

1

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING

UNIVERSITY OF WISCONSIN—MADISON

Instructor: Andy Phelps
TAs: Newsha Ardalani, Peter Ohmann and Jai Menon

Midterm 3

In Class (50 minutes)
Note: This was originally given as an optional supplemental test after Midterm 3; for future

reference it is more appropriately regarded simply as Midterm 3.

NO: BOOK(S), NOTE(S), CALCULATORS OF ANY SORT.

This exam has 10 pages, including a blank page. Plan your time carefully, since some problems
are longer than others. You must turn in all pages.

A listing of the LC-3 instruction set is given at the end of this booklet for your convenience.

LAST NAME: ___

FIRST NAME:___

SECTION: ___

ID # ___

2

Question Maximum Points Points
1 6
2 6
3 5
4 7
5 7
6 6

Total 37

Problem 1. (6 points)

3

This program adds up ten numbers, leaving the sum in R1. The numbers are found in memory
starting at location x3100. There is one error in this program. Circle the bad instruction, and
write the corrected instruction (in binary) below.

x3000 0101 001 001 1 00000 Clear R1

x3001 1110 010 011111110 R2 ← x3100

x3002 0101 011 011 1 00000 Clear R3

x3003 0001 011 011 1 01010 R3 ← 10

x3004 0000 100 000000100 Branch if done

x3005 0110 100 010 000000 R4 ← M[R2]

x3006 0001 001 001 000 100 R1 ← R1 + R4

x3007 0001 011 011 1 11111 Decrement loop count

x3008 0000 111 111111011 Branch Loop

x3009 1111 0000 0010 0101 HALT

Corrected Instruction:

__

As we said in class, there are really *two* errors in this program. Extra credit if you fix both of them; a maximum
of 3 extra points if you accurately and completely fix both.

Error #1: The loop iterates 11 times, not 10. This can be fixed in one of three ways:
 a. Change the first branch to BRz or BRnz, instead of BRn.
 x3004 0000 110 000000100
 b. Put a 9 in R3 instead of a 10:
 x3003 0001 011 011 1 01001
 c. (Not quite as neat) Change the second branch to only branch back on positive
 x3008 0000 001 111111011

Error #2: R2, the data pointer, never gets incremented. Insert the following instruction after either x3005 or x3006
(though not after x3007):
 0001 010 010 1 00001

4

Problem 2. (6 Points)

Some of the following instructions are “no-operation”; that is, they do not change the value of
any of the eight general-purpose registers or the PC. (For this problem, don’t worry about the
condition codes.)

Check the box next to each no-operation instruction.

□ 0101 000 000 100000 And No, clears R0

□ 0101 000 000 000000 And Yes, ANDs R0 with itself which doesn't change it

□ 0001 000 000 100000 Add Yes, adds zero

□ 0001 000 000 000000 Add No, doubles R0

□ 1110 000 000000000 LEA No, copies PC into R0

□ 0110 000 000 000000 LDR No, does a load into R0

□ 0000 000 000000000 Branch Yes, never branches

□ 0000 111 000000000 Branch Yes, branches but doesn't add anything to PC

5

Problem 3. (5 points)

a. Suppose you wish to test whether or not bit 3 is set in register R0. (That is, you wish to set
the condition codes so that you can do a conditional branch.)
Write the instruction or instructions below, in binary, for the test. (You do not need to include
the branch itself). Assume the data is already in R0.

Use an AND instruction to test a bit. It doesn't matter what the destination register is as long as
it's a register you don't mind overwriting:

 0101 001 000 1 01000
 ^
 (That is bit 3)

b. Suppose you need to do the same thing, except test for bit 12. You do not need to write the
binary, but state how many instructions are needed and describe what they are.

Bit 12 is beyond what you can set in the immediate field. You need to load a register with a
word that just has bit 12 set (x1000), then do the AND. There are several ways to put x1000 into
a register. The easiest is to load it:
 LD R1,BitTwelve
 AND R1,R1,R0
 . . .
 etc
BitTwelve .FILL x1000

If you want to be creative, you could create x1000 by putting x0008 into a register and then
shifting it left (adding to itself) nine times; this would take about seven instructions including the
AND. (There is no point into doing this in real life.)

Another approach is to shift R0 left three times (add to itself 3 times). Then you don't even need
the AND; just branch on the 'n' bit. This is only three instructions.

6

Problem 4. (7 points)

Most computers have an XOR instruction, but the LC-3, alas, does not. But recall that XOR
(Exclusive OR) means “one or the other but not both”; we can write a program to do that
operation as ((A or B) and not (A and B)). It is started below; finish it. Include both binary and
comments. Assume the operands are in R2 and R3, and leave the result in R7.

1001 100 010 111111 R4 ← NOT R2

1001 101 011 111111 R5 ← NOT R3

0101 110 100 000 101 R6 ← R4 AND R5

1001 110 110 111111 R6 <- NOT R6 (which is R2 OR R3)
_________________________ ___________________________________

0101 000 010 000 011 R0 <- R2 AND R3
_________________________ ___________________________________

1001 000 000 111111 R0 <- NOT R0 = (NOT (R2 AND R3))
_________________________ ___________________________________

0101 111 000 000 110 R7 <- R0 AND R6 = (R2 OR R3) AND NOT (R2 AND R3)
_________________________ ___________________________________

7

Problem 5. (7 points)

What ends up in the registers after these instructions are executed?

x3000 0010 010 000001111 LD R2 <- M[x3010]

x3001 1110 011 000001111 LEA R3 <- x3011

x3002 1010 100 000001111 LDI R4 <- M[M[x3012]]

x3003 0110 000 011 000010 LDR R0 <- M[R3+2] = M[x3013]

x3004 0110 001 010 000010 LDR R1 <- M[R2+2] = M[x3016]

x3005 1111 0000 0010 0101 HALT

. . .
. . . These are data, not instructions:

x3010 0011 0000 0001 0100 x3014

x3011 0011 0000 0001 1111 x301f

x3012 0011 0000 0001 0101 x3015

x3013 0000 0000 0010 0100 x0026

x3014 0011 0000 0001 0110 x3016

x3015 0000 0000 1001 0001 x0091

x3016 0011 0000 0010 0000 x3020

R0 ________________x0026

R1 ________________x3020

R2 ________________x3014

R3 ________________x3011

R4 ________________x0091

A number of people added wrong for the first three instructions. They converted 1111 to a decimal 15, then
proceeded to add HEX 15 to the PC. This resulted in the wrong answer for all five registers. If it was clear to me
that you understood the instructions and did everything right except this one thing, I gave back some points. If you
got a zero and feel you fall into that category, come see the instructor or a TA.

8

Problem 6. (6 points)
Which of these constructs are the ones we studied for systematic decomposition? List the letters
corresponding to each one that applies: A, E, F (Don't forget that all such decompositions have
exactly one path in at the top and one out at the bottom, so they can replace a rectangular box.

d. Parallel

b. Halting

X

e. Conditional

c. Multi-way
Conditional

f. Iterative

a. Sequential

9

Scratch	 paper	
	

