TCP Congestion Control (Continued)

CS640, 2015-03-19

Outline
e Fast retransmit/recovery

Fast Retransmit/Fast Recovery

e Problem: waiting for timeout when loss occurs results in a long time period where no packets are
sent

o No packets are sent because effective window becomes 0
m Receiver buffer

Advertised Window

A
~ =

[] |
1

LastByteRead NextByteExpected LastByleReceived

(by app)
m Sender buffer
Advertised Window
P
~ ™
A 4 A
LastByteAcked LastByteSent LastByteWritten

(by app)
o Once lost data is retransmitted and received, application can consume data, which will cause
sliding window to shift and effective window to become non-zero
m Receiver buffer

L

¢ i

LastByteRead LastByteReceived NextByteExpected
(by app)

Advertised Window

[|

LastByteRead LastByteReceived NextByteExpected
(by app)

m Sender buffer

Advertised Window
Effective Window

LastByteSent LastByteWritten

b
LastByteAcked (by app)

Fast retransmit
o Timeout is not the only sign of loss
o Receiving multiple ACKs with the same sequence number could indicate:
m Data is out of order and earlier data has not yet arrived

m Data has been lost (i.e., earlier data will never arrive unless retransmitted)

Treat three duplicate ACKs (i.e., ACKs with same ACK #) as sign of loss

m Retransmit packet starting with seq # contained in duplicate ACKs

m Allows for moderate amount of re-ordering -- re-ordering is relatively rare

m No longer need to wait for timeout before loss is detected and recovered -- means
more data can be sent sooner

e Fastrecovery
o Avoid running slow start every time a loss occurs -- it takes too long to ramp up when
bandwidth is high

o When fast retransmit occurs

m Set congestion window (CWND) to slow start threshold (SSTHRESH) when loss
occurs

m Then do additive increase

o Use slow start only at connection start or when timeout occurs

Congestion Avoidance
e Do not wait until loss occurs; watch for signs of emerging congestion
e **What can we use as a sign of emerging congestion? Think about what causes congestion.
o As packet queues build up in routers, there is a measurable increase in RTT for each
successive packet
e Approach #1: compare current RTT to average RTT
o Every two RTTs check if current RTT > average(minimum RTT, maximum RTT)
o If so, decrease CWND by 1/8th
e Approach #2: compare throughputs
o At beginning of connection, measure throughput when one packet is in transit
m Divide MSS by RTT
Calculate throughput when window is of size CWND
m Divide number of outstanding bytes by RTT

o Increase CWND by one MSS
o Calculate throughput when window is one MSS larger
o Subtract throughput with CWND+1 from throughput with CWND
o If throughput difference < %2 throughput measured at connection start (when one packet was
in transit), then decrease CWND by 1
TCP Variants

e Tahoe -- exponential backoff + slow start + fast retransmit (no fast recovery)
e Reno -- Tahoe + fast recovery + delayed ACKs (Linux & OS X)

e Vegas -- Tahoe + congestion avoidance

e Others: cubic (Linux), westwood, bic, new reno (OS X), compound (Windows)

Example

Congestion Window

O O O
0 20 23 42 59 69 74 77 96 112

|

Time

Identify all time intervals when the TCP flow is undergoing slow start.
AtoB;CtoD;H tol

Identify all points where a timeout occurs.
CH

Identify all points where fast recovery occurs.
E;F;J

Calculate the value of the CWND at all labeled points.
A=1

B = 220

C = 220

C=1

D= 219

E=2"+17

E = 219

F=2""+10

F’ = 219

G=2Y+5

H=2"Y+5

H =1

| = (2" + 5)/2

J=(2"+5)2+16

J = (29 + 5)/2

Calculate the value of SSTHRESH at all labeled points.
A=

B=w

C=w

C =2

D=2"

E=2"

E =27

F=2"

F =21
G=2"
H =2
H' = (21 + 5)/2
| = (219 + 5)/2
J= (20 + 5)2
J = (219 + 5)12

