
 1

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING

UNIVERSITY OF WISCONSIN—MADISON

Prof. Gurindar Sohi, Kai Zhao

TAs: Neha Mittal, Annie Lin, Mohit Verma, Yuzhe Ma, Daniel Griffin

Examination 3

 In Class (50 minutes)

 Wednesday, November 16, 2016

 Weight: 17.5%

 NO: BOOK(S), NOTE(S), CALCULATORS OR ELECTRONIC DEVICES OF ANY SORT.

The exam has eleven pages. You must turn in the pages 1-10. Circle your final answers. Plan your

time carefully since some problems are longer than others. Use the blank sides of the exam for scratch

work.

 LAST NAME: __

FIRST NAME: __

 Section: __

 ID#: ___

 2

Problem

Maximum Points

Points Earned

1

3

2

4

3

3

4

3

5

3

6

8

7

7

Total

31

 3

Problem 1 (3 points)

Fill in the six missing comments in the program below:

Address Instruction Comment

0x4000 0101 111 111 1 00000

0x4001 0001 110 111 1 00001

0x4002 0101 100 101 0 00 110

0x4003 0000 010 000000001

0x4004 0001 000 000 1 00001

0x4005 0001 110 110 0 00 110

0x4006 0001 111 111 1 00001 R7 ← R7 + 1

0x4007 0001 001 111 1 11000 R1 ← R7 – 8

0x4008 0000 100 111111001 BRn 0x4002

0x4009 1111 0000 00100101 HALT

 4

Problem 2 (4 points)

Address Instruction Comment

0x3000 0101 010 010 1 00000 R2 ← 0

0x3001 0001 001 001 1 11111 R1 ← R1 – 1

0x3002 0001 001 001 1 11111 R1 ← R1 – 1

0x3003 0001 001 001 1 11111 R1 ← R1 - 1

0x3004 0000 100 000000010 BRn x3007

0x3005 0001 010 010 1 00001 R2 ← R2 + 1

0x3006 0000 111 111111010 BRnzp x3001

0x3007 1111 0000 00100101 HALT

a) The above program processes a value initially stored in register R1 according to an algorithm, and
stores the result in register R2. Assuming the initial value in R1 is greater than 0, describe how the
value in R2 is related to the value that was initially in R1 when the program reaches the HALT
instruction at address x3007?

b) What is the final value of R2 if R1 is initially the decimal value 12? Give you answer in decimal.

 5

Problem 3 (3 points)

Shown below are the contents of memory and registers before and after the LC-3 instruction at location
0x4080 is executed. Identify the instruction stored in x4080 and give your answer in hexadecimal form.
(There is enough information below to uniquely specify the instruction). Explain your reasoning to
receive credit; no explanation means no credit even if your final answer is correct.

 Before After

R0 x1000 x1000

R1 x10A1 x10A1

R2 x2300 x2300

R3 x1234 x1234

R4 x11AA x11AA

R5 x2BEF x2BEF

R6 x1254 x1254

R7 x1421 x1421

mem[x4050] x3001 x3001

mem[x4051] xADD1 xADD1

mem[x4052] x2412 x11AA

mem[x4053] x3213 x3213

mem[x4054] xFFFF xFFFF

 6

Problem 4 (3 points)
The following (incomplete) binary code snippet accepts an input value in register R2, increments it by
2 if the value is even, and then halts. Odd values are left untouched. This can be represented in pseudo
code as:

if R2 is divisible by 2 then:

R2 ← R2 + 2
end if
halt

Complete the code below, by filling in the LC-3 instructions (in binary format) at memory locations
x3001 and x3003; the instructions at memory locations x3002 and x3004 have already been filled in for
you.

The PC register is set to x3001 before this code executes.

Address Instruction

0x3001

0x3002 0000 001 000000001

0x3003

0x3004 1111 0000 00100101

Note that TRAP x25 is used to halt execution.

 7

Problem 5 (3 points)
The diagram shown to the right represents the flow chart of a program that multiplies the integer
numbers 23 and 10 together, and leaves the result in register R3. The table below gives the register
operations that implement this program. Note that each register operation might translate into multiple
LC-3 instructions. Fill in the spaces in the program diagram with the letters from the table that correctly
implement this program. There are multiple combinations of letter assignments that will work for this
program. Choose any single assignment that works. Each blank should contain a single letter option,
and not all of the options below will be used.

Letter Operations

A R0 ← 23

B R2 = 0?

C R3 ← R3 + R0

D R3 ← R5

E R2 ← 10

F R2 ← R2 – 1

G R0 = 0?

H R3 ← 0

 8

Problem 6 (8 Points)
a) (2 points) We wish to execute a single LC-3 instruction that will subtract the decimal number 15
from register R1 and put the result into register R2. Can we do it? If yes, write the LC-3 instruction to
do so in its binary format. If not, explain why not.

b) (1 point) Consider the following LC-3 instruction located at address 0x4000:
 0010 010 101001110
 What is the memory address whose contents are loaded into R2? Show your work and give your
answer in hex. (No credit without shown work, even if your answer is correct.)

c) (1 point) Consider the following LC-3 instruction:
 0011 101 010110011

Does the execution of the above instruction change any condition codes? Why or why not? (No
credit without an explanation, even if your answer is correct.)

 9

d) (1 point) Consider the following LC-3 branch instruction located at memory address 0x3000:
0000 101 000001111
If the value of the condition codes before executing this instruction are (N=0, Z=0, P=1), then what
is the value of the PC after the above instruction finishes execution?

e) (1 point) Name at least two types of errors that can occur when writing a program?

f) (2 points) Match the following four statements (on the right side) with the letters (A, B, or C) for
their corresponding subtask constructs (shown on the left).

A Sequential

B Conditional

C Iterative

 ‘For each O, do P’

 ‘Do E, then do F’

 ‘If G, then do H’

 ‘Do M until N’

 10

Problem 7 (7 Points)
We are about to execute the program below. Assume the condition codes before execution of the
program are N=1, Z=0, P=0.

Address Instruction Comments

0x3000 Store R0 into memory location 0x300C

0x3001 Subtract 5 from R0 and store the result in R0

0x3002 If p flag is set, branch to 0x3005

0x3003 0101 010 010 0 00 000 R2 ← R2 AND R0

0x3004 0000 111 000000001 BRnzp 0x3006

0x3005 1010 010 000000111 LDI: Load the value from a memory location, whose
address is stored in location 0x300D, into R2

0x3006 1111 0000 00100101 HALT (Trap x25)

a) (3 points) Fill in the three missing instructions in the program above.
b) (4 points) Suppose a section in memory before execution of the program is as follows:

Address Value

0x300A 0x300B

0x300B 0x300F

0x300C 0xACED

0x300D 0x300B

Given the initial values of the below registers, fill in the values after the program has completed
execution (i.e., reached a HALT). Give your answers in hex.

Register Initial Value Final value

Memory Address Register (MAR) 0x300B

Memory Data Register (MDR) 0xABCD

Instruction Register (IR) 0x1000

R0 0x5534

R1 0x300D

R2 0x300A

 11

LC-3 Instruction Set (Entered by Mark D. Hill on 03/14/2007; last update 03/15/2007)

PC’: incremented PC. setcc(): set condition codes N, Z, and P. mem[A]:memory contents at address A.
SEXT(immediate): sign-extend immediate to 16 bits. ZEXT(immediate): zero-extend immediate to 16 bits.
 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, SR2 ; Addition
| 0 0 0 1 | DR | SR1 | 0 | 0 0 | SR2 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß SR1 + SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, imm5 ; Addition with Immediate
| 0 0 0 1 | DR | SR1 | 1 | imm5 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß SR1 + SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR, SR1, SR2 ; Bit-wise AND
| 0 1 0 1 | DR | SR1 | 0 | 0 0 | SR2 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß SR1 AND SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR,SR1,imm5 ; Bit-wise AND with Immediate
| 0 1 0 1 | DR | SR1 | 1 | imm5 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß SR1 AND SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ BRx,label (where x={n,z,p,zp,np,nz,nzp}); Branch
| 0 0 0 0 | n | z | p | PCoffset9 | GO ß ((n and N) OR (z AND Z) OR (p AND P))
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ if(GO is true) then PCßPC’+ SEXT(PCoffset9)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JMP BaseR ; Jump
| 1 1 0 0 | 0 0 0 | BaseR | 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC ß BaseR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSR label ; Jump to Subroutine
| 0 1 0 0 | 1 | PCoffset11 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7 ß PC’, PC ß PC’ + SEXT(PCoffset11)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSRR BaseR ; Jump to Subroutine in Register
| 0 1 0 0 | 0 | 0 0 | BaseR | 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ temp ß PC’, PC ß BaseR, R7 ß temp

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LD DR, label ; Load PC-Relative
| 0 0 1 0 | DR | PCoffset9 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß mem[PC’ + SEXT(PCoffset9)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDI DR, label ; Load Indirect
| 1 0 1 0 | DR | PCoffset9 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DRßmem[mem[PC’+SEXT(PCoffset9)]] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDR DR, BaseR, offset6 ; Load Base+Offset
| 0 1 1 0 | DR | BaseR | offset6 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß mem[BaseR + SEXT(offset6)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LEA, DR, label ; Load Effective Address
| 1 1 1 0 | DR | PCoffset9 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß PC’ + SEXT(PCoffset9) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ NOT DR, SR ; Bit-wise Complement
| 1 0 0 1 | DR | SR | 1 | 1 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß NOT(SR) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RET ; Return from Subroutine
| 1 1 0 0 | 0 0 0 | 1 1 1 | 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC ß R7

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RTI ; Return from Interrupt
| 1 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ See textbook (2nd Ed. page 537).

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ST SR, label ; Store PC-Relative
| 0 0 1 1 | SR | PCoffset9 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[PC’ + SEXT(PCoffset9)] ß SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STI, SR, label ; Store Indirect
| 1 0 1 1 | SR | PCoffset9 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[mem[PC’ + SEXT(PCoffset9)]] ß SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STR SR, BaseR, offset6 ; Store Base+Offset
| 0 1 1 1 | SR | BaseR | offset6 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[BaseR + SEXT(offset6)] ß SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ TRAP ; System Call
| 1 1 1 1 | 0 0 0 0 | trapvect8 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7 ß PC’, PC ß mem[ZEXT(trapvect8)]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ; Unused Opcode
| 1 1 0 1 | |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ Initiate illegal opcode exception
 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

