
52  |  May 2013

Developers How To DevelopersHow To

at no cost from: http://www.nvidia.com/content/cuda/cuda-
downloads.html. Select the correct product release depending
on your operating system preferences. This download contains
an all-in-one package, which includes the CUDA toolkit, SDK
code samples and the required drivers. After downloading,
follow the steps in the NVIDIA guide to install the drivers,
CUDA samples and the toolkit, at: http://developer.download.
nvidia.com/compute/cuda/5_0/rel/docs/CUDA_Getting_
Started_Guide_For_Linux.pdf. This guide will help you set up
the complete environment on the system.
In this article, I will cover the serial and parallel versions

of a vector addition program. Once you have understood the
basics of the parallel vector addition program, you could use
the concepts pretty well in parallelising other algorithms as per
your requirements.

First, let’s write a simple C program to perform vector
addition of two arrays. Open your favourite editor and write a
simple vector addition code that looks like what’s shown below:

#include<stdio.h>

static const int N=100;

Parallel programming and general-purpose GPU
computing are some of the hottest trends in computer
science today due to the decreased prices of multi-core

systems and the increase in compute efficiency. Various parallel
programming languages like OpenCL and CUDA have been
developed and evaluated over the years. This article will cover
the basics of CUDA C, invoking kernels, threads and blocks
with a vector addition program and it aims to give you an
insight into beginning programming on your CUDA device.

A few important points before we begin. To use CUDA on
your system, you will need to have the following installed:
1. 	 CUDA-capable GPU hardware
2. 	 A supported version of Linux with a GCC compiler and

toolchain
3. 	 NVIDIA CUDA toolkit and drivers

It is presumed that if you already have a CUDA device
within your system, you probably have the latest toolkit and
drivers installed and configured correctly. In case you do not
have the NVIDIA CUDA drivers configured or you have recently
upgraded your hardware with a CUDA device, you could follow
the simple steps given below to configure your device.
1. 	 Download the toolkit from the NVIDIA website, available

A previous article in this series ‘Introducing NVIDIAs CUDA' covered the basics of the
NVIDIA CUDA device architecture. This article covers parallel programming using CUDA C
with sequential and parallel implementations of a vector addition program.

Heterogeneous Parallel Programming:
Dive into the World of CUDA.

May 2013  |  53

Developers How To DevelopersHow To

//Add the vectors and store result in vector C

void vector_add(int *a,int *b, int *c)

{

 int i=0;

 for (i=1;i<=N;i++)

 {

 c[i]=a[i]+b[i];

 }

 }

 int main()

 {

 int a[N], b[N], c[N];

 int i=0;

 //Initialize the vectors with values from 1 to 100

and its double in another array

 {

 a[i]=i;

 b[i]=2*i;

 }

 //Call function vector_add to display the result

 vector_add(a,b,c);

 //Print the resultant array.

 for (i=1;i<=N;i++)

 {

 printf("%d %d %d\n\n", a[i],b[i],c[i]);

 }

 system("pause");

 return 0;

 }

This very simple serial vector addition program creates
two arrays of integer values, and adds them using the
vector_add function.

Compile the code using the following command:

gcc sequential_vector.c -osequential

Run it using the command given below:

./sequential

In the above program, the processor runs each task
sequentially, one after the other. Looping in the above
program works sequentially as it starts with the first index
and computes consequentially till the last index, and then

exits the program. It is a single-threaded execution. The
figure below would make the serial execution concept clear,
where t(x) represents the time slot of execution.

Now, CUDA gives us the functionality to perform the same
operation in parallel. What it does essentially is offload the data
parallel sections to the GPU device and send the result back
after computation. In what follows, you will get an insight into
launching kernels, writing a device and host code, and performing
the same serial vector addition program given above, in parallel.

Here is a simple vector addition code in CUDA.

#include <cuda.h>

#include<stdio.h>

#define N 100

#define numThread 1 // in this example we keep one thread in

one block

#define numBlock 100 // in this example we use 100 blocks

__global__ void vector_add(int *a, int *b, int *c) {

 // keep track of the index

 int tid = blockIdx.x;

 while (tid < N) {

 c[tid] = a[tid] + b[tid];

 tid = tid+ numBlock; // shift by the total number of

blocks, i.e. 100 in our case

 }

}

int main(void) {

 int *a, *b, *c;

 int *dev_a, *dev_b, *dev_c;

 // allocate the memory on the CPU

 a = (int*)malloc(N * sizeof(int));

 b = (int*)malloc(N * sizeof(int));

 c = (int*)malloc(N * sizeof(int));

 //Initialize the vectors with values from 1 to 100 and its

double in another array

 for (int i=0; i<N; i++) {

Figure 1: Sequential vector addition

t(1) t(2) t(3) t(99)

99

198 200

300297

100

t(100)

A 2

4

3

2

3

6

6 9

+ + + + +

B

C

54  |  May 2013

Developers How To DevelopersHow To

 a[i] = i;

 b[i] = 2 * i;

 }

 // allocate the memory on the GPU

 cudaMalloc((void**)&dev_a, N * sizeof(int)) ;

 cudaMalloc((void**)&dev_b, N * sizeof(int));

cudaMalloc((void**)&dev_c, N * sizeof(int));

 // copy the arrays 'a' and 'b' to the GPU

 cudaMemcpy(dev_a, a, N * sizeof(int),cudaMemcpyHostToDevi

ce);

 cudaMemcpy(dev_b, b, N * sizeof(int),cudaMemcpyHostToDevice

);

 vector_add<<<numBlock,numThread>>>(dev_a, dev_b, dev_c);

 // copy the array 'c' back from the GPU to the CPU

 cudaMemcpy(c, dev_c, N * sizeof(int),cudaMemcpyDeviceToHost

) ;

//Prints the results

for (int i=0; i<N; i++)

{

printf("%d %d %d \n\n", a[i],b[i],c[i]);

}

 // free the memory we allocated on the CPU

 free(a);

 free(b);

 free(c);

 // free the memory we allocated on the GPU

 cudaFree(dev_a) ;

 cudaFree(dev_b) ;

 cudaFree(dev_c);

 return 0;

}

Let’s begin with analysing each part of the code, and then
compile the code to get our results.

From the previous article (Part 1 of this series), you know
that CUDA programs execute in two places—the host (your
CPU) and the device (GPU). You might be a bit surprised
by the fact that writing the device code is much simpler than
writing the CPU host code. Hence, let’s begin with analysing
the device code first.

Since we have 100 array values in this code, to simplify
things, let’s have 100 blocks (kernels) running simultaneously,
where each kernel runs a single thread. Hence, let’s set
numThread to 1 and numBlock to 100, and use these variables
later while calling the device from the host.

Device code:

__global__ void add(int *a, int *b, int *c) {

 // keep track of the index

 int tid = blockIdx.x;

 while (tid < N) {

 c[tid] = a[tid] + b[tid];

 tid = tid+ numBlock; // shift by the total number of

blocks, i.e. 100 in our case

 }

}

As shown above, add a __global__ qualifier to the function
vector_add. Notice that there are very few changes in the
function vector_add of the serial and parallel sections. The
__global__ qualifier indicates that this is a device function that
would be called from the host.

blockIdx is a built-in CUDA runtime variable, which is a
three-component vector to identify threads in a one, two and
three dimension index. Imagine a block as a 3-D matrix and to
access the different components in this vector, use blockIdx.x,
blockIdx.y and blockIdx.z. In this code, we will be using
100 blocks with a single thread on every grid, which will be
seen while we analyse the host code, and hence we use only
blockIdx.x which returns the current block number.

The condition while tid<N checks that the bounds for array
computation have not been reached and computes the array
sum taking the block value as an index, i.e., tid.

Add numBlock to the tid value, to shift the index by the number
of blocks, as each block would be computing just one array index,
and we have 100 blocks for 100 array indexes. This explanation
pretty much sums up the device code for the program.

Now move on to the host code, which prepares the GPU for
execution and invokes the kernel. It works by allocating memory to
the GPU and CPU, transfers the input vectors to the GPU, launches
the kernel and transfers the result back to the host (CPU).

int main(void) {

 int *a, *b, *c;

 int *dev_a, *dev_b, *dev_c;

 // allocate the memory on the CPU

 a = (int*)malloc(N * sizeof(int));

 b = (int*)malloc(N * sizeof(int));

 c = (int*)malloc(N * sizeof(int));

 // fill the arrays 'a' and 'b' on the CPU

 for (int i=0; i<N; i++) {

 a[i] = i;

 b[i] = 2 * i;

 }

 // allocate the memory on the GPU

 cudaMalloc((void**)&dev_a, N * sizeof(int)) ;

May 2013  |  55

Developers How To DevelopersHow To

[1]	 ‘CUDA C Programming Guide’ by NVIDIA; http://docs.nvidia.
com/cuda/cuda-c-programming-guide/index.html

[2] 	 ‘CUDA Application Design and Development’ by Rob Farber
[3] 	 ‘Programming Massively Parallel Processors’ by David B. Kirk

and Wen-mei W. Hwu

References

By: Tejaswi Agarwal

A FOSS enthusiast, the author is passionate about compute
power utilisation, run time and memory utilisation of algorithms.
Some of his research areas are computer architecture, parallel
programming and performance engineering. He can be contacted
at tejaswi.agarwal2010@vit.ac.in

 cudaMalloc((void**)&dev_b, N * sizeof(int));

cudaMalloc((void**)&dev_c, N * sizeof(int));

 // copy the arrays 'a' and 'b' to the GPU

 cudaMemcpy(dev_a, a, N * sizeof(int),cudaMemcpyHostToDevi

ce);

 cudaMemcpy(dev_b, b, N * sizeof(int),cudaMemcpyHostToDevice);

As in the above code, similar to the allocation in C, variables

a, b and c are allocated memory on the CPU. cudaMalloc() is a
standard sub-routine of the CUDA API to allocate memory on the
device. It works similar to the C malloc() function we used earlier.

Since you cannot modify the memory allocated to the device
from the host directly in CUDA, cudaMemcpy() is used to transfer
data to the device. This method takes a pointer to the local memory,
a pointer to the GPU memory being copied to, the number of bytes
that will be copied, and a flag which determines the direction of the
memory transfer, respectively.

vector_add<<<numBlock,numThread>>>(dev_a, dev_b, dev_c);

This line is a call to the device kernel from the host to
execute the function on the device. It is similar to the serial
function call with some additional code. Blocks are organised
in three dimensional grids and threads are organised in three
dimensional blocks. numBlock and numThread are passed
as arguments to let the device know about the structure to be
adopted for computation.

cudaMemcpy(c, dev_c, N * sizeof(int),cudaMemcpyDeviceToHost) ;

This copies the resultant data back from the GPU to the host.
As you can see, it is similar to the cudaMemcpy() we used above,
with the last variable being changed to cudaMemcpyDeviceToHost
to indicate data transfer is between device to host.

The rest of the code is pretty much self-explanatory, except
that you use cudaFree() to free the memory allocated to the GPU.

Now that you understand the code well, compile the code to
verify your results.

Save the code and parallel_vector.cu, and type the following
command in the terminal:

nvcc parallel_vector.c -o parallel

Now, to execute the code, run the following command:

./parallel

If you have followed this guide correctly, it will print the
vectors ‘a’ and ‘b’ along with their additional resultant ‘c’.
This would verify that the first GPU code which you wrote has
worked correctly. Still confused? Well, have a look at Figure 2,
which will give you a clear understanding of how things work
in parallel, in this case.

Performance
You may wonder how the GPU code can perform about
100 times faster than the CPU code, since we have created
100 blocks that are executing in parallel. This is not the
case, since there is an overhead involved in copying data
between the CPU and the GPU and the resultant data back
to the CPU. Hence, CUDA is generally used for computing
algorithms that are significantly data intensive, as it would
then make sense to spend some time for data transfer.
GPUs are, therefore, generally known as data intensive
computational devices.

As a next step, you could try programming matrix
addition on the GPU in parallel to get a good grip
on kernels, threads and parallel execution. Your best
companion for this would be the links and the books
mentioned in the ‘References’ section at the end of this
article. I also recommend you visit the NVIDIA website
and documentation, as it will give you a good idea about
the power of CUDA if you are not already impressed
by what this simple GPU device on your laptop can do.
Next up in this series, I might cover an advanced CUDA
program with multiple threads and blocks on a grid, and
analyse the running time of the code. I will follow it up
with a discussion on OpenACC and other simpler parallel
programming models that have come up recently.

Till then, start thinking of algorithms in parallel. The world
of parallel computing is here to stay!

Figure 2: Parallel vector addition

Block 1

t(1)

A 1 2 3 99 100

200

300

198

29796

4 6

+ + ++

|| || || || ||

B

C

t(1) t(1) t(1) t(1)

Block 2 Block 3 Block 99 Block 100

