Announcements
- Assignment #2 is due Tuesday

Overview
- Link state routing
- Internet structure
- Border Gateway Protocol (BGP)
- Path vector routing
- Inter-domain routing policies

Link State Routing
- Reliably flood LSPs
 - LSPs
 - Source router ID
 - List of neighbors and link costs
 - Sequence #
 - Time to live
 - Router generates LSP when conditions change -- e.g., link fails
 - Assign next seq #
 - Flooding algorithm
 - If no stored LSP from source
 - Store LSP
 - Broadcast LSP on all links except the link on which it was received
 - If seq # of received LSP > stored LSP
 - Replace stored LSP
 - Broadcast LSP
 - If sequence # of received LSP ≤ stored LSP
 - Do nothing
- Dijkstra’s algorithm
 - Variables
 - V = nodes in network G
 - \(\ell(i,j) \) = link cost between nodes i & j
 - SPT = shortest path tree between source node and all other nodes
 - S = source node
 - \(C(v) \) = cost of path between S and v
- Algorithm
 - Initialize SPT = \{S\}
 - For each n not in SPT
 - \(C(v) = \ell(S,n)\)
 - While SPT \(\not\subseteq\ V\)
 - SPT = SPT U \{w\} such that \(C(w)\) is the min for all w in (V - SPT)
 - For each v not in SPT
 - \(C(v) = \text{cost of minimum path from S to v via nodes in SPT}\)
 - Result is table of entries <From, To, Interface, Cost> for all nodes in the network
- Example -- find the SPT from B

```
  C  B  A
  4  3  6
  9  1  1
  D  E  F
  1  2
```

- SPT = \{B\}
- Set C(v) = \(\ell(S,v)\) for all V - SPT
 - C(E) = 1
 - C(A) = 3
 - C(C) = 4
 - C(D) = ∞
 - C(F) = ∞
- SPT = \{B\} U \{E\}
- Recalculate C(v) based on SPT = \{B,E\}
 - C(A) = min(3, 1+1) = 2
 - C(C) = min(4, 1+∞) = 4
 - C(D) = min(∞, 1+1) = 2
 - C(F) + min(∞, 1+2) = 3
- SPT = \{B,E\} U \{A\}
- Recalculate C(v) based on SPT = \{B,E,A\}
 - C(C) = 4
 - C(D) = 2
 - C(F) = 3
- SPT = \{B,E,A\} U \{D\}
- Recalculate C(v) based on SPT = \{B,E,A,D\}
 - C(C) = 4
 - C(F) = 3
- ...
- Algorithm stops when SPT = \{A,B,C,D,E,F\}
• No count to infinity problem
 ○ Fast propagation of link state packets via reliable flooding
 ○ All route computation is local
• Open Shortest Path First (OSPF) Implements link state routing
• Link state routing is preferred due to
 ○ Fast convergence
 ○ Loop free
 ○ Scalable:
 ■ $m = \# \text{ links}, n = \# \text{ nodes}$
 ■ Dijkstra $= O(m \log n)$
 ■ Bellman-ford (DV) $= O(mn)$

Intra- vs. Inter-domain Routing

<table>
<thead>
<tr>
<th>Intra-domain</th>
<th>Inter-domain</th>
</tr>
</thead>
</table>
| • Within an administrative domain
 (e.g., campus network) | • Between administrative domains
 (i.e., the Internet) |
| • Emphasis on efficiency --
 find an optimal path | • Emphasis on reachability --
 find a path |
| • Used with 10s of routers | • Used with 1000s of networks |

Internet Structure

• Network == autonomous system (AS)
 ○ Assign unique AS number (ASN) -- UW-Madison is AS 59
 ○ Some networks (e.g., home networks, small enterprises) let their Internet Service
 Provider handle inter-domain routing for them, so they are not assigned an ASN
 ○ ≈ 46K active ASes
• Types of ASes
 ○ Stub AS -- connect to a single provider
 ○ Multi-homed AS -- connect to multiple providers
 ○ Transit AS -- send/receive traffic for nodes within the AS and for other connected ASes
• Types of AS relationships
 ○ Customer-provider -- customer AS pays provider AS to send/receive traffic on its
 behalf
 ○ Peer -- two ASes send/receive traffic between themselves for nodes within their own
 networks, but not for nodes external to these networks; no money is exchanged
● Example

<table>
<thead>
<tr>
<th>Customer/Provider</th>
<th>Internet2</th>
<th>Level3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>237</td>
<td>3356</td>
</tr>
<tr>
<td></td>
<td>3676</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2828</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2906</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Univ of Iowa</th>
<th>UW-Madison</th>
<th>Netflix</th>
</tr>
</thead>
</table>

● Internet Exchange Points (IXPs)
 ○ Physical location where many ASes come together and can set up lots of peering relationships with other ASes
 ○ Popular in Europe -- one of the largest IXPs has ≈375 ASes, which have established about 50,000 peering links (maximum number of links is ≈375^2)

Border Gateway Protocol (BGP)

● Protocol for inter-domain routing

● Every AS has a *BGP speaker* which sets up a BGP session with each of its neighbors

● Speakers advertise/exchange
 ○ Local address space -- i.e., IP address range(s) for hosts in this network
 ○ Other reachable networks -- only speakers for transit ASes do this
 ■ Provide full path (i.e. list of ASes) used to reach other network

● Send updates when
 ○ Destination becomes reachable
 ○ Better path to destination becomes available
 ○ Best path becomes unusable -- switch to worse path
 ○ Destination becomes available

● Challenges
 ○ Scalability -- ≈46K ASes, ≈200K prefixes
 ○ Conflicting business goals -- transit AS may pick paths based on latency, hop count, monetary cost (i.e., how much they pay another provider), etc.
 ○ Flexibility
 ○ Need for trust -- assume that another AS has advertised a valid path
 ■ Advertisements of false paths can lead to black holes
 ■ Secure BGP designed to address this, but not widely deployed
Path Vector Routing

- For each network prefix, send the full path of ASes needed to reach that network
- Example

- Netflix advertises to XO Communications:
 - 69.53.236.0/24 2906
- XO Communications advertises to Level3:
 - 69.53.236.0/24 2828, 2906
- Cisco advertises to Level3:
 - 72.163.0.0/16 109
- Level3 advertises to UW-Madison:
 - 69.53.236.0/24 3356, 2828, 2906
 - 72.163.0.0/16 3356, 109

- AS may receive multiple advertisements to reach the same prefix
 - Pick one based on local policy
 - Advertise that path, adding own ASN
 - Example
 - Netflix advertises to Dummy ISP:
 - 69.53.236.0/24 2906
 - Dummy ISP advertises to Level3:
 - 69.53.236.0/24 64201, 2906
 - Level3 prefers path through XO Communications, so it advertises that to UW-Madison

- AS may need to advertise multiple contiguous prefixes
 - Can advertise separately or as one aggregate prefix
 - Separate - allows for different paths for different prefixes
 - Aggregate - minimizes number of forwarding table entries (and advertisements)
 - Example
 - Netflix actually owns the prefixes 64.53.236.0/24 and 64.53.237.0/24
 - Netflix advertises to XO Communications and Dummy ISP:
 - 69.53.236.0/24 2906
 - 69.53.237.0/24 2906
- Dummy ISP advertises to Level3:
 69.53.236.0/24 64201, 2906
 69.53.237.0/24 64201, 2906
 -OR-
 69.53.236.0/23 64201, 2906
 -OR-
 Just one

- Similar for XO Communications to Level3
- Assume Dummy ISP & XO Communications both choose the 1st option, Level3 can advertise to UW-Madison:
 69.53.236.0/24 3356, 64201, 2906
 69.53.237.0/24 3356, 64201, 2906
 -OR-
 69.53.236.0/23 3356, 64201, 2906
 -OR-
 69.53.236.0/24 3356, 2828, 2906
 69.53.237.0/24 3356, 2828, 2906
 -OR-
 69.53.236.0/23 3356, 2828, 2906
 -OR-
 69.53.236.0/24 3356, 2828, 2906
 69.53.237.0/24 3356, 64201, 2906
 -OR-
 69.53.236.0/24 3356, 64201, 2906
 69.53.237.0/24 3356, 2828, 2906