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at no cost from: http://www.nvidia.com/content/cuda/cuda-
downloads.html. Select the correct product release depending 
on your operating system preferences. This download contains 
an all-in-one package, which includes the CUDA toolkit, SDK 
code samples and the required drivers. After downloading, 
follow the steps in the NVIDIA guide to install the drivers, 
CUDA samples and the toolkit, at: http://developer.download.
nvidia.com/compute/cuda/5_0/rel/docs/CUDA_Getting_
Started_Guide_For_Linux.pdf. This guide will help you set up 
the complete environment on the system. 
In this article, I will cover the serial and parallel versions 

of a vector addition program. Once you have understood the 
basics of the parallel vector addition program, you could use 
the concepts pretty well in parallelising other algorithms as per 
your requirements. 

First, let’s write a simple C program to perform vector 
addition of two arrays. Open your favourite editor and write a 
simple vector addition code that looks like what’s shown below: 

#include<stdio.h>

static const int N=100;

Parallel programming and general-purpose GPU 
computing are some of the hottest trends in computer 
science today due to the decreased prices of multi-core 

systems and the increase in compute efficiency. Various parallel 
programming languages like OpenCL and CUDA have been 
developed and evaluated over the years. This article will cover 
the basics of CUDA C, invoking kernels, threads and blocks 
with a vector addition program and it aims to give you an 
insight into beginning programming on your CUDA device. 

A few important points before we begin. To use CUDA on 
your system, you will need to have the following installed:
1. 	 CUDA-capable GPU hardware
2. 	 A supported version of Linux with a GCC compiler and 

toolchain
3. 	 NVIDIA CUDA toolkit and drivers

It is presumed that if you already have a CUDA device 
within your system, you probably have the latest toolkit and 
drivers installed and configured correctly. In case you do not 
have the NVIDIA CUDA drivers configured or you have recently 
upgraded your hardware with a CUDA device, you could follow 
the simple steps given below to configure your device. 
1. 	 Download the toolkit from the NVIDIA website, available 

A previous article in this series ‘Introducing NVIDIAs CUDA' covered the basics of the 
NVIDIA CUDA device architecture. This article covers parallel programming using CUDA C 
with sequential and parallel implementations of a vector addition program. 

Heterogeneous Parallel Programming: 
Dive into the World of CUDA. 
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//Add the vectors and store result in vector C

void vector_add(int *a,int *b, int *c)

{ 

     int i=0;

     for (i=1;i<=N;i++)

    {

         c[i]=a[i]+b[i];

         }

     }

 

     int main()

 

    {

 

          int a[N], b[N], c[N];

          int i=0;

 
         //Initialize the vectors with values from 1 to 100 

and its double in another array

          {

             a[i]=i;

             b[i]=2*i;

          }

 

             //Call function vector_add to display the result

             vector_add(a,b,c);

 

              //Print the resultant array. 

              for (i=1;i<=N;i++)

              {

                 printf("%d %d %d\n\n", a[i],b[i],c[i] );

                 }

 

             system("pause");  

             return 0;

  

          }

This very simple serial vector addition program creates 
two arrays of integer values, and adds them using the 
vector_add function.

Compile the code using the following command:

gcc sequential_vector.c -osequential

Run it using the command given below: 

./sequential

In the above program, the processor runs each task 
sequentially, one after the other. Looping in the above 
program works sequentially as it starts with the first index 
and computes consequentially till the last index, and then 

exits the program. It is a single-threaded execution. The 
figure below would make the serial execution concept clear, 
where t(x) represents the time slot of execution. 

Now, CUDA gives us the functionality to perform the same 
operation in parallel. What it does essentially is offload the data 
parallel sections to the GPU device and send the result back 
after computation. In what follows, you will get an insight into 
launching kernels, writing a device and host code, and performing 
the same serial vector addition program given above, in parallel. 

Here is a simple vector addition code in CUDA. 

#include <cuda.h>

#include<stdio.h>

#define N 100

#define numThread 1 // in this example we keep one thread in 

one block

#define numBlock 100 // in this example we use 100 blocks

__global__ void vector_add( int *a, int *b, int *c ) {

   // keep track of the index

   int tid = blockIdx.x;

 

   while (tid < N) {

        c[tid] = a[tid] + b[tid];

        tid = tid+ numBlock; // shift by the total number of 

blocks, i.e. 100 in our case

     }

}

 

int main( void ) {

    int *a, *b, *c;

    int *dev_a, *dev_b, *dev_c;

 

    // allocate the memory on the CPU

   a = (int*)malloc( N * sizeof(int) );

   b = (int*)malloc( N * sizeof(int) );

   c = (int*)malloc( N * sizeof(int) );

  //Initialize the vectors with values from 1 to 100 and its 

double in another array

 for (int i=0; i<N; i++) {

Figure 1: Sequential vector addition
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        a[i] = i;

        b[i] = 2 * i;

   }

 

   // allocate the memory on the GPU

   cudaMalloc( (void**)&dev_a, N * sizeof(int) ) ;

  cudaMalloc( (void**)&dev_b, N * sizeof(int) );

cudaMalloc( (void**)&dev_c, N * sizeof(int) );

 

     // copy the arrays 'a' and 'b' to the GPU

    cudaMemcpy( dev_a, a, N * sizeof(int),cudaMemcpyHostToDevi

ce );

   cudaMemcpy( dev_b, b, N * sizeof(int),cudaMemcpyHostToDevice 

);

 

   vector_add<<<numBlock,numThread>>>( dev_a, dev_b, dev_c );

 

   // copy the array 'c' back from the GPU to the CPU

   cudaMemcpy( c, dev_c, N * sizeof(int),cudaMemcpyDeviceToHost 

) ;

 

//Prints the results

for (int i=0; i<N; i++)

{

printf("%d %d %d \n\n", a[i],b[i],c[i] );

}

 

     // free the memory we allocated on the CPU

    free( a );

    free( b );

    free( c );

 

   // free the memory we allocated on the GPU

   cudaFree( dev_a ) ;

   cudaFree( dev_b ) ;

    cudaFree( dev_c);

 

    return 0;

}

Let’s begin with analysing each part of the code, and then 
compile the code to get our results.  

From the previous article (Part 1 of this series), you know 
that CUDA programs execute in two places—the host (your 
CPU) and the device (GPU). You might be a bit surprised 
by the fact that writing the device code is much simpler than 
writing the CPU host code. Hence, let’s begin with analysing 
the device code first. 

Since we have 100 array values in this code, to simplify 
things, let’s have 100 blocks (kernels) running simultaneously, 
where each kernel runs a single thread. Hence, let’s set 
numThread to 1 and numBlock to 100, and use these variables 
later while calling the device from the host. 

Device code:

__global__ void add( int *a, int *b, int *c ) {

     // keep track of the index

    int tid = blockIdx.x;

 

    while (tid < N) {

        c[tid] = a[tid] + b[tid];

        tid = tid+ numBlock; // shift by the total number of 

blocks, i.e. 100 in our case

    }

}

As shown above, add a __global__ qualifier to the function 
vector_add. Notice that there are very few changes in the 
function vector_add of the serial and parallel sections. The 
__global__ qualifier indicates that this is a device function that 
would be called from the host. 

blockIdx is a built-in CUDA runtime variable, which is a 
three-component vector to identify threads in a one, two and 
three dimension index. Imagine a block as a 3-D matrix and to 
access the different components in this vector, use blockIdx.x, 
blockIdx.y and blockIdx.z. In this code, we will be using 
100 blocks with a single thread on every grid, which will be 
seen while we analyse the host code, and hence we use only 
blockIdx.x which returns the current block number. 

The condition while tid<N checks that the bounds for array 
computation have not been reached and computes the array 
sum taking the block value as an index, i.e., tid. 

Add numBlock to the tid value, to shift the index by the number 
of blocks, as each block would be computing just one array index, 
and we have 100 blocks for 100 array indexes. This explanation 
pretty much sums up the device code for the program. 

Now move on to the host code, which prepares the GPU for 
execution and invokes the kernel. It works by allocating memory to 
the GPU and CPU, transfers the input vectors to the GPU, launches 
the kernel and transfers the result back to the host (CPU). 

int main( void ) {

    int *a, *b, *c;

    int *dev_a, *dev_b, *dev_c;

 

    // allocate the memory on the CPU

    a = (int*)malloc( N * sizeof(int) );

    b = (int*)malloc( N * sizeof(int) );

    c = (int*)malloc( N * sizeof(int) );

 

    // fill the arrays 'a' and 'b' on the CPU

   for (int i=0; i<N; i++) {

        a[i] = i;

       b[i] = 2 * i;

    }

 

    // allocate the memory on the GPU

   cudaMalloc( (void**)&dev_a, N * sizeof(int) ) ;
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   cudaMalloc( (void**)&dev_b, N * sizeof(int) );

cudaMalloc( (void**)&dev_c, N * sizeof(int) );

 

   // copy the arrays 'a' and 'b' to the GPU

    cudaMemcpy( dev_a, a, N * sizeof(int),cudaMemcpyHostToDevi

ce );

  cudaMemcpy( dev_b, b, N * sizeof(int),cudaMemcpyHostToDevice );

 
As in the above code, similar to the allocation in C, variables 

a, b and c are allocated memory on the CPU. cudaMalloc() is a 
standard sub-routine of the CUDA API to allocate memory on the 
device. It works similar to the C malloc() function we used earlier. 

Since you cannot modify the memory allocated to the device 
from the host directly in CUDA, cudaMemcpy() is used to transfer 
data to the device. This method takes a pointer to the local memory, 
a pointer to the GPU memory being copied to, the number of bytes 
that will be copied, and a flag which determines the direction of the 
memory transfer, respectively. 

vector_add<<<numBlock,numThread>>>( dev_a, dev_b, dev_c );

This line is a call to the device kernel from the host to 
execute the function on the device. It is similar to the serial 
function call with some additional code. Blocks are organised 
in three dimensional grids and threads are organised in three 
dimensional blocks. numBlock and numThread are passed 
as arguments to let the device know about the structure to be 
adopted for computation. 

cudaMemcpy( c, dev_c, N * sizeof(int),cudaMemcpyDeviceToHost ) ;

This copies the resultant data back from the GPU to the host. 
As you can see, it is similar to the cudaMemcpy() we used above, 
with the last variable being changed to cudaMemcpyDeviceToHost 
to indicate data transfer is between device to host. 

The rest of the code is pretty much self-explanatory, except 
that you use cudaFree() to free the memory allocated to the GPU. 

Now that you understand the code well, compile the code to 
verify your results. 

Save the code and parallel_vector.cu, and type the following 
command in the terminal:

nvcc parallel_vector.c  -o parallel

Now, to execute the code, run the following command:

./parallel

If you have followed this guide correctly, it will print the 
vectors ‘a’ and ‘b’ along with their additional resultant ‘c’. 
This would verify that the first GPU code which you wrote has 
worked correctly. Still confused? Well, have a look at Figure 2, 
which will give you a clear understanding of how things work 
in parallel, in this case. 

Performance
You may wonder how the GPU code can perform about 
100 times faster than the CPU code, since we have created 
100 blocks that are executing in parallel. This is not the 
case, since there is an overhead involved in copying data 
between the CPU and the GPU and the resultant data back 
to the CPU. Hence, CUDA is generally used for computing 
algorithms that are significantly data intensive, as it would 
then make sense to spend some time for data transfer. 
GPUs are, therefore, generally known as data intensive 
computational devices. 

As a next step, you could try programming matrix 
addition on the GPU in parallel to get a good grip 
on kernels, threads and parallel execution. Your best 
companion for this would be the links and the books 
mentioned in the ‘References’ section at the end of this 
article. I also recommend you visit the NVIDIA website 
and documentation, as it will give you a good idea about 
the power of CUDA if you are not already impressed 
by what this simple GPU device on your laptop can do. 
Next up in this series, I might cover an advanced CUDA 
program with multiple threads and blocks on a grid, and 
analyse the running time of the code. I will follow it up 
with a discussion on OpenACC and other simpler parallel 
programming models that have come up recently. 

Till then,  start thinking of algorithms in parallel. The world 
of parallel computing is here to stay!  

Figure 2: Parallel vector addition
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