How do we deliver content to users?

- Many types of content: web pages, images, videos, tweets, social network posts, etc.
- Content originates from
 - Organizations (e.g., NYTime, Netflix) -- called content providers
 - Users (e.g., Twitter)
- **Where can content be stored?**
 - Private data center
 - Public cloud
 - User’s device
 - In-network cache
- **What metrics matter to users?**
 - Wait-time -- e.g., load time for Facebook, buffer time for video
 - Quality -- e.g., video resolution
- **What network metrics influence this?**
 - Latency
 - Bandwidth
 - Jitter
- **Where can bottlenecks occur?**
 - First mile -- connection from client to ISP; DSL, cable, 3G
 - Last mile -- connection from server to ISP; 1G or 10G link, possibly shared (in a cloud), may not be full-bisection bandwidth
 - Servers -- finite amount of resources to serve requests; can add more servers and use a load balancer to divide requests among multiple servers
 - Connections between ISPs (or ASes) -- high-bandwidth within an ISPs network, but limited bandwidth between ISPs
- Bottlenecks can become even worse when content is popular
 - Studies show content follows a zipf or power-law distribution -- most popular content has several magnitudes more accesses than less popular content
 - Flash crowd -- phenomenon where many users try to access the same content at the same time
 - E.g., picture Ellen Tweeted from the Oscars
 - System can quickly become overwhelmed -- even if a lot of effort has gone into making the system scale quickly
What are the (dis)advantages of storing/serving content from specific locations?

How do we avoid the disadvantages?

- Distribute content so that:
 - They don’t all share the same last mile link
 - Any client is only a few AS hops away from a server
 - Short geographic distance is also beneficial to reduce propagation delay

Proxy Caches

- **Forward proxy** -- cache close to the client
 - Controlled by client-side AS
 - Explicit proxy -- must configure browser
 - Implicit (or transparent) proxy -- proxy is deployed on the path taken by traffic and requests are intercepted

- **Reverse proxy** -- cache close to the server
 - Used by Google

Limitations of caching

- Lots of content is not cacheable
 - Dynamic data -- e.g., stock prices, scores, webcams
 - Dynamic pages -- e.g., results depend on parameters
 - Encrypted content -- cannot decrypt requests or replies

- Limited analytics -- content owner wants to measure accesses
- Overhead of refreshing cached data
Content Distribution Networks

- Network of servers designed specifically for distributing content
 - Many groups of servers distributed throughout the world (or throughout the portion of the Internet where clients are located)
 - Popular content **proactively** replicated on one or more servers in each group — proxy caches use **reactive** caching
 - Peering arrangements with many ISPs (or ASes)
 - Mechanism for clients to find the “best” server to contact

- Difficult for every company that wants to provide content to build their own content distribution network
 - If you are big enough, e.g., Google, you can build a CDN
 - Otherwise, you contract with a company that has built a CDN, e.g., Akami or EdgeCast, and they distribute content for you
 - To upload content, clients still need to connect to a server in a more “centralized” data center

- How do you pick the “best” server (i.e., node) to contact?

Server Selection Policy

- **Live server**
 - For availability
- **Lowest load**
 - To balance load across the servers
- **Closest**
 - Nearest geographically, or in round-trip time
- **Best performance**
 - Throughput, latency, ...
- **Cheapest bandwidth, electricity, ...**

Server Selection Mechanism

- **Application**
 - HTTP redirection
- **Advantages**
 - Fine-grain control
 - Selection based on client IP address
- **Disadvantages**
 - Extra round-trips for TCP connection to server
 - Overhead on the server

- **Routing**
 - Anycast routing

- **Advantages**
 - No extra round trips
 - Route to nearby server
- **Disadvantages**
 - Does not consider network or server load
 - Different packets may go to different servers
 - Used only for simple request-response apps

- **Naming**
 - DNS-based server selection
- **Advantages**
 - Avoid TCP set-up delay
 - DNS caching reduces overhead
 - Relatively fine control
- **Disadvantages**
 - Based on IP address of local DNS server
 - “Hidden load” effect
 - DNS TTL limits adaptation

- Who uses CDNs?
 - Netflix
 - Login page & movie selection pages come from a VM in EC2 — easter egg! bottom of Netflix page contains an ID for the VM in EC2 that provided page
 - Movie is delivered from CDN nodes
 - Pinterest — study this in assignment #4