Cloud Computing & Data Center Networks

CS640, 2015-04-14

Outline

- What is a cloud?
- Cloud service models
- Data center networks

What is a cloud?

- Shared pool of compute, storage, and network resources leased to tenants on-demand
- Key characteristics
 - Virtualized
 - Physical servers and storage devices are divided into pieces and each tenant gets an isolated piece

- Resources are elastic and scalable
 - Tenants can request more resources when they need them
 - E.g., a company uses more virtual machines during the day when employees are using applications
- Pay-per-use
 - Only pay for the resources you use
 - E.g., pay for a virtual machine per hour of use
- On-demand
 - Tenants can request and release resources whenever they want

- Resilient
 - Multiple pools of physical resources that are unlikely to fail simultaneously
 - E.g., multiple data centers around the world to avoid impacts from natural disasters
- Shared
 - Multiple tenants share the same physical resources
 - Physical servers and storage are usually more isolated than network switches and links

Applications suited for the Cloud

Web services

Big data

Cloud service models

- Infrastructure-as-a-Service (laaS)
 - Tenants lease virtual machines, virtual storage, and virtual networks
 - Tenants must manage the operating system, file system, etc.
 - E.g., Amazon EC2, Microsoft Azure, Rackspace, Google Compute Engine
- Platform-as-a-Service (PaaS)
 - Tenants lease resources to run applications written in a specific language -- Python, Java, Hadoop/MapReduce
 - Cloud provider manages the operating system, file system, and network
 - o E.g., CloudFoundry, Oracle Cloud
- Software-as-a-Service (SaaS)
 - Tenants lease machines that run specific software
 - o E.g., Salesforce, Concur, Constant Contact, NetSuite
- Storage-as-a-Service (STaaS)
 - o E.g., Dropbox, Google Drive, SkyDrive
- Ownership
 - Public -- anyone can request and use resources
 - Private -- resources are only available to tenants (e.g., departments) within a company or organization
 - Hybrid -- tenants use a combination of public and private cloud resources

Key Challenges

- Large scale networks -- cloud data centers have tens of thousands of servers
- Shared infrastructure -- tenants are competing for bandwidth
- Security -- virtual machines, virtual storage devices, and virtual networks must be isolated so that tenants cannot access each other's data
- Fixing problems -- many different layers where problems can occur: tenant application, tenant OS, virtual network interface, virtual switch, physical network interface, top of rack switch, aggregation switch, core switch

Data Centers

- Data center -- collection of compute, storage, and network resources used to run services
- High bandwidth and low latency are critical in data center networks
- Typical physical network topology is a tree

- Links higher in the topology are often oversubscribed
 - Cannot handle all servers sending at the maximum rate
 - Oversubscription ratio = capacity of links below relative to capacity of links above
- Common traffic patterns
 - North-south -- traffic is exchanged between servers in the data center and hosts outside the data center; must traverse core switches
 - East-west -- traffic is exchanged between servers or storage systems within the data center;
 typically only traverses ToR and aggregation switches
 - Many-to-one -- many servers exchange traffic with a single server; causes a problem caused TCP incast

Fat Trees

- o Helps address large volumes of east-west traffic
- o Provides redundancy
- o Provides full bisection bandwidth
 - Every physical server can send at the maximum capacity their network interface allows (typically 10G) without causing congestion
 - The bottleneck is the network interface, not a link in the network
 - Does not fix the TCP incast problem
- BGP-based routing