Overview

- IP Header
- Network layer forwarding
- Address resolution
- Address assignment
- Error reporting

Recap: Network Addresses

- Convert netmask in slash notation to dotted decimal
 - 255 byte for each multiple of 8
 - Next byte: 256 - \(2^{(8 - \text{remain})}\)
 - Pad with 0 bytes
- Convert netmask in dotted decimal to slash notation
 - Add 8 for each 255 byte
 - Add 8 - \(\log_2(256\text{-byte})\) for 0 < byte < 255
- Determine number of hosts given netmask in slash notation
 - \(2^{(32\text{-slash})} - 2\)
- Determine address range given network address and netmask in dotted decimal
 - Minimum address: add 1 to last byte of network address
 - Maximum address:
 - For first non-zero byte in network address, round up to nearest multiple of 256 - mask byte and subtract 1
 - If first non-zero byte was not last byte, set last byte to 1
- Determine network address given host address and netmask in dotted decimal
 - If mask byte = 255, network byte = same as host byte
 - If mask byte = 0, network byte = 0
 - Network byte = host byte rounded down to nearest multiple of 256 - mask byte

Internet Protocol (IP) Header

- Packet format

```
<table>
<thead>
<tr>
<th>In 32-bit (4 byte) words</th>
<th>In bytes; header + payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>Version</td>
<td>Length</td>
</tr>
<tr>
<td>Hdr Len</td>
<td></td>
</tr>
<tr>
<td>Type of Service</td>
<td></td>
</tr>
<tr>
<td>Identifier</td>
<td>Flags</td>
</tr>
<tr>
<td>Time to Live (TTL)</td>
<td>Offset</td>
</tr>
<tr>
<td>Protocol</td>
<td></td>
</tr>
<tr>
<td>Source Address</td>
<td></td>
</tr>
<tr>
<td>Destination Address</td>
<td></td>
</tr>
<tr>
<td>Options (variable)</td>
<td>Pad (variable)</td>
</tr>
<tr>
<td>Payload (e.g., TCP &amp; HTTP headers)</td>
<td></td>
</tr>
</tbody>
</table>
```
○ Version: v4 or v6
○ Header length: in 32-bit words; range is 5-15 (depending on if there are options)
○ Type of service: used to define priority of traffic
○ Length: in bytes; includes IP header length plus payload length
○ Identifier, flags, offset: used for fragmentation
○ Time to live: maximum number of hops (i.e., routers) a packet should traverse
 ■ Prevents packets from getting forever stuck in a routing loop
○ Protocol: specifies what header comes next (TCP, UDP, ICMP, etc.)
○ Checksum: computed over header and payload
○ Source address and destination address
○ Options: sometimes included; length varies, but always padded to 32-bit word

Network Layer Forwarding

- Each packet contains destination IP
- Router constructs a table of route entries
 - Subnet, gateway, mask, interface
 - For now, assume route table is statically specified
- For each entry in forwarding table
 - Bitwise AND pkt’s dst IP and entry mask
 - If result matches entry subnet
 ■ If gateway is empty
 - Destination is reachable via link layer forwarding
 - Deliver datagram directly to destination (via link layer forwarding)
 ■ Else
 - Destination is in a different (sub)network
 - Deliver datagram to gateway (via link layer forwarding)
- Example
 - Topology
o R1's routing table

<table>
<thead>
<tr>
<th>Subnet</th>
<th>Gateway</th>
<th>Mask</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.0</td>
<td></td>
<td>255.255.255.0</td>
<td>Intf1</td>
</tr>
<tr>
<td>10.0.2.0</td>
<td></td>
<td>255.255.254.0</td>
<td>Intf2</td>
</tr>
<tr>
<td>10.0.4.0</td>
<td>10.0.4.1</td>
<td>255.255.252.0</td>
<td>Intf3</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td></td>
<td>0.0.0.0</td>
<td>Intf3</td>
</tr>
</tbody>
</table>

Out which interface will each packet be sent?
- Destination is 10.0.2.10 => send out Intf2 to 10.0.2.10
- Destination is 10.0.6.10 => send out Intf3 to 10.0.6.10
- Destination is 10.0.10.10 => send out Intf3 to 10.0.4.1

● Example
 o R1's routing table

<table>
<thead>
<tr>
<th>Subnet</th>
<th>Gateway</th>
<th>Mask</th>
<th>Slash</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.2.0</td>
<td></td>
<td>255.255.254.0</td>
<td>23</td>
<td>Intf2</td>
</tr>
<tr>
<td>10.0.2.128</td>
<td></td>
<td>255.255.255.128</td>
<td>25</td>
<td>Intf1</td>
</tr>
<tr>
<td>10.0.3.0</td>
<td></td>
<td>255.255.255.0</td>
<td>24</td>
<td>Intf3</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>10.0.3.1</td>
<td>0.0.0.0</td>
<td></td>
<td>Intf3</td>
</tr>
</tbody>
</table>

Out which interface will each packet be sent?
- Destination is 10.0.2.10 => send out Intf2 to 10.0.2.10
- Destination is 10.0.2.130 => send out Intf1 to 10.0.2.130
- Destination is 10.0.3.10 => send out Intf3 to 10.0.3.10
- Destination is 10.0.4.10 => send out Intf3 to 10.0.3.1

● Longest prefix match
 o Routing entries could overlap
 o Use “most specific” route possible
 o “Most specific” is determined by the length of the prefix
 ■ i.e., the # of 1’s bits in the mask
 ■ i.e., the largest number if mask is written using slash notation

Address Resolution

● How do we get packet to specific host or gateway?
 o Use link layer forwarding
 o We need to know host or gateway's link layer address (i.e., MAC address)

● Address Resolution Protocol (ARP)
 o Used to translate IP addresses to MAC addresses
 o ARP table contains <IP address, MAC address> tuples
 o **How do we populate the ARP table?**
 ■ Statically
 ● Lots of work; prone to errors when hosts leave the network, join the network, or move within the network
 ● Exchange request/reply messages between hosts
○ Link layer broadcast of request sent on interface where original packet should be sent
 ■ Broadcast MAC address of all 1s (i.e., FF:FF:FF:FF:FF:FF)
 ■ Request contains IP address whose MAC address we want to know
○ Host/gateway that has the IP constructs an ARP reply with its MAC address
 ■ Use link layer forwarding to send reply back to requestor -- we should be able to know the reverse path if we used learning switches
○ Entries in ARP table timeout after some period of time

Address Assignment
 ● Dynamic Host Configuration Protocol (DHCP)
 ○ Assigns IP addresses to hosts
 ○ Host (DHCP client) broadcasts a request for an IP address
 ○ DHCP server receives the request, picks an address, and sends reply with assigned IP
 ■ Configure DHCP server with range of IPs to assign

Error Reporting
 ● Error situations
 ○ Router does not have any routing entry that matches packet
 ○ Router does not have entry in ARP table and ARP resolution fails
 ○ TTL of packet is zero
 ● Internet Control Message Protocol (ICMP)
 ○ Used to send error message back to sender of IP packet
 ○ Also used for ping: echo request and echo reply