
1

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING

UNIVERSITY OF WISCONSIN—MADISON

Prof. Gurindar Sohi, Kai Zhao
TAs: Mohit Verma, Annie Lin, Neha Mittal, Daniel Griffin, Yuzhe Ma

Examination 4
 In Class (50 minutes)

 Monday, December 12, 2016
 Weight: 17.5%

 NO: BOOK(S), NOTE(S), CALCULATORS OR ELECTRONIC DEVICES OF ANY SORT.
The exam has ten pages. You must turn in the pages 1-8. Circle your final answers. Plan your

time carefully since some problems are longer than others. Use the blank sides of the exam for
scratch work. Feel free to rip out the last two pages for reference.

LAST NAME: __
FIRST NAME: __
 Section: __
 ID#: ___

2

Problem

Maximum Points

Points Earned

1

6

2

7

3

4

4

3

5

3

6

5

7

4

Total

32

3

Problem 1 (6 points)

An LC-3 assembly language program is given below:

 .ORIG x3000
 LD R2, NUMBER
 LD R1, MASK
 LD R3, PTR2
LOOP LDR R4, R3, #0
 AND R4, R4, R1
 BRz NEXT
 ADD R0, R0, #1
NEXT ADD R3, R3, #1

ADD R2, R2, #-1
 BRp LOOP
 STI R0, PTR1

HALT
NUMBER .BLKW 3
MASK .FILL x8000
PTR1 .FILL x4000
PTR2 .FILL x5000
 .END

(a) A symbol table is created during the first pass of the assembler. Fill in the symbol table above

for the preceding program. You may not need to use all rows.

(b) In the second pass, the assembler creates a binary version (.obj) of the program, using the
entries from the symbol table shown below. Given that the following symbol table entries were
generated in the first pass of assembly (for a different program than the one in part(a)), fill in
the binary code generated by the assembler for the two instructions located at x3000 and
x300A.

Symbol Address (in hex)

LOOP x3003

NEXT x3007

NUMBER x300C

MASK x300F

PTR1 x3010

PTR2 x3011

Address Instruction (in assembly) Instruction (in binary)

x3000 ADD R1, R2, #4 0001 001 010 1 00100

x300A STI R0, PTR3 1011 000 00000 1010

Symbol Address

ADDRESS x3012

AGAIN x3014

PTR3 x3015

DESTINATION x301A

4

Problem 2 (7 points)
 .ORIG x3000 ; The program begins at x3000
 AND R5, R5, #0 ; R5 ← 0, stores final answer x3000
 ADD R5, R5, #1 ; R5 ← 1, initialization x3001
 AND R7, R7, #0 ; R7 ← 0, counter x3002
CONTINUE ADD R7, R7, #-1 ; R7 = R7 – 1 x3003
 ADD R6, R0, R7 ; R6 = R0 + R7 x3004
 BRn END ; halt if result negative x3005
CALL_FUNC JSR Mult_by_4 ; Subroutine call x3006
 BRnzp CONTINUE ; x3007
END HALT ; x3008
Mult_by_4 ADD R6, R5, R5 ; Subroutine to multiply by 4 x3009
 ADD R5, R6, R6 ; x300A
 RET ; x300B
SAVE_VAL .BLKW #1 ; Save data here x300C

The above assembly program calculates the value of 4n, where n is the value in register R0, and
stores the result in register R5. The code lines have been numbered, as shown above. Assume R0 =
3, and all other registers (R1-R7) are 0 before the execution begins. The final value in R5 after
the program finishes execution should be 43 = 64.

(a) Write the value (in hex) in register R7 just before the subroutine ‘Mult_by_4’ is called for
the 1st time.
xFFFF

(b) Write the value (in hex) in register R7 just before the subroutine ‘Mult_by_4’ returns.

x3007

(c) The above program does not terminate. Explain why.
We should not use R7 as a counter here, as it gets overwritten by the return PC value
(x3007), whenever the subroutine Mult-by_4 is called.

(d) Fill in the code provided below to fix the problem mentioned in part 3. The below code

REPLACES instructions at x3002-x3004 in the provided code. Explain your solution. Rest
of the code remains unchanged.

AND R1, R1, #0 ; x3002
CONTINUE ADD R1, R1, #-1 ; x3003

ADD R6, R0, R1 ; x3004
Any of R1,R2, R3, R4 is acceptable. Basically use any register not currently used in the
program.

(e) Fill in the code provided below to fix the problem mentioned in part 3 using SAVE_VAL
label. The below code REPLACES instructions at x3006-x3007 in the provided code, and
adds two more instructions, as shown below. Rest of the code remains unchanged.

CALL_FUNC ST R7 (or STI R7), SAVE_VAL ; Save something

 JSR Mult_by_4 ; Subroutine call
 LD R7 (or LDI R7 if STI R7 is used), SAVE_VAL
 ; Load something
 BRnzp LOOP CONTINUE

5

Problem 3 (4 points)

(a) How would you implement a subroutine using caller-save?

Calling routine saves registers destroyed by own instructions or by called routines if the values are
needed later. Either that or avoid using registers altogether.

(b) What is the difference between asynchronous and synchronous I/O?

Synchronous I/O events occur at fixed, predictable rates. CPU reads every X seconds.
Asynchronous I/O is unpredictable. Can use flag to achieve I/O. Example is keyboard input.

(c) In interrupt-driven I/O, if a program is running at PL3 and the I/O device at PL1, can an
interrupt successfully occur? Explain why or why not.

No because PL3 > PL1 so we can’t interrupt.

 (d) How are KeyBoard Status Register (KBSR) and KeyBoard Data Register (KBDR) used when
TRAP x20 (GETC) is called?

When character is typed, ASCII is placed into KBDR[7:0] and ready bit KBSR[15] is set to 1.
When KDBR is read, KBSR[15] is set to zero.

Problem 4 (3 points)

Find 3 syntax errors in the following assembly language code.

 .ORIG x3000
 AND R1, R1, #12
 NOT R3, R1, R5 NOT instruction has just 1
 ADD R2, R3, #-1 source register, No R9
 BRz END register, No DONE symbol
 BRnzp DONE
END STI R9, ADD2
 HALT
ADD1 .FILL x4000
 .FILL x4600
ADD2 .FILL x5000
 .END

6

Problem 5 (3 points)

Consider the following program.

 .ORIG x3000

LD R1, NUM
LD R2, INCRE

INPUT GETC
 ADD R0, R0, R2
 OUT

ADD R1, R1, #-1
BRz STOP

 BRnzp INPUT
STOP HALT
INCRE .FILL x5
NUM .FILL x10
 .END

(a) Fill in the following TRAP instruction that corresponds to symbol ‘INPUT’:

1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 1

(b) Shown below is part of the trap vector table (or System Control Block). Specify the PC value

after the trap instruction

Memory Address Content

x0020 x0400

x0021 x0430

x0022 x0450

x0023 x04A0

x0430

7

Problem 6 (5 points)

(i) What is the purpose of bit [15] of KBSR?

(a) It is set to 1 when the keyboard receives a new character.
(b) It is set to 1 when the device is ready to display a new character.
(c) It is set to 0 when TRAP x25 is called to halt program execution.
(d) It is set to 0 when there is input data stored at R7.

(ii) Assume that a LC-3 processor receives interrupts from 3 I/O devices (A, B and C)
simultaneously. The priority levels for the interrupts are given below:

A: PL2 B: PL0 C: PL6
Which of the above interrupts is serviced first?
(a) B
(b) A
(c) C
(d) Any selected at random

(iii) Which of the following conditions must be satisfied for an I/O device to be able to successfully
interrupt a processor? Circle the correct option.

A: The I/O device must be able to request service.
B: The processor must be able to poll the I/O device.
C: The priority of the I/O device request must be higher than the current executing process
on the processor.

(a) A and C
(b) B and C
(c) A, B and C
(d) Only B

(iv) The LC-3 Trap Mechanism performs 3 operations. Possible operation sequences are given
below. Circle the correct sequence of operations.
 A: Return (JMP R7)

B: Lookup service routine starting address
 C: Check the control registers

D: Transfer to service routine

(a) A, C, D
(b) C, B, D
(c) B, D, A
(d) D, A, B

(v) How many trap service routines can be defined in LC-3?

(a) 128
(b) 64
(c) 356
(d) 256

8

Problem 7 (4 points)

Consider the following program for converting a string of uppercase letters (A~Z) to the lowercase.
The string is input from the keyboard one character by one character with an end of ‘#’ (ASCII x23).
The result is stored in memory location starting at x5000. Fill in the missing part of the program
according to the comments (some may not be given).

 .ORIG x3000
 LD R1, ENDC ; Load '#' into R1
 LD R4, addition
 LD R5, addr

Next (1) __________________ ; Get the next character
 NOT R2, R1
 ADD R2, R2, x1
 (2) __________________ ; Test if is '#'
 BRz LAST
 (3) __________________ ; Convert to lowercase and store the result into R3
 STR R3, R5, #0
 (4) __________________
 BRnzp Next

LAST HALT
ENDC .FILL x23
addr .FILL x5000
addition .FILL x20
 .END

(1) GETC / IN / TRAP x23 / TRAP x20
(2) ADD X,R2,R0 X can be any except R0,R1,R4,R5
(3) ADD R3,R0,R4 / ADD R5,R0,R4 [accepted because of typo in comment]
(4) ADD R5,R5,#1

9

LC-3 Instruction Set (Entered by Mark D. Hill on 03/14/2007; last update 03/15/2007)

PC’: incremented PC. setcc(): set condition codes N, Z, and P. mem[A]:memory contents at address A.
SEXT(immediate): sign-extend immediate to 16 bits. ZEXT(immediate): zero-extend immediate to 16 bits.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, SR2 ; Addition
| 0 0 0 1 | DR | SR1 | 0 | 0 0 | SR2 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß SR1 + SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, imm5 ; Addition with Immediate
| 0 0 0 1 | DR | SR1 | 1 | imm5 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß SR1 + SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR, SR1, SR2 ; Bit-wise AND
| 0 1 0 1 | DR | SR1 | 0 | 0 0 | SR2 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß SR1 AND SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR, SR1, imm5 ; Bit-wise AND with Immediate
| 0 1 0 1 | DR | SR1 | 1 | imm5 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß SR1 AND SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ BRx label (where x={n,z,p,zp,np,nz,nzp}); Branch
| 0 0 0 0 | n | z | p | PCoffset9 | GO ß ((n and N) OR (z AND Z) OR (p AND P))
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ if (GO is true) then PC ß PC’+ SEXT(PCoffset9)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JMP BaseR ; Jump
| 1 1 0 0 | 0 0 0 | BaseR | 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC ß BaseR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSR label ; Jump to Subroutine
| 0 1 0 0 | 1 | PCoffset11 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7 ß PC’, PC ß PC’ + SEXT(PCoffset11)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSRR BaseR ; Jump to Subroutine in Register
| 0 1 0 0 | 0 | 0 0 | BaseR | 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ temp ß PC’, PC ß BaseR, R7 ß temp

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LD DR, label ; Load PC-Relative
| 0 0 1 0 | DR | PCoffset9 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß mem[PC’ + SEXT(PCoffset9)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDI DR, label ; Load Indirect
| 1 0 1 0 | DR | PCoffset9 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß mem[mem[PC’+SEXT(PCoffset9)]] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDR DR, BaseR, offset6 ; Load Base+Offset
| 0 1 1 0 | DR | BaseR | offset6 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß mem[BaseR + SEXT(offset6)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LEA DR, label ; Load Effective Address
| 1 1 1 0 | DR | PCoffset9 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß PC’ + SEXT(PCoffset9) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ NOT DR, SR ; Bit-wise Complement
| 1 0 0 1 | DR | SR | 1 | 1 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß NOT(SR) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RET ; Return from Subroutine
| 1 1 0 0 | 0 0 0 | 1 1 1 | 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC ß R7

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RTI ; Return from Interrupt
| 1 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ See textbook (2nd Ed. page 537).

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ST SR, label ; Store PC-Relative
| 0 0 1 1 | SR | PCoffset9 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[PC’ + SEXT(PCoffset9)] ß SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STI SR, label ; Store Indirect
| 1 0 1 1 | SR | PCoffset9 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[mem[PC’ + SEXT(PCoffset9)]] ß SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STR SR, BaseR, offset6 ; Store Base+Offset
| 0 1 1 1 | SR | BaseR | offset6 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[BaseR + SEXT(offset6)] ß SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ TRAP ; System Call
| 1 1 1 1 | 0 0 0 0 | trapvect8 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7 ß PC’, PC ß mem[ZEXT(trapvect8)]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ; Unused Opcode
| 1 1 0 1 | |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ Initiate illegal opcode exception
 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10

