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Developers Overview

GPUs has brought terascale computing power to laptops 
and petascale computing power to clusters. A CPU + GPU 
is a powerful combination, because CPUs consist of a few 
cores optimised for serial processing, while GPUs consist 
of thousands of smaller, more efficient cores designed for 
parallel performance. Serial portions of the code run on the 
CPU, while parallel portions run on the GPU.

The Compute Unified Device Architecture (CUDA) is a 
parallel programming architecture developed by NVIDIA. 
CUDA is the computing engine in NVIDIA GPUs that 
gives developers access to the virtual instruction set and 
memory of the parallel computational elements in the CUDA 
GPUs, through variants of industry-standard programming 
languages. Exploiting data parallelism on the GPU has become 
significantly easier with newer programming models like 
OpenACC, which provides developers with simple compiler 
directives to run their applications in parallel on the GPU.

Recently, at the 19th IEEE HiPC conference held in 
Pune, I met several delegates from academia and industry 
who wanted to make use of this extreme computing power, 

Jack Dongarra, professor at the University of Tennessee 
and author of Linpack has said, “Graphics Processing 
Units have evolved to the point where many real-

world applications are easily implemented on them, and 
run significantly faster than on multi-core systems. Future 
computing architectures will be hybrid systems with parallel-
core GPUs working in tandem with multi-core CPUs.”

Project managers often instruct developers to improve 
their algorithm so that their compute efficiency of their 
application increases. We all know parallel processing is 
faster, but there was always a doubt whether it would be 
worth the effort and time—but not any more! Graphics 
Processing Units (GPUs) have evolved to flexible and 
powerful processors, which are now programmable using 
high-level languages supporting 32-bit and 64-bit floating-
point precision and do not require programming in assembly. 
They offer a lot of computational power, and this is the 
primary reason that developers today are focussing on getting 
the maximum benefit of this extreme scalability.

In the last few years, mass marketing of multi-core 

This article, the first in a series, introduces readers to the NVIDIA CUDA architecture, as 
good programming requires a decent amount of knowledge about the architecture. 

Introducing NVIDIA’s Compute 
Unified Device Architecture (CUDA)



April  2013  |  91

DevelopersOverview

to run their programs in parallel and get faster results than 
they would normally get using multi-core CPUs. Graphics 
rendering is all about compute-intensive, highly parallel 
computation, such that more transistors can be devoted 
to processing of data rather than data caching and flow 
control. You can simply take traditional C code that runs 
on a CPU and offload the data parallel sections of the code 
to the GPU. Functions executed on the GPU are referred to 
as computer kernels.

Each NVIDIA GPU has hundreds of cores, where each 
core has a floating point unit, logic unit, move, compare unit 
and a branch unit. Cores are managed by the thread manager, 
which can manage and spawn thousands of threads per core. 
There is no overhead in thread switching.

CUDA is C for parallel processors. You can write a 
program for one thread, and then instantiate it on many 
parallel threads, exploiting the inherent data parallelism 
of your algorithm. CUDA C code can run on any number 
of processors without the need for recompilation, and you 
can map CUDA threads to GPU threads or to CPU vectors. 
CUDA threads express fine-grained data parallelism and 
virtualise the processors. On the other hand, CUDA thread 
blocks express coarse-grained parallelism, as blocks hold 
arrays of GPU threads.

Kernels
CUDA C extends C by allowing the programmer to define C 
functions called kernels, which, when called, are executed N 
times in parallel by N different CUDA threads, as opposed to 
only once like regular C functions. A kernel is executed by a 
grid, which contains blocks.

The CUDA logical hierarchy (Figure 2) explains the points 
discussed above with respect to grids, blocks and threads.

A block contains a number of threads. A thread block 
or ‘warp’ is a collection of threads that can use shared data 
through shared memory and synchronise their execution. 
Threads from different blocks operate independently, and can 
be used to perform different functions in parallel. Each block 
and each thread is identified by a ‘build-in’ block index and 
thread index accessible within the kernel. The configuration 
placement is determined by the programmer when launching 
the kernel on the device, specifying blocks per grid and 
threads per block. Probably, this would be a lot of data to take 
in for someone who has just been introduced to the world of 
CUDA, but trust me, this is much more interesting once you 
sit down and start programming with CUDA.

Well, I believe that by now, you have a basic 
understanding of CUDA thread hierarchy and the memory 
hierarchy. One important point to consider here is that 
all applications won’t scale well on the CUDA device. 
It is well suited for problems that can be broken down 
into thousands of smaller chunks, to make use of the 
intensive threads in the architecture. CUDA can take 
the best advantage of C, one of the most widely used 

programming languages. You do not need to write the 
entire code in CUDA. Only when performing something 
computationally expensive, you could write a CUDA 
snippet and integrate it with your existing code, thus 
providing the required speedup.

NVIDIA has sold more than 100 million CUDA 
devices since 2006. With massive parallel programming 
reaching the end users and becoming a commodity 
technology, it is essential for a developer to understand 
the architecture and programming.

I will cover the basics of CUDA programming in an 
upcoming article. Till then, it would be worthwhile to put 
on your thinking caps and start thinking about algorithms 
in parallel. With massive parallel programming reaching 
the end users and becoming a commodity technology, it 
is essential for a developer to understand the architecture 
and programming of  these devices which has redefined the 
world of parallel computing. 

Figure 1:  Basic CUDA Architecture

Figure 2: CUDA logical hierarchy

[1]	 http://www.nvidia.com/cuda
[2]	 CUDA Wikipedia: http://en.wikipedia.org/wiki/CUDA
[3]	 Antonino Tumeo (Politecnico di Milano), “Massively Parallel 

Computing with CUDA”
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