
90  |  April 2013

Developers Overview

GPUs has brought terascale computing power to laptops
and petascale computing power to clusters. A CPU + GPU
is a powerful combination, because CPUs consist of a few
cores optimised for serial processing, while GPUs consist
of thousands of smaller, more efficient cores designed for
parallel performance. Serial portions of the code run on the
CPU, while parallel portions run on the GPU.

The Compute Unified Device Architecture (CUDA) is a
parallel programming architecture developed by NVIDIA.
CUDA is the computing engine in NVIDIA GPUs that
gives developers access to the virtual instruction set and
memory of the parallel computational elements in the CUDA
GPUs, through variants of industry-standard programming
languages. Exploiting data parallelism on the GPU has become
significantly easier with newer programming models like
OpenACC, which provides developers with simple compiler
directives to run their applications in parallel on the GPU.

Recently, at the 19th IEEE HiPC conference held in
Pune, I met several delegates from academia and industry
who wanted to make use of this extreme computing power,

Jack Dongarra, professor at the University of Tennessee
and author of Linpack has said, “Graphics Processing
Units have evolved to the point where many real-

world applications are easily implemented on them, and
run significantly faster than on multi-core systems. Future
computing architectures will be hybrid systems with parallel-
core GPUs working in tandem with multi-core CPUs.”

Project managers often instruct developers to improve
their algorithm so that their compute efficiency of their
application increases. We all know parallel processing is
faster, but there was always a doubt whether it would be
worth the effort and time—but not any more! Graphics
Processing Units (GPUs) have evolved to flexible and
powerful processors, which are now programmable using
high-level languages supporting 32-bit and 64-bit floating-
point precision and do not require programming in assembly.
They offer a lot of computational power, and this is the
primary reason that developers today are focussing on getting
the maximum benefit of this extreme scalability.

In the last few years, mass marketing of multi-core

This article, the first in a series, introduces readers to the NVIDIA CUDA architecture, as
good programming requires a decent amount of knowledge about the architecture.

Introducing NVIDIA’s Compute
Unified Device Architecture (CUDA)

April 2013  |  91

DevelopersOverview

to run their programs in parallel and get faster results than
they would normally get using multi-core CPUs. Graphics
rendering is all about compute-intensive, highly parallel
computation, such that more transistors can be devoted
to processing of data rather than data caching and flow
control. You can simply take traditional C code that runs
on a CPU and offload the data parallel sections of the code
to the GPU. Functions executed on the GPU are referred to
as computer kernels.

Each NVIDIA GPU has hundreds of cores, where each
core has a floating point unit, logic unit, move, compare unit
and a branch unit. Cores are managed by the thread manager,
which can manage and spawn thousands of threads per core.
There is no overhead in thread switching.

CUDA is C for parallel processors. You can write a
program for one thread, and then instantiate it on many
parallel threads, exploiting the inherent data parallelism
of your algorithm. CUDA C code can run on any number
of processors without the need for recompilation, and you
can map CUDA threads to GPU threads or to CPU vectors.
CUDA threads express fine-grained data parallelism and
virtualise the processors. On the other hand, CUDA thread
blocks express coarse-grained parallelism, as blocks hold
arrays of GPU threads.

Kernels
CUDA C extends C by allowing the programmer to define C
functions called kernels, which, when called, are executed N
times in parallel by N different CUDA threads, as opposed to
only once like regular C functions. A kernel is executed by a
grid, which contains blocks.

The CUDA logical hierarchy (Figure 2) explains the points
discussed above with respect to grids, blocks and threads.

A block contains a number of threads. A thread block
or ‘warp’ is a collection of threads that can use shared data
through shared memory and synchronise their execution.
Threads from different blocks operate independently, and can
be used to perform different functions in parallel. Each block
and each thread is identified by a ‘build-in’ block index and
thread index accessible within the kernel. The configuration
placement is determined by the programmer when launching
the kernel on the device, specifying blocks per grid and
threads per block. Probably, this would be a lot of data to take
in for someone who has just been introduced to the world of
CUDA, but trust me, this is much more interesting once you
sit down and start programming with CUDA.

Well, I believe that by now, you have a basic
understanding of CUDA thread hierarchy and the memory
hierarchy. One important point to consider here is that
all applications won’t scale well on the CUDA device.
It is well suited for problems that can be broken down
into thousands of smaller chunks, to make use of the
intensive threads in the architecture. CUDA can take
the best advantage of C, one of the most widely used

programming languages. You do not need to write the
entire code in CUDA. Only when performing something
computationally expensive, you could write a CUDA
snippet and integrate it with your existing code, thus
providing the required speedup.

NVIDIA has sold more than 100 million CUDA
devices since 2006. With massive parallel programming
reaching the end users and becoming a commodity
technology, it is essential for a developer to understand
the architecture and programming.

I will cover the basics of CUDA programming in an
upcoming article. Till then, it would be worthwhile to put
on your thinking caps and start thinking about algorithms
in parallel. With massive parallel programming reaching
the end users and becoming a commodity technology, it
is essential for a developer to understand the architecture
and programming of these devices which has redefined the
world of parallel computing.

Figure 1: Basic CUDA Architecture

Figure 2: CUDA logical hierarchy

[1]	 http://www.nvidia.com/cuda
[2]	 CUDA Wikipedia: http://en.wikipedia.org/wiki/CUDA
[3]	 Antonino Tumeo (Politecnico di Milano), “Massively Parallel

Computing with CUDA”

Resources

By: Tejaswi Agarwal

The author is passionate about computing power utilisation
and often spends his time computing the run-time and memory
utilisation of various algorithms. Computer architecture, parallel
programming and performance engineering are some of his areas
of research. He can be reached at tejaswi.agarwal2010@vit.ac.in.

Control

Cache

DRAM

CPU CPU

DRAM

ALU

ALU

ALU

ALU

Host Grid

Block (0, 0)

Shared Memory

Registers

Thread (0, 0)

Local
Memory

Global
Memory

Constant
Memory

Texture
Memory

Local
Memory

Local
Memory

Local
Memory

Thread (0, 0)Thread (1, 0) Thread (1, 0)

RegistersRegisters Registers

Shared Memory

Block (1, 0)

Device

Grid 1

Grid 2

Block
(0, 0)

Thread
(0, 1)

Thread
(0, 2)

Thread
(2, 0)

Thread
(2, 1)

Thread
(2, 2)

Thread
(1, 0)

Thread
(0, 0)

Thread
(1, 1)

Thread
(1, 2)

Thread
(3, 0)

Thread
(3, 1)

Thread
(3, 2)

Thread
(4, 0)

Thread
(4, 1)

Thread
(4, 2)

Block
(0, 1)

Block (1, 1)

Block
(1, 0)

Block
(1, 1)

Block
(2, 0)

Block
(2, 1)

Kernel 1

Kernel 2

