
Admin Let's Try AdminLet's Try

June 2013  |  67

Learn about Network Simulator-2, its installation and the execution of simple TCL
files of network architecture.

Simulate Your Network with NS2

NS2 emulator works on two modes, i.e., the protocol mode
and the opaque mode. In the protocol mode, the emulator
interprets received traffic, whereas in the opaque mode, the
received data is not interpreted.

An insight into the architecture of NS2
NS2 is primarily designed on two languages: C++ and Object-
oriented Tool Command Language (OTCL). C++ is used for
defining the internals of NS2 while OTCL is used to control
the simulation as well as to schedule discrete events. C++ and
OTCL are linked together using TCLCL. After the linking of
C++ member variables to OTCL object variables by using the
bind member function, C++ variables can be modified through
OTCL directly. The main drawbacks of this approach are that
the user has to know C++ as well as OTCL, and the debugging
of simulations becomes more difficult.

After simulation, NS2 outputs either text-based or
animation-based simulation results. To interpret these
results graphically and interactively, tools such as NAM and
XGraph are used, which are explained in the next section.
To analyse some particular behaviour of the network, extract
a relevant subset of the text-based data and transform it into
a more understandable presentation. The basic architecture
is shown in Figure 1, pictorially:

Network Simulator-2 (NS2) is a discrete event network
simulator that plays an important role in network
research and development. It is one of the most

widely used open source network simulators. It has been
enhanced over the years, leading to a complete package
consisting of various modules for functions such as routing,
the transport layer protocol and applications.

To observe network performance, an easy scripting
language can be used, by which you can configure the
network as per your architecture and observe the results to
check the correctness of your configuration.

NS2 plays the role of both emulator and simulator. The
latter contains three types of discrete event schedulers:
list, heap and hash-based calendar. NS2 provides default
implementations for network nodes, links between nodes,
routing algorithms, some transport level protocols (especially
UDP and TCP) and some traffic generators. It also contains
some useful utilities like the TCL debugger, simulation
scenario generator and simulation topology generator. The
TCL debugger is used to debug TCL scripts, which becomes
necessary if one is using large scripts to control a simulation.

It is also possible to use NS2 as an emulator, which is
currently supported by only FreeBSD. The NS2 emulator
can be used to connect the tool to a live network. The

Admin Let's Try AdminLet's Try

68  |  June 2013

Supporting tools with NS2
Let’s explore the supporting tools that come with the NS2
installation, which help set up your environment and run your
simulations.

NAM (Network AniMator): NAM is a TCL-based
animation tool for viewing network simulation traces and real
traces of packet data. To use NAM, you have to first generate
a trace file that contains topological information like nodes,
links and packet traces.

Once the trace file is generated, NAM will read it, create
a topology, pop up a window, do the layout if necessary, and
then pause at the time of the first packet in the trace file. NAM
provides control over many aspects of animation through
its user interface, and does animation using the following
building blocks: node, link, queue, packet, agent and monitor.
The official NAM user manual can be found at http://www.isi.
edu/nsnam/nam/

XGraph: XGraph is a plotting program that is used
to create graphic representations of simulation results. It
is important because it allows some basic animation of
data sets. The animation only pages through data sets in
the order in which they are loaded. It is quite crude, but
useful if all the data sets are in one file in the time order,
and are put out at uniform intervals. Also, the code will
take derivatives of your data numerically and display
these in a new XGraph window.

NS2 functionalities
Wired world
Routing: distance vector (DV), link state (LS), and multicast
Transport protocols: TCP, UDP, RTP and SCTP
Traffic sources: WEB, FTP, telnet, CBR, and Stochastic
Queuing disciplines: Drop-Tail, RED, FQ, SFQ, and DRR
QoS: IntServ and Diffserv emulation

Wireless
Ad hoc routing (AODV, DSDV) and mobile IP
Directed diffusion, and sensor-MAC

Installing NS2 on Ubuntu
�� Download the latest release of the ns-allinone package

from the official NS2 weblink http://www.isi.edu/nsnam/
ns/ns-build.html

�� Open the terminal and change the working directory to
where you downloaded the ns-allinone package.

�� Now untar (uncompress) the package using the
following command:

tar xzvf filename

Change the directory to ns-allinone2.29, run the
installation script using the following command and wait until
the installation is successfully completed:

./install

�� After successfully installing the NS2 package, configure
the .bashrc file, which is present in the following path:

home/ns2username

Edit the .bashrc file using the following command:

gedit .bashrc

Set the following path in the last line of .bash

export PATH="$PATH:/home/ns2userName/ns-allinone-2.29/bin:/

home

/ns2userName/ns-allinone-2.29/tcl 8.4.11/unix:/home/

ns2userName/ns-allinone-2.29/tk8.4.11/unix"

export LD_LIBRARY_PATH="/home/ns2userName/ns-allinone-2.29/

otcl-1.11,/home/ns2userName/ns-alli none-2.29/lib"

export TCL_ LIBRARY="/home/ns2userName/ns-allinone-2.29/

tcl8.4.11/library"

�� If the path set is correct, open the new terminal and run
the following in the home directory:

ns/

If you see a % sign displayed in the terminal,
congratulations, you have installed NS2 successfully!
�� Now to validate the installation, run the following

command (optional):

cd /ns-allinone-2.29/ns-2.29 / ./validate

Execution of a simple TCL file in NS2
In this section, let’s cover the execution of TCL files for a
simple network architecture.

set ns [new Simulator] //This creates an NS2 simulator object

set tracefile [open out.tr w]

$ns trace-all $tracefile //Open trace file

Figure 1: Network Simulator 2 Architecture

oTcl Script
Topology & Traffic

Conditions
(file tcl)

NS2
(Simulator)

Traffic Trace
(file.bin)

oTcl c++

NAM Trace
(file.nam)

NAM
(Animater)

ASCII Trace
(file.tr)

Analyser Program (s)
(Script.Awk.Sed, Python.Perl...)

Analyser Program (s)
(Script.Awk.Sed, Python.Perl...)

Graph

Plotting program
(gnuplot.xgraph...)

Admin Let's Try AdminLet's Try

June 2013  |  69

set nf [open out.nam w]

$ns namtrace-all $nf //Open the NAM trace file

proc finish {}

{

 global ns tracefile nf

 $ns flush-trace

 close $nf

 close $tracefile

 exec nam out.nam &

 exit 0

}

//'finish' procedure

set n0 [$ns node]

set n1 [$ns node]

$ns simplex-link $n0 $n1 1Mb 10ms DropTail // Create your

topology

 - set n0 nodes….

 - make the link between node0 and node1

set tcp0 [new Agent/TCP]

$ns attach-agent $n0 $tcp0

set cbr0 [new Application/Traffic/CBR]

$cbr0 attach-agent $tcp0

set tcpsink0 [new Agent/TCPSink]

$ns attach-agent $n1 $tcpsink0

$ns connect $tcp0 $tcpsink0 // Create your agents

-the nodes will follow the TCP at CBR(Constant Bit Rate)

$ns at 1.0 "$cbr start"

$ns at 3.0 "finish" //Scheduling Events

- $ns at 1.0 start

 and at 3.0 finish

$ns run //starts the simulation

This is a basic example of a .TCL file where you create
two nodes and observe the transfer of packets according to
the Transmission Control Protocol (TCP) at Constant Bit Rate
(CBR), which is a traffic gener ator. In this example, we have
used the TCP but other protocols and traffic sources can be
used depending on your network architecture.

Execution of the .TCL file in NS2
.TCL files contain the code of network simulation and can be
executed by following the steps given below:
�� Once you have installed the NS2 successfully, open a

terminal and run the following:

/ns filename.TCL.

�� Once you run that command, .tr and .nam files will be
created in the same directory that contains the .TCL file.

�� To interpret the results in the form of animation, you need
to just run the command given below:

/nam filename.nam

�� And to see the results in numerical form, you need to open
the .tr file in the editor.

/gedit filename.tr

The main aim of this article was to give readers an
insight into the architecture and working of NS2 and how
it could be used to simulate complex networking problems
with simple programming syntax.

As the next step, start with designing a different
network architecture consisting of three nodes, write a
simple script using the reference given above and check its
execution. This would give you a good idea about writing
and executing scripts in NS2. Check the ‘References’
section for more details about simulating your network
using Network Simulator 2.

Figure 2: Execution of a simple TCL file

By: Naman Jain and Tejaswi Agarwal

Naman Jain is keenly interested in open source programming
and has a good command over Linux systems administration.
His research interests lie in the areas of computer networks,
simulations, and cloud computing. You can contact him at
naman.jain2010@vit.ac.in

Tejaswi Agarwal is a FOSS enthusiast, who is passionate about
compute power utilisation, run time and memory utilisation of
algorithms. Computer architecture, parallel programming and
performance engineering are some of his research areas. He can
be contacted at tejaswi.agarwal2010@vit.ac.in

[1] 	 Introduction to Network Simulator 2, Springer Publications.
[2] 	 The NS2 project page, http://nsnam.isi.edu/nsnam/index.php/

User_Information
[3]	 For more examples, visit, www.nsnam.com

References

