
only is an online attack much slower, but it may be rate-
limited by PYTHIA and detected and flagged. As the
PYTHIA service derives P̃ using a user-specific key, it
additionally prevents an attacker from mounting a dictio-
nary attack against multiple accounts. While in the con-
ventional brainwallet setting, two users who make use
of the same secret P will end up controlling the same
account, PYTHIA ensures that the same password P pro-
duces distinct per-user key pairs.

Should an attacker compromise the PYTHIA service
and steal msk and K, the attacker must still perform an
offline brute-force attack against the user’s brainwallet.
So in the worst case, a user obtains security with PYTHIA
at least as good as without it.

Additional security issues. A few subtle security issues
deserve brief discussion:

• Stronger KDFs: To protect against brute-force
attack in the event of PYTHIA compromise,
a resource-intensive key-derivation function may
be desirable, as is normally used in password
databases. This can be achieved by replacing the
SHA-256 hash of P̃ above with an appropriate KDF
computation, or alternatively using an onion ap-
proach described in Section 5.

• Denial-of-service: By performing rate-limiting,
PYTHIA creates the risk of targeted denial-of-
service attacks against Bitcoin users. As Bitcoin
is pseudonymous, use of an e-mail address as a
PYTHIA key-selector suffices to prevent such at-
tacks against users based on their Bitcoin addresses
alone. Users also have the option, of course, of us-
ing a semi-secret id. A general DoS attack against
the PYTHIA service is also possible, but of similar
concern for Bitcoin itself [9].

• Key rotation: Rotation of an ensemble key kw (or
the master key msk) induces a new value of P̃ and
thus a new (sk, pk) pair and account. A client can
handle such rotations in the naı̈ve way: transfer
funds from the old address to the new one.

• Catastrophic failure of PYTHIA: If a PYTHIA ser-
vice fails catastrophically, e.g., msk or K is lost,
then in a typical setting, it is possible simply to
reset users’ passwords. In the brainwallet case,
the result would be loss of virtual-currency assets
protected by the server—a familiar event for Bit-
coin users [38]. This problem can be avoided,
for instance, using a threshold implementation of
PYTHIA, as mentioned in Section 6.2 or storing sk
in a secure, offline manner like a safe-deposit box
for disaster recovery.

6.2 Threshold Security
In order to gain both redundancy and security, we give
a threshold scheme that can be used with a number of
Pythia servers to protect a secret under a single pass-
word. This scheme uses Shamir’s secret sharing thresh-
old scheme [48] and gives (k, n) threshold security. That
is, initially, n Pythia servers are contacted and used to
protect a secret s, and then any k servers can be used to
recover s and any adversary that has compromised fewer
than k Pythia servers learns no information about s.

Preparation. The client chooses an ensemble key se-
lector w, tweak t, password P , and contacts n Pythia
servers to compute qi = PRF-Cli(w, t, P ) mod p for
0 < i ≤ n. The client selects a random polynomial
of degree k − 1 with coefficients from Z

∗
p where p is

a suitably large prime: f(x) =
∑k−1
j=0 x

jaj . Let the
secret s = a0. Next the client computes the vector
Φ = (φ1, ..., φn) where φi = f(i) − qi. The client
durably stores the value Φ, but does not need to protect
it (it’s not secret). The client also stores public keys pi
from each Pythia server to validate proofs when issuing
future queries.

Recovery. The client can reconstruct s if she has Φ by
querying any k Pythia servers giving k values qi. These
qi values can be applied to the corresponding Φ values
to retrieve k distinct points that lie on the curve f(x).
With k points on a degree k − 1 curve, the client can
use interpolation to recover the unique polynomial f(x),
which includes the curve’s intercept a0 = s.

Security. If an adversary is given Φ, w, t, the public
keys pi, a ciphertext based on s, and the secrets from
m < k Pythia servers, the adversary has no information
that will permit her to verify password guesses offline.
Compared to [48], this scheme reduces the problem of
storing n secrets to having access to n secure OPRFs and
durable (but non-secret) storage of the values Φ and pub-
lic keys pi.

Verification. Verification of server responses occurs
within the Pythia protocol. If a server is detected to be
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dishonest (or goes out of service), it can be easily re-
placed by the client without changing the secret s. To re-
place a Pythia server that is suspected to be compromised
or detected as dishonest, the client reconstructs the secret
s using any k servers, executes Reset operations on all
remaining servers: this effects a cryptographic erasure
on the values Φ and f(x). The client then selects a new,
random polynomial, keeping a0 fixed, and generates and
stores an updated Φ′ that maps to the new polynomial.

7 Related Work

We investigated a number of designs based on exist-
ing cryptographic primitives in the course of our work,
though as mentioned none satisfied all of our design
goals. Conventional PRFs built from block ciphers or
hash functions fail to offer message privacy or key rota-
tion. Consider instead the construction H(t ‖m)kw for
H : {0, 1}∗ → G a cryptographic hash function map-
ping onto a group G. This was shown secure as a con-
ventional PRF by Naor, Pinkas, and Reingold assum-
ing decisional Diffie-Hellman (DDH) is hard in G and
when modeling H as a random oracle [43]. It supports
key rotations (in fact it is key-homomorphic [12]) and
verifiability can be handled using non-interactive zero-
knowledge proofs (ZKP) as in PYTHIA. But this ap-
proach fails to provide message privacy if we submit both
t and m to the server and have it compute the full hash.

One can achieve message-hiding by using blinding:
have the client submit X = H(t ‖m)r for random
r ∈ Z|G| and the server reply with Xkw as well as a ZKP
proving this was done correctly. The resulting scheme
is originally due to Chaum and Pedersen [22], and sug-
gested for use by Ford and Kaliski [28] in the context
of threshold password-authenticated secret sharing (see
also [3, 18, 23, 37]). There an end user interacts with
one or more blind signature servers to derive a secret au-
thentication token. If G comes equipped with a bilin-
ear pairing, one can dispense with ZKPs. The resulting
scheme is Boldyreva’s blinded version [11] of BLS sig-
natures [13]. However, neither approach provides gran-
ular rate limiting when blinding is used: the tweak t is
hidden from the server. Even if the client sends t as well,
the server cannot verify that it matches the one used to
compute X and attackers can thereby bypass rate limits.

To fix this, one might use Ford-Kaliski with a sep-
arate secret key for each tweak. This would result in
having a different key for each unique w, t pair. Mes-
sage privacy is maintained by the blinding, and querying
w, t,H(t′ ‖m)r for t 6= t′ does not help an attacker cir-
cumvent per-tweak rate limiting. But now the server-side
storage grows in the number of unique w, t pairs, a client
using a single ensemble w must now trackN public keys
when they use the service for N different tweaks, and

key rotation requires N interactions with the PRF server
to get N separate update tokens (one per unique tweak
for which a PRF output is stored). When N is large and
the number of ensembles w is small as in our password
storage application, these inefficiencies add significant
overheads.

Another issue with the above suggestions is that their
security was only previously analyzed in the context of
one-more unforgeability [45] as targeted by blind signa-
tures [21] and partially blind signatures [1]. (Some were
analyzed as conventional PRFs, but that is in a model
where adversaries do not get access to a blinded server
oracle.) The password onion application requires more
than unforgeability because message privacy is needed.
(A signature could be unforgeable but include the en-
tire message in its signature, and this would obviate the
benefits of a PRF service for most applications.) These
schemes, however, can be proven to be one-more PRFs,
the notion we introduce, under suitable one-more DDH
style assumptions using the same proof techniques found
in Appendix B.

Fully oblivious PRFs [29] and their verifiable ver-
sions [31] also do not allow granular rate limiting. We
note that the Jarecki, Kiayias, and Krawczyk construc-
tions of verifiable OPRFs [31] in the RO model are
essentially the Ford-Kaliski protocol above, but with
an extra hash computation, making the PRF output
H ′(t ‖m ‖H(t ‖m)kw). Our notion of one-more un-
predictability in the appendix captures the necessary re-
quirements on the inner cryptographic component, and
might modularize and simplify their proofs. Their trans-
form is similar to the unique blind signature to OPRF
transformation of Camenisch, Neven, and shelat [19].
None of these efficient oblivious PRF protocols support
key rotations (with compact tokens or otherwise) as the
final hashing step destroys updatability.

The setting of capture-resilient devices shares with
ours the use of an off-system key-holding server and the
desire to perform cryptographic erasure [35, 36]. They
only perform protocols for encryption and signing func-
tionalities, however, and not (more broadly useful) PRFs.
They also do not support granular rate limiting and mas-
ter secret key rotation.

Our main construction coincides with prior ones
for other contexts. The Sakai, Ohgishi, and Kasa-
hara [47] identity-based non-interactive key exchange
protocol computes a symmetric encryption key as
e(H1(ID1), H2(ID2))k for k a master secret held by
a trusted party and ID1 and ID2 being the identities
of the parties. See [44] for a formal analysis of their
scheme. Boneh and Waters suggest the same construc-
tion as a left-or-right constrained PRF [14]. The settings
and their goals are different from ours, and in particular
one cannot use either as-is for our applications. Naı̈vely
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one might hope that returning the constrained PRF key
H1(t)kw to the client suffices for our applications, but
in fact this totally breaks rate-limiting. Security analysis
of our protocol requires new techniques, and in particu-
lar security must be shown to hold when the adversary
has access to a half-blinded oracle — this rules out the
techniques used in [14, 44].

Key-updatable encryption [12] and proxy re-
encryption [10] both support key rotation, and could
be used to encrypt password hashes in a way support-
ing compact update tokens and that prevents offline
brute-force attacks. But this would require encryption
and decryption to be handled by the hardening service,
preventing message privacy.

Verifiable PRFs as defined by [24,25,34,39] allow one
to verify that a known PRF output is correct relative to a
public key. Previous verifiable PRF constructions are not
oblivious, let alone partially oblivious.

Threshold and distributed PRFs [24, 40, 43] as well as
distributed key distribution centers [43] enable a suffi-
ciently large subset of servers to compute a PRF output,
but previous constructions do not provide the granular
rate limiting and key rotation we desire. However, it is
clear that there are situations where applications would
benefit from a threshold implementation of PYTHIA, for
both redundancy and distribution of trust, as discussed in
Section 6.2 for the case of brainwallets.

8 Conclusion

We presented the design and implementation of PYTHIA,
a modern PRF service. Prior works have explored the use
of remote cryptographic services to harden keys derived
from passwords or otherwise improve resilience to com-
promise. PYTHIA, however, transcends existing designs
to simultaneously support granular rate limiting, efficient
key rotation, and cryptographic erasure. This set of fea-
tures, which stems from practical requirements in appli-
cations such as enterprise password storage, proves to
require a new cryptographic primitive that we refer to as
a partially oblivious PRF.

Unlike a (fully) oblivious PRF, a partially oblivious
PRF causes one portion of an input to be revealed to
the server to enable rate limiting and detection of on-
line brute-force attacks. We provided a bilinear-pairing
based construction for partially oblivious PRFs that is
highly efficient and simple to implement (given a pair-
ings library), and also supports efficient key rotations. A
formal proof of security is unobtainable using existing
techniques (such as those developed for fully oblivious
PRFs). We thus gave new definitions and proof tech-
niques that may be of independent interest.

We implemented PYTHIA and show how it may be
easily integrated it into a range of applications. We de-

signed a new enterprise “password onion” system that
improves upon the one recently reported in use at Face-
book. Our system permits fast key rotations, enabling
practical reactive and proactive key management, and
uses a parallelizable onion design which, for a given au-
thentication latency, imposes more computational effort
on attackers after a compromise. We also explored the
use of PYTHIA to harden brainwallets for cryptocurren-
cies.

References

[1] Masayuki Abe and Tatsuaki Okamoto. Provably
secure partially blind signatures. In Advances in
Cryptology–CRYPTO. Springer, 2000.

[2] D. F. Aranha and C. P. L. Gouvêa. RELIC is
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Selector option Description
Email Contact email for selector
Resettable Whether client-requested rotations allowed
Limit Establish rate-limit per t
Time-out Date/time to delete kw
Public-key Key under which to encrypt and store up-

date and authentication tokens
Alerts Whether to email contact upon rate limit vi-

olation

Figure 11: Optional settings for establishing key selec-
tors in PYTHIA.

A Additional PYTHIA API details

Many PYTHIA-dependent services can benefit from ad-
ditional API features and calls beyond the primary ones
discussed in the body of the paper. (For example, the
PYTHIA password onion system in Section 5 uses the
Transfer API call.) We detail these other API features in
this appendix.

Key-management options. The client can specify a
number of options in the call Init regarding management
of the ensemble key kw. The client can provide a contact
email address to which alerts and authentication tokens
may be sent. (If no e-mail is given, no API calls requiring
authentication are permitted at present and no alerts are
provided. Later versions of PYTHIA will support other
authentication and alerting methods.)

The client can specify whether kw should be resettable
(default is “yes”). The client can specify a limit on the
total number of Fkw queries that should be allowed be-
fore resetting K[w] (default is unlimited) and/or an ab-
solute expiration date and time in UTC at which point
K[w] is deleted (default is no time-out). Either of these
options overrides the resettable flag. The client can spec-
ify a public key pkcl for a public-key encryption scheme
under which to encrypt authentication tokens and update
tokens (for Reset, Transfer, as described below, and for
master secret key rotations). Finally, the client can re-
quest that alerts be sent to the contact email address in
the case of rate limit violations. This option is ignored
if no contact email is provided. The options are summa-
rized in Figure 11.

PYTHIA also offers some additional API calls, given
in Figure 12, which we now describe.

Ensemble transfer. A client can create a new ensemble
w′ (with the same options as in Init) while receiving an
update token that allows PRF outputs under ensemble w
to be rolled forward to w′. This is useful for importing
a password database to a new server. The PYTHIA ser-
vice returns an update token ∆w→w′ for this purpose and
stores it encrypted under pkcl. For the case w′ = w, this
call also allows option updates on an existing ensemble
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Command Description
Transfer(w,w′ [, options]) Creates new ensemble

w′; outputs update token
∆w→w′ ; resets kw

SendTokens(w, authtoken) Sends stored update tokens to
client

PurgeTokens(w, authtoken) Purges all stored update to-
kens for ensemble w

Figure 12: The PYTHIA API. The individual calls are
explained in detail in the text.

w.

Update-token handling. The PYTHIA service stores
update tokens encrypted under pkcl, with accom-
panying timestamps for versioning. The API call
SendTokens causes these to be e-mailed to the client,
while PurgeTokens causes update-token ciphertexts to
be deleted from PYTHIA.

Note that once an update token is deleted, old PRF
values to which the token was not applied become cryp-
tographically erased — they become random values un-
related to any messages. A client can therefore delete the
key associated with an ensemble by calling Reset and
PurgeTokens.

Master secret rotations. PYTHIA can also rotate its
master secret keymsk to a new keymsk′. Recall that en-
semble keys are computed as kw = HMAC(msk,K[w]),
so rotation of msk results in rotation of all ensemble
keys. To rotate to a new msk′, the server computes kw
for all ensembles w with entries in K, and stores δw en-
crypted under pkcl. If no encryption key is set, then the
token is stored in the clear. This is a forward-security
issue while it remains, but only for that particular key
ensemble. At this point msk is safe to delete. Clients
can be informed of the key rotation via e-mail.

Subsequent SendTokens requests will return the re-
sulting update token, along with any other stored update
tokens for the ensemble. If multiple rotations occur be-
tween client requests, then these can be aggregated in the
stored update token for each ensemble. This is trivial if
they are stored in the clear (just multiply the new token
against the old) and also works if they are encrypted with
an appropriately homomorphic encryption scheme such
as ElGamal [27].

B Formal Security Analyses

We provide formal security notions for partially oblivi-
ous PRFs, and proofs of security relative to them for our
scheme from Section 3.

Partially-oblivious PRFs. A partially oblivious PRF
protocol Π = (K,PRF-Cl,PRF-Srv, F ) consists of the

following. The key generation algorithm K outputs a
public key and private key pair (pk, sk). We assume
that from sk one can compute pk easily. The PRF-Srv
algorithm takes input the secret key sk and a client re-
quest message (a bit string) and returns a server re-
sponse message (another bit string). The client algo-
rithm PRF-Cl takes inputs a tweak t and message m,
can make a single call to PRF-Srv, and outputs a value.
Finally we associate to the protocol a keyed function
Fsk : {0, 1}∗ × {0, 1}∗ → {0, 1}∗. A scheme is correct
if executing PRF-ClPRF-Srvsk(·)(t,m) with fresh coins
matches Fsk(t,m) with probability one. In words, the
protocol computes the appropriate function of t,m.

Bilinear pairing setups. Let G1,G2,GT be groups
all of order p that have associated to them an admissi-
ble bilinear pairing e : G1 × G2 → GT . Recall that
for generators g1 ∈ G1, g2 ∈ G2, there exists a gen-
erator gT ∈ GT such that e(gα1 , g

β
2 ) = gαβT for all

α, β ∈ Zp. As shorthand for below we refer to a pair-
ing setup G = (g1, g2, gT ,G1,G2,GT , e) and assume
some compact description of G as a bit-string where ap-
propriate.

The scheme. The partially-oblivious PRF at the core8 of
our bilinear pairing scheme from Section 3 is as follows
for some fixed pairing setup G. Let H1 : {0, 1}∗ → G1

and H2 : {0, 1}∗ → G2 be hash functions that we will
later model as random oracles.

Key generation K picks a random exponent sk and
computes a public key pk = gs1k. The PRF-Cl(t,m)
algorithm computes a mask r←$ Zp and sends t and
x = H2(m)r to the server. The PRF-Srv(sk, t, x) com-
putes y = e(H1(t), x)sk and a ZKP π that DLg1(pk) =
DLx̃(y) where x̃ = e(H1(t), x). It sends pk, y, π to the
client, who verifies the ZKP, deletes it, and then outputs
y1/r. The correctness of the scheme follows from the
correctness of the ZKP and the properties of the pairing.

The ZKP is used to ensure that a malicious server re-
sponds as per the protocol. In the following security
analyses we focus primarily on malicious clients, and for
simplicity analyze a simpler version of the protocol that
omits the ZKP. The proofs found below can be extended
to the full protocol by applying the zero-knowledge se-
curity of the proof systems that we use (i.e., use the
zero-knowledge simulator to produce fake, but realistic-
looking to the client, proofs).

8For brevity we omit key selectors here, and instead focus on ana-
lyzing security for a single key instance. Assuming properly generated
keys for each selector, one can show that security for a single key in-
stance implies security for many.
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Game om-UNPAΠ
(pk, sk)←$K
c← 0

(t1,m1, σ1), . . . , (t`,m`, σ`)←$APRF-Srv,H1,H2

If ∃i 6= j . (ti,mi) = (tj ,mj) then Ret false
Ret (∧i(σi = FH1,H2

sk (ti,mi)) ∧ c < `)

PRF-Srv(t, Y )

c← c+ 1

Ret PRF-SrvH1,H2
sk (t, Y )

Figure 13: Security game for one-more unpredictability.

B.1 Unpredictability Security

We define a one-more unpredictability security notion.
It modifies one-more unforgeability [45] to be suitable
for the setting of unpredictable functions (as opposed to
publicly verifiable signatures). The game is shown in
Figure 13. We associate to any protocol Π, adversary A,
and query number q the one-more-unpredictability ad-
vantage defined as

Advom-unp
Π,q (A) = Pr

[
om-UNPAΠ,q ⇒ true

]
.

The probability here (and for games defined later below)
is over all random coins used by the procedures and the
adversary. The event refers to the probability that the
value returned by the main procedure is true. In words,
the definition requires that an adversary cannot produce `
outputs of the PRF using less than ` queries on partially-
blinded inputs to the server. One can easily extend this
notion to deal with full blinded inputs as well, but we
will not need this.

This notion of security is sufficient for PYTHIA in ap-
plications where the output of the protocol is not stored,
but rather used as an unforgeable credential such as with
our hardened Brainwallet application (Section 6).

The security of our scheme is based on the fol-
lowing one-more bilinear computational Diffie-Hellman
(BCDH) problem, an extension of the one-more CDH
assumption given by Boldyreva [11]. To the best
of our knowledge this assumption is new, but it is
a straightforward adaptation of previous one-more as-
sumptions [6, 11] to our setting. For a pairing setup G,
game om-BCDHG is defined in Figure 14. In words, the
adversary gets a group element gs1k ∈ G1 as well as
target oracles Targ1,Targ2 that return random group ele-
ments in G1,G2 respectively. Finally the adversary can
query a helper oracle Help that raises GT elements to the
k. To win, it must compute ` values e(Xi, Yj)

k for `
larger than the number of helper queries and each Xi, Yj
a unique pair of (distinct) values returned by the target or-
acle. Let Advom-cdh

G (B) = Pr
[

om-BCDHBG ⇒ true
]
.

We have the following theorem establishing the one-

Game om-BCDHBG
sk←$ Zp

qh, q1,t, q2,t ← 0

(i1, j1, σ1), . . . , (i`, j`, σ`)←$ATarg1,Targ2,Help(G, gs1k)
If qh ≥ ` then Ret false
If ∃α . (iα > q1,t) ∨ (jα > q2,t) then Ret false
If ∃α 6= β . (iα, jα) = (iβ , jβ) then Ret false
Ret ∀α . e(Xiα , Yjα)k = σα

Targ1

q1,t ← q1,t + 1 ; Xq1,t ←$ G1 ; Ret Xq1,t

Targ2

q2,t ← q2,t + 1 ; Yq2,t ←$ G2 ; Ret Yq2,t

Help(Z)
qh ← qh + 1 ; Ret Zsk

Figure 14: Security game for a one-more
BCDH assumption for bilinear pairing setting
G = (g1, g2, gt,G1,G2,GT , e).

more unpredictability of our scheme The proof is essen-
tially identical to the proof of Boldyreva’s blind signa-
tures [11].

Theorem 1 Let Π be the simplified partially oblivious
PRF protocol for a pairing setup G and H1, H2 mod-
eled as random oracles. Then for any one-more un-
predictability adversary A making at most q PRF-Srv
queries, we give in the proof below a one-more CDH ad-
versary B such that

Advom-unp
Π (A) ≤ Advom-cdh

G (B)

where B runs in time that of A plus O(q) group opera-
tions.

Proof: We assume without loss of generality that A
never repeats a query to either random oracle and makes
a random oracle H1(ti) and H2(mi) query for each
(ti,mi, σi) triple it outputs. The adversary B will work
as follows when given inputs G, X and access to oracles
Targ1,Targ2,Help. First, it runs A. Whenever A makes
an H1(t) query, B queries Targ1 to obtain a G1-element
that we will denote X[t], sets ct to be the number of H1

queries so far (including the current), and returns X[t]
to A. Whenever A makes an H2(m) server query, B
queries Targ2, obtains a G2-element that we will denote
Y [m], sets dm to be the number of H2 queries so far (in-
cluding the current), and returns Y [m] to A. Whenever
A makes a PRF-Srv(t, Y ) query, the adversary B com-
putes Z ← e(H1(t), Y ), and then queries Z to its helper
oracle Help to obtain a value σ ∈ GT . It returns σ to A.

Eventually A outputs a series of triples
(t1,m1, σ1), . . . , (tq,mq, σq). At this point
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adversary B outputs the sequence of pairs
(ct1 , dm1 , σ1), . . . , (cmq , dmq , σq).

Suppose A wins its game. Then it made at most q − 1
queries to PRF-Srv and so B makes at most q−1 queries
to Help. It is also the case that all predictions by A are
for unique tag, message pairs, meaning that B’s output
will also be for unique pairs of targets. Finally, it is clear
that correct predictions σi are also BCDH solutions.

B.2 Pseudorandomness Security

Unpredictability security, like unforgeability, is not suf-
ficient in all applications. In particular, it could be that
a protocol produces unforgeable outputs but each out-
put leaks everything about the message. So in our use
of PYTHIA for storage of hardened password hashes we
need something more. Ideally we would prove a ver-
sion of oblivious PRF security suitably adapted for the
partially oblivious setting. However, we do not believe
our schemes can be proven secure relative to such no-
tions since they require “programming” the PRF outputs.
One might adapt our schemes to meet them, but the most
efficient adaptation — considering instead F̃k(t,m) =
H(t ‖m ‖ e(H1(t), H2(m))k) as in [31] — prevents one
from performing key updates. At the same time, we
could find no attacks that exploit the algebraic structure
revealed by storing the unhashed output. This leaves the
question of what level of security can be proven about
our scheme.

We introduce a new notion called one-more PRF se-
curity. Intuitively for a scheme that meets it, an attacker
that interacts q − 1 times with PRF-Srv still cannot dis-
tinguish one more evaluation of Fk from a random point.
This appears to capture the security properties we re-
quire in the web server compromise case: even if the
adversary breaks in, it can only distinguish from random
points as much of the stored hardened hashes as queries
to PRF-Srv.

To build up some intuition towards a formal notion,
consider giving an adversary two oracles. The first is
a real-or-random function oracle RoR and the second is
an oracle for the server’s implementation of the proto-
col PRF-Srv. In a normal PRF game one would simply
have RoR reply either always with Fk(t,m) upon query
t,m or always with a fresh random point. (Assume the
adversary never repeats a query to RoR.) But this game
is trivial to win because the adversary can simply use
the PRF-Srv oracle to compute Fk(t,m) and check if
it matches the value returned by RoR(t,m). We might
want to somehow restrict queries to PRF-Srv but there
seems no way to do this given the ability of clients to
blind their messages.

Instead we go a different route, adapting the concept
of one-more unpredictability to a pseudorandomness set-

Game om-PRFAΠ,ν
(pk, k)←$K ; q, c← 0

(i1, . . . , i`, b
′)←$ARoR,PRF-Srv,H1,H2

If ` > q or c ≥ ` then Ret false
If ∃α 6= β . iα = iβ then Ret false
Ret b′ =

⊕`
α=1

~b[iα]

RoR(t,m)

q ← q + 1 ; ~b[q]←$ {0, 1}
Z1 ← FH1,H2

k (t,m)

Z0←$ Rng

Ret Z~b[i]

PRF-Srv(t, Y )

c← c+ 1

Ret PRF-SrvH1,H2
k (t, Y )

Figure 15: Security game for one-more pseudorandom-
ness.

ting. Let Π be a partially-oblivious PRF protocol. The
game om-PRFΠ is defined in Figure 15. It gives the ad-
versary a challenge oracle RoR to which it can query
(t,m) pairs. The oracle flips a fresh challenge bit and re-
sponds accordingly. We restrict attention to adversaries
that never repeat a query to RoR. Finally the adversary
gets access to a PRF-Srv oracle. The adversary’s task
is to determine all of the challenge bits, and we mea-
sure this by asking that it guess the XOR of them. This
XOR measure is borrowed from the multi-instance secu-
rity notions9 of Bellare, Ristenpart, and Tessaro [7]. We
associate to an adversaryA and Π the advantage measure
defined by

Advom-prf
Π (A) =

∣∣2 · Pr
[

om-PRFAΠ ⇒ true
]
− 1
∣∣ .

Note that for any correct protocol Π there exists an ef-
ficient adversary that can win the game with probability
1/2 by querying RoR once on (1, t,m) for arbitrary t,m
and outputting (1, b′) for randomly chosen b′. Hence
the advantage measure is scaled as shown. The use of
XOR ensures that even if one can solve q − 1 chal-
lenges (e.g., using the PRF-Srv oracle) determining b′

for q challenges requires gaining some advantage over
the remaining challenge bit.

Relationship with PRF security. This one-more PRF
notion is a strict strengthening of the conventional PRF
security. Consider the following formulation of PRF se-
curity due originally to Goldreich, Goldwasser and Mi-
cali [30]. An adversary A is given access to two oracles,
one that returns Fk(t,m) on query t,m of their choos-
ing, and one that upon query t∗,m∗ of the adversary’s

9Our one-more notions are not measuring multi-instance security in
the sense of [7] as the same key underlies all challenges.

18



choosing flips a bit b and returns either Fk(t∗,m∗) or a
random point according to the bit. We allow A to make
multiple queries to the first oracle but only a single to the
second.

We now sketch a proof showing that PRF security
as defined above is implied by one-more PRF security.
Consider any such PRF adversary A against Fk(t,m).
We can build a one-more PRF adversary B whose advan-
tage upper bounds A’s PRF advantage, as follows. To
any Fk(t,m) query by A, the adversary B first queries
t,m to its own RoR oracle and also runs PRF-Cl(t,m)
using its PRF-Srv oracle in order to compute Fk(t,m).
It determines the challenge bit for this RoR query and
returns Fk(t,m). When A makes a query to its sec-
ond oracle, the challenge oracle, adversary B queries its
RoR oracle and returns the result. When A outputs a bit
b′, the adversary B outputs b′ XOR’d with each of the
already-solved challenge bits. It is easy to analyze this
formally and show that B wins whenever A would in the
PRF game.

Relationship with unpredictability. Showing that one-
more PRF security is strictly stronger than one-more
unpredictability is straightforward. Consider an adver-
sary A who computes ` tuples (ti,mi, σi), where σi =
F (ti,mi), and c < ` queries to PRF-Srv. An adversary
B can use A to win the om-PRF game with the same ad-
vantage by forwarding queries to the corresponding or-
acle, and wins the game by setting bi based on whether
RoR(ti,mi) = σi.

However, given a one-more unpredictable function F ,
the function F ′(t,m) := F (t,m) ‖m is still unpre-
dictable, but can be trivially distinguished.

Analyzing our scheme. We now analyze the security of
our partially-oblivious PRF scheme from Section 3. To
do so we introduce a new hardness assumption that is a
generalization of the bilinear Decisional Diffie-Hellman
(BDDH) assumption underlying the conventional PRF
security of Fk(t,m) = e(H1(t), H2(m))k. (The latter is
a corollary of a result due to Boneh and Waters [14].) The
new assumption is analogous to the one-more BCDH as-
sumption given above.

Fix some pairing setting G =
(g1, g2, gt,G1,G2,GT , e) and refer to the game
shown in Figure 16. The game tasks the adversary B
in distinguishing one more BDDH instance than the
number of helper queries it makes. That is, the adversary
is given a value gk1 and target oracles Targ1,Targ2 which
give back random points in G1 and G2. The adversary
can query a challenge oracle Chal(i, j), which gives
back either e(X,Y )k for X,Y each being previously
returned by the respective target oracles (if the challenge
bit is one) or gives back a random point Z ∈ GT (if
the challenge bit is zero). Later we will often allow

Game om-BDDHBG
k←$ Zp ; qch, q1,t, q2,t, c← 0

(i1, . . . , i`, b
′)←$ BChal,Targ1,Targ2,Help(G, gk1 )

If ` > qch or c ≥ ` then Ret false
If ∃α 6= β . iα = iβ then Ret false
Ret b′ =

⊕`
α=1

~b[iα]

Chal(i, j)
If q1,t < i or q2,t < j then Ret ⊥
qch ← qch + 1 ; ~b[qch]←$ {0, 1}
Z1 ← e(g1, g2)

γ1[i]·γ2[j]·k ; Z0←$ GT
Ret Zqch

Targ1

q1,t ← q1,t + 1 ; γ1[q1,t]←$ Zp ; Ret gγ1[q1,t]

1

Targ2

q2,t ← q2,t + 1 ; γ2[q2,t]←$ Zp ; Ret gγ2[q2,t]

2

Help(Z)
c← c+ 1 ; Ret Zk

Figure 16: Game for the one-more BDDH
assumption for bilinear pairing setting G =
(g1, g2, gt,G1,G2,GT , e).

an adversary to query Chal(X,Y ), with the implied
meaning hopefully obvious. The helper oracle returns
Zk for any queried Z, effectively allowing the attacker
to trivially solve a single BDDH instance. We define
advantage of an adversary B against a setup G by

Advom-bddh
G (B) =

∣∣2 ·Pr
[

om-BDDHBG ⇒ true
]
− 1
∣∣

Note that if B makes two Targ queries, makes a sin-
gle Chal(1, 1), and never uses Help, then this is exactly
the classic BDDH assumption. Thus this assumption is
stronger than BDDH. Results from [16] and [17] suggest
that one-more problems of this type are possibly easier,
but the verdict is still out.

We have the following theorem.

Theorem 2 Let Π be the partially-oblivious PRF
scheme for pairing setup G and with H1, H2 modeled
as random oracles. Let adversary A be a one-more PRF
adversary making q queries to RoR(·, ·), h1 queries to
H1, h2 queries to H2, and c < q queries to PRF-Srv.
Then we give in the proof below a one-more BDDH ad-
versary B such that

Advom-prf
Π (A) ≤ Advom-bddh

G (B) .

Adversary B runs in time that of A plus O(h1 + h2 + c)
group or pairing operations, makes at most q challenge
queries, c helper queries, h1 queries to Targ1 and h2

queries to Targ2.

Proof: This proof follows much the same steps as the
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adversary BChal,Targ,Help(G,K)

pk ← e(g1,K)

(i1, . . . , i`, b
′)←$ARoRSim,SrvSim,HSim1,HSim2(pk)

Ret (i1, . . . , i`, b′)

RoRSim(t,m)

Ret Chal(X[t], Y [m])

HSim1(t)

X[t]← Targ1() ; Ret X[t]

HSim2(m)

Y [m]← Targ2() ; Ret Y [m]

SrvSim(t, Y )

c← c+ 1

Ret Help(e(X[t], Y ))

Figure 17: Adversary B used in proof of Theorem 2.

one-more unpredictable proof given previously. As be-
fore, we assume without loss of generality that A makes
all queries to H1 and H2 at the start, and never makes
redundant queries. We construct an adversary B for the
om-PRF game as shown in Figure 17.
B responds to any query to HSim1(t) with a point

X[t] ∈ G1, where X[t] is sampled from Targ1. Simi-
larly, for queries to HSim2(m), B returns a point Y [m]
sampled from Targ2.

Whenever A queries RoRSim(t,m), B calls the chal-
lenge oracle Chal(X[t], Y [m]), and returns the response
to A. Notice that this challenge precisely matches the
expected real or random challenge.

Furthermore, on queries (t, Y ) to SrvSim, B computes
e(H1(t), Y ), and submits this value to the Help oracle.

In this way, B accurately simulates all queries in the
om-PRF game.

Finally, suppose A outputs a tuple (i1, i2, . . . , i`) and
a bit b′. Then B outputs the same tuple, and bit. If A
wins its game, then it has distinguished ` real or random
instances of the PRF, with c < ` queries to the PRF-Srv
oracle. It is easy to see that B has also distinguished `
challenges with c < ` queries to the Help oracle.

B.3 Relationship with Fully Oblivious
PRFs

Jarecki et al. [31] propose a universally composable
model of verifiable, oblivious pseudorandom functions.
This model is close to the functionality required for our
PRF service. However, these constructions do not sup-
port key updates because hash functions are applied to
several values in the course of the protocol. Hashing de-
stroys any algebraic structure that could be exploited to
enable key rotation.

We informally summarize the ideal functionality
Fv-OPRF of the Jarecki et al. model as follows:

(1) First, Fv-OPRF performs the key-generation and pa-
rameter registering functions (for example, dis-
tributing public keys).

(2) A user U submits a message x and a server S to
evaluate the message. Communication is initiated
with the server S.

(3) The oblivious PRF protocol takes place between U
and S . This is equivalent to the PRF-Srv protocol.

(4) When both U and S have finished communicating,
a flag is generated which denotes whether the veri-
fiable property is satisfied.

(5) U gets the value of the PRF on x.

Moreover, the following must hold:

• The output x should be indistinguishable from a
randomly chosen value.

• The server S evaluates inputs on at most as many
points which are received by U .

This is a simplified version of the functionality from
[31], where it is described in the universal composabil-
ity framework. Under the UC framework, adversarial
capabilities include statically corrupting both users and
servers, and complete control over the communication
channel.

The security is measured by the probability that an en-
vironment can distinguish whether it is interacting with
the real world (as defined above), or a simulated version
of the ideal world.

Using this simplified version, we prove the following.

Proposition 1 Let Fv-OPRF be a verifiable, oblivious
PRF as described above, and let Π be the partially obliv-
ious PRF derived from Fv-OPRF. Then for any adversary
A against the one-more pseudorandomness of Π we con-
struct an adversary B such that

∣∣∣∣Advom-prf
Π,q (A)− 1

2

∣∣∣∣ ≤ Advvoprf
Fv-OPRF

(B)

Proof: (Sketch) For every query to the PRF-Srv oracle
from A, B simulates the same functionality in the v-
OPRF game. For the RoR queries, the v-OPRF adver-
sary chooses to return either the actual evaluation of the
query, or a random value with probability 1/2.

If B is interacting with the ideal world, then all RoR
queries will be random, even though half of the queries
are ‘real’. In this case, A cannot win with probability
better than 1/2.

On the other hand, if B is interacting with the simu-
lation, then half of the RoR queries are true evaluations
of the function Fv-OPRF. Therefore, this is an accurate
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simulation of the om-PRF game, and A wins with prob-
ability Advom-prf

Π,q (A).
Therefore, if A wins, then B assumes it must be the

real world, and distinguishes the two with the desired
probability.

This result is unsurprising and not coincidental. Both
definitions target the same security notion. However,
when attempting to extend our constructions into the UC
model described by Jarecki et al., we encounter an issue:
without the final random oracle, we are unable to force
the PRF-Srv queries to match up with the correct outputs.

On the other hand, we claim that wrapping the
PRF-Srv response in a hash function as in the Jarecki
et al. constructions, then the following is true:

Claim 1 Let Π be a partially oblivious PRF, H be a
hash function modeled as a random oracle, and Π′ be
the functionality derived by matching the functionality of
Π to a vOPRF. The final output is H(t,m, Fk(t,m)).

Then for all adversaries A, we can construct an ad-
versary B such that

Advvoprf
Π′ (A) ≤

∣∣∣∣Advom-unp
Π (B)− 1

2

∣∣∣∣ .
The intuition is that due to the unpredictability of Π,

the random oracle outputs of H can be programmed to
correspond to PRF outputs in the correct way.
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