Link State Routing & Inter-Domain Routing

CS640, 2015-02-26

Announcements

Assignment #2 is due Tuesday

Overview

- Link state routing
- Internet structure
- Border Gateway Protocol (BGP)
- Path vector routing
- Inter-domain routing policies

Link State Routing

- Reliably flood LSPs
 - LSPs
 - Source router ID
 - List of neighbors and link costs
 - Sequence #
 - Time to live
 - o Router generates LSP when conditions change -- e.g., link fails
 - Assign next seq #
 - Flooding algorithm
 - If no stored LSP from source
 - Store LSP
 - Broadcast LSP on all links except the link on which it was received
 - If seq # of received LSP > stored LSP
 - Replace stored LSP
 - Broadcast LSP
 - If sequence # of received LSP ≤ stored LSP
 - Do nothing
- Dijkstra's algorithm
 - Variables
 - V = nodes in network G
 - l(i,j) = link cost between nodes i & j
 - SPT = shortest path tree between source node and all other nodes
 - S = source node
 - = C(v) = cost of path between S and v

- o Algorithm
 - Initialize SPT = {S}
 - For each n not in SPT
 - $C(v) = \ell(S,n)$
 - While SPT <> V
 - SPT = SPT U {w} such that C(w) is the min for all w in (V SPT)
 - For each v not in SPT
 - o C(v) = cost of minimum path from S to v via nodes in SPT
 - Result is table of entries <From, To, Interface, Cost> for all nodes in the network
- Example -- find the SPT from B

- SPT = {B}
- Set $C(v) = \ell(S,v)$ for all V SPT
 - C(E) = 1
 - C(A) = 3
 - C(C) = 4
 - $C(D) = \infty$
 - $C(F) = \infty$
- SPT = {B} U {E}
- Recalculate C(v) based on SPT = {B,E}
 - C(A) = min(3, 1+1) = 2
 - $C(C) = min(4, 1+\infty) = 4$
 - $C(D) = min(\infty, 1+1) = 2$
 - $C(F) + min(\infty, 1+2) = 3$
- SPT = {B,E} U {A}
- Recalculate C(v) based on SPT = {B,E,A}
 - C(C) = 4
 - C(D) = 2
 - C(F) = 3
- SPT = {B,E,A} U {D}
- Recalculate C(v) based on SPT = {B,E,A,D}
 - C(C) = 4
 - C(F) = 3
- **.**..
- Algorithm stops when SPT = {A,B,C,D,E,F}

- No count to infinity problem
 - Fast propagation of link state packets via reliable flooding
 - All route computation is local
- Open Shortest Path First (OSPF) Implements link state routing
- Link state routing is preferred due to
 - Fast convergence
 - Loop free
 - Scalable:
 - m = # links, n = # nodes
 - Dijkstra = $O(m \log n)$
 - Bellman-ford (DV) = O(mn)

Intra- vs. Inter-domain Routing

Intra-domain	Inter-domain	
 Within an administrative domain (e.g., campus network) Emphasis on efficiency find an optimal path Used with 10s of routers 	 Between administrative domains (i.e., the Internet) Emphasis on reachability find a path Used with 1000s of networks 	

Internet Structure

- Network == autonomous system (AS)
 - Assign unique AS number (ASN) -- UW-Madison is AS 59
 - Some networks (e.g., home networks, small enterprises) let their Internet Service
 Provider handle inter-domain routing for them, so they are not assigned an ASN
 - ≈ 46K active ASes
- Types of ASes
 - Stub AS -- connect to a single provider
 - Multi-homed AS -- connect to multiple providers
 - Transit AS -- send/receive traffic for nodes within the AS and for other connected ASes
- Types of AS relationships
 - Customer-provider -- customer AS pays provider AS to send/receive traffic on its behalf
 - Peer -- two ASes send/receive traffic between themselves for nodes within their own networks, but not for nodes external to these networks; no money is exchanged

Example

- Internet Exchange Points (IXPs)
 - Physical location where many ASes come together and can set up lots of peering relationships with other ASes
 - Popular in Europe -- one of the largest IXPs has ≈375 ASes, which have established about 50,000 peering links (maximum number of links is ≈375^2)

Border Gateway Protocol (BGP)

- Protocol for inter-domain routing
- Every AS has a BGP speaker which sets up a BGP session with each of its neighbors
- Speakers advertise/exchange
 - Local address space -- i.e., IP address range(s) for hosts in this network
 - Other reachable networks -- only speakers for transit ASes do this
 - Provide full path (i.e. list of ASes) used to reach other network
- Send updates when
 - Destination becomes reachable
 - Better path to destination becomes available
 - Best path becomes unusable -- switch to worse path
 - Destination becomes available
- Challenges
 - Scalability -- ≈46K ASes, ≈200K prefixes
 - Conflicting business goals -- transit AS may pick paths based on latency, hop count, monetary cost (i.e., how much they pay another provider), etc.
 - Flexibility
 - Need for trust -- assume that another AS has advertised a valid path
 - Advertisements of false paths can lead to black holes
 - Secure BGP designed to address this, but not widely deployed

Path Vector Routing

- For each network prefix, send the full path of ASes needed to reach that network
- Example

69.53.237.0/24

Netflix advertises to XO Communications:

69.53.236.0/24 2906

XO Communications advertises to Level3:

69.53.236.0/24 2828, 2906

Cisco advertises to Level3:

72.163.0.0/16 109

Level3 advertises to UW-Madison:

69.53.236.0/24 3356, 2828, 2906

72.163.0.0/16 3356, 109

- AS may receive multiple advertisements to reach the same prefix
 - Pick one based on local policy
 - Advertise that path, adding own ASN
 - Example
 - Netflix advertises to Dummy ISP:

69.53.236.0/24 2906

Dummy ISP advertises to Level3:

69.53.236.0/24 64201, 2906

- Level3 prefers path through XO Communications, so it advertises that to UW-Madison
- AS may need to advertise multiple contiguous prefixes
 - Can advertise separately or as one aggregate prefix
 - Separate allows for different paths for different prefixes
 - Aggregate minimizes number of forwarding table entries (and advertisements)
 - Example
 - Netflix actually owns the prefixes 64.53.236.0/24 and 64.53.237.0/24
 - Netflix advertises to XO Communications and Dummy ISP:

69.53.236.0/24 2906

69.53.237.0/24 2906

■ Dummy ISP advertises to Level3:

69.53.236.0/24 64201, 2906 69.53.237.0/24 64201, 2906 -OR-69.53.236.0/23 64201, 2906 -OR-

- Just one
 Similar for XO Communications to Level3
- Assume Dummy ISP & XO Communications both choose the 1st option, Level3 can advertise to UW-Madison:

ourr at	3 7 0 1 1 1 0 0 1 0 0 7 7	maaio	O
69.53.	.236.0/24	3356,	64201, 2906
69.53.	.237.0/24	3356,	64201, 2906
-OR-			
69.53.	.236.0/23	3356,	64201, 2906
-OR-			
69.53.	.236.0/24	3356,	2828, 2906
69.53.	.237.0/24	3356,	2828, 2906
-OR-			
69.53.	.236.0/23	3356,	2828, 2906
-OR-			
69.53.	.236.0/24	3356,	2828, 2906
69.53.	.237.0/24	3356,	64201, 2906
-OR-			
69.53.	.236.0/24	3356,	64201, 2906
69.53.	.237.0/24	3356,	2828, 2906