

Power-Efficient DRAM Speculation

Nidhi Aggarwal† Jason F. Cantin‡ Mikko H. Lipasti† James E. Smith†

†Electrical and Computer Engineering Dept.

University of Wisconsin, Madison
1415 Engineering Drive

Madison, WI 53705
 {naggarwal, mikko, jes}@ece.wisc.edu

‡International Business Machines Corp.
11400 Burnet Road
Austin, TX 78758

jfcantin@us.ibm.com

Abstract

Power-Efficient DRAM Speculation (PEDS) is a pow-
er optimization targeted at broadcast-based shared-
memory multiprocessor systems that speculatively
access DRAM in parallel with the broadcast snoop.
Although speculatively accessing DRAM has the po-
tential performance advantage of overlapping DRAM
latency with the snoop, it wastes power for memory
requests that obtain data from other processors’ cach-
es. PEDS takes advantage of information provided by
a Region Coherence Array to identify requests that
have a high likelihood of obtaining data from another
processor’s cache, and does not access DRAM specu-
latively for those requests. By doing so, PEDS elimi-
nates DRAM reads, reduces DRAM power
consumption, reduces contention for DRAM resources,
and increases the opportunity for DRAM power man-
agement. PEDS requires almost no additional hard-
ware in systems that incorporate Region Coherence
Arrays. Detailed simulation results show PEDS re-
duces average DRAM read traffic 28-32%, reduces
average DRAM power dissipation 17-22%, and reduc-
es average DRAM energy consumption 16-21%.

1. Introduction

Cache-coherent shared-memory multiprocessor sys-
tems have wide-ranging applications from commercial
transaction processing and database services to large-
scale scientific computing. They have become a criti-
cal component of internet-based services in general.
As system architectures have grown to incorporate
larger numbers of faster processors, power dissipation
and energy consumption have become serious design
constraints [1]. The power consumption of DRAM is

now a first-class design consideration for shared-
memory multiprocessor systems. For example, at a
recent International Solid-State Circuits Conference
(ISSCC), Sun Microsystems revealed that the power
consumption of DRAM in the UltraSPARC T1 (“Nia-
gara”) systems running SPECjbb was approximately
60 watts [2]. This is approximately 22% of the total
system power, nearly as much as all the processor
cores consume.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Bar
ne

s

Oce
an

Ray
tra

ce

Rad
ios

ity

SPECint
95

ra
te

SPECint
20

00
ra

te

SPECjbb
20

00

SPECweb
99

TPC-H

TPC-W
TP

C-B

Ove
ra

ll M
ea

n

D
R

A
M

 R
eq

ue
st

s

Unused
Reads

Used
Reads

Writes

Figure 1: Breakdown of DRAM requests into
Unused Reads, Used Reads, and Writes. Used
Reads are read requests for which the DRAM
data is used by the processor. Unused Reads
are read requests for which the data was ob-
tained from another processor’s cache. Writes
are DRAM write requests resulting from write-
backs. See Table 2 for parameters.

Modern broadcast-based shared-memory multiproces-
sor systems commonly access DRAM speculatively to
maximize performance [3, 4, 5]. The DRAM access is
started after the memory controller receives the memo-
ry request but before the snoop response is available,

thereby overlapping the DRAM access with the re-
mainder of the broadcast snoop. While many memory
requests benefit from the lower latency of speculative-
ly accessing DRAM, a significant fraction of requests
obtain data from another processor’s cache and do not
use the data from DRAM. Simulation results for a
four-processor system running a set of commercial,
scientific, and multiprogrammed workloads indicate
that 36.5% of the lines read from DRAM are not used
because data is obtained from another processor’s
cache (See Figure 1). Approximately 28.7% of all
DRAM accesses are unnecessary and waste power.

The data in Figure 1 is not surprising; other stu-
dies have shown that a significant fraction of memory
requests in a broadcast-based shared-memory multi-
processor system are satisfied by cache-to-cache trans-
fers [6, 7]. Barroso et al. observed that cache-to-cache
transfers account for 55-62% of the requests in OLTP
workloads running on a four-processor Alpha server
with 4MB-8MB 2-way set-associative caches [6].
Karlsson et al. observed that “more than half of all
second-level cache misses” in a large system running
Java-based middleware result in cache-to-cache trans-
fers [7]. Any increase in the count, size, or associativi-
ty of caches in the system will tend to increase the rate
of cache-to-cache transfers, which in turn drives up the
percentage of DRAM reads that go unused.
 If the system could determine beforehand that a
memory request will obtain data from another proces-
sor’s cache, it could avoid accessing DRAM for that
request. This would eliminate a DRAM read, reduce
contention for DRAM resources, and more important-
ly reduce energy consumption and power dissipation.
Performance would be unaffected because requests
that do need data from DRAM would still access
DRAM upon arrival at the memory controller.
 This paper is the first to propose gating of specul-
ative DRAM accesses by utilizing Region Coherence
Arrays to detect memory requests that will likely ob-
tain data from other processors’ caches.

1.1. Region Coherence Arrays

Region Coherence Arrays (RCAs) are a recently pro-
posed structure used for avoiding broadcast snoops
and filtering snoop-induced cache tag lookups in
broadcast-based shared-memory multiprocessor sys-
tems [8, 9]. RCAs monitor the coherence status of
regions, where a region is a large, aligned area of
memory that encompasses a power-of-two number of
cache lines. RCAs identify regions of memory that are
not shared by other processors, and exploit this infor-
mation to avoid unnecessary broadcast snoops. Mem-
ory requests that do not require a broadcast snoop are

sent directly to memory, sidestepping the broadcast
interconnect. RCAs also identify regions from which
the processor is caching lines, and thus can filter unne-
cessary snoop-induced cache tag lookups. RCAs are
inexpensive to implement and have the potential to
significantly decrease power consumption in the
broadcast interconnect and cache tag arrays. This
paper describes straightforward extensions to RCAs
that robustly identify memory requests for which a
speculative DRAM access would not be useful and
would waste power.

1.2. Power-Efficient DRAM Speculation

Power-Efficient DRAM Speculation (PEDS) is a new
optimization targeted at broadcast-based shared-
memory multiprocessor systems that speculatively
access DRAM before the broadcast snoop cycle com-
pletes. PEDS takes advantage of information provided
by a Region Coherence Array to predict which memo-
ry requests are likely to be satisfied from other proces-
sors’ caches, and reduces DRAM power by forgoing
speculative DRAM accesses for those requests.
 PEDS adds one bit to memory requests to inform
the memory controller whether to fetch the requested
line from DRAM speculatively. The memory control-
ler buffers requests tagged as bad candidates for a
speculative DRAM access until the snoop response
arrives to validate the prediction. If the snoop response
indicates that another processor will provide the data,
the prediction was correct and the memory controller
can drop the request. If the snoop response indicates
no processor will provide the data, the prediction was
incorrect and the line is fetched from DRAM. In this
case, the request incurs a latency penalty.

1.3. Power-Saving Potential

First, PEDS eliminates DRAM reads, directly reducing
DRAM activity and DRAM power consumption.
Second, by eliminating DRAM reads there is less
contention for DRAM resources, reducing queuing
delays, bus turnarounds, and power consumption for
the remaining DRAM requests. Third, by reducing
DRAM activity there is increased opportunity for
DRAM power management [10, 11, 12]. DRAM
ranks may switch to low-power modes more quickly
and remain in low-power modes longer. Though the
RCAs consume some power, the elimination of 69%
of the broadcast traffic and over 80% of the snoop-
induced cache tag lookups more than compensates for
it [9]. The additional power consumed by using an
existing RCA for PEDS will be negligible.

1.4. Paper Overview

Related work is surveyed in the next section. This is
followed by a discussion of the proposed PEDS im-
plementations in Section 3. Sections 4 and 5 describe
our methodology and present simulation results for a
set of commercial, scientific, and multiprogrammed
workloads. Section 6 describes avenues for future
work. Finally, Section 7 concludes the paper.

2. Related Work

Coarse-Grain Coherence Tracking (CGCT) techniques
have been proposed to reduce broadcast traffic and
snoop-induced cache tag lookups in broadcast-based
shared-memory multiprocessor systems [8, 9, 13].
Andreas Moshovos proposed the RegionScout Filter, a
simple mechanism that uses a non-tagged hash table to
track data cached by the processor, and a small, tagged
set-associative array for buffering the addresses of
non-shared regions currently being used by the proces-
sor [14]. Cantin, Lipasti, and Smith proposed Region
Coherence Arrays. Region Coherence Arrays are
tagged, set-associative arrays that use a region proto-
col to track the coherence status of regions used by the
processor [8]. Zebchuk et al. recently described an
elegant framework for maintaining region coherence
information with very little overhead [14]. These
techniques effectively avoid broadcast snoops with
corresponding improvements in scalability and per-
formance [9]. However, these initial investigations
were focused only on the potential for avoiding unne-
cessary broadcast snoops and filtering unnecessary
snoop-induced cache tag lookups. They did not ex-
ploit CGCT techniques to reduce DRAM power con-
sumption. Rather, by reducing execution time these
techniques increase DRAM power consumption.
 Shen, Huh, and Sinharoy proposed Cache Resi-
dence Prediction (CRP), a set of techniques for pre-
dicting whether a read request will obtain data from
another processor’s cache [15]. One of these tech-
niques uses the invalid cache frame state to predict
whether other processors are caching a line. An invalid
cache frame indicates that the frame was holding a
cache line previously, but the frame was invalidated
by another processor’s request for the line it contained.
If a processor finds such a frame in its cache, there is a
high likelihood that another processor is still caching
the line that it formerly held, and DRAM should not
be accessed speculatively for that line. This technique
is simple to implement and highly accurate but there is
no quantitative evaluation available. We will quantita-
tively compare this technique to PEDS.

 Dodson et al. proposed Adaptive Memory Access
Speculation, a technique for using the early response
in shared-memory multiprocessor systems with ring-
based interconnects [16]. The early response is the
snoop response of processors located between the
requestor and the memory controller on the ring.
Based on a saturating counter, the memory controller
can either fetch data from DRAM speculatively when
the request arrives, fetch data speculatively when the
early response arrives, or fetch data after the snoop
response arrives. In cases of little sharing, read re-
quests speculatively access DRAM upon arrival at the
memory controller. In cases of moderate sharing, the
memory controller waits for the early response before
performing the DRAM access. If the early response
indicates that a processor is sharing the data, a DRAM
access is not necessary. In cases of abundant sharing,
the memory controller does not access DRAM until
the snoop response arrives. In contrast, PEDS does not
require early responses to detect requests that will
result in a cache-to-cache transfer.
 Fan, Ellis, and Lebeck investigated memory con-
troller policies for utilizing DRAM power modes in
cache-based systems [10]. This research focused on
utilizing the low-power modes of modern DRAMs to
power down chips when not in use. Analytical model-
ing was used to study the gap between clusters of
memory requests and the threshold time after which
the chip should switch to a different mode. Results
indicated that the best solution was to power-down
DRAM chips as soon as they become idle, and not try
to predict how long they would remain idle. PEDS
extends this work by reducing DRAM traffic and
increasing the effective idle time of DRAM chips.
 Delaluz et al. proposed Scheduler-Based DRAM
Energy Management, in which the operating system
switches DRAM modules to low-power modes [11].
The operating system scheduler keeps track of ac-
cesses to DRAM modules made by processes, and
attempts to power down modules whenever possible
without hurting performance. This technique benefits
from the OS scheduler’s global view of processes and
requires little hardware support. The authors note that
this technique can be used in concert with hardware
techniques to optimize power consumption further.
 Diniz et al. proposed a set of techniques for mani-
pulating DRAM power states to keep DRAM power
consumption within a predefined budget at all times,
and for reducing power further when possible to do so
without degrading performance beyond a predefined
threshold [12]. By keeping the power consumption
within a predefined budget, cooling and power provi-
sioning costs can be reduced. The authors found that
of the several techniques they evaluated, simple ones

such as Knapsack (offline optimization of DRAM
power states) and LRU-Ordered (online optimization)
performed best, and that these techniques are as effec-
tive at reducing energy consumption as performance-
aware techniques, since they impose only minor per-
formance degradation.

3. Implementation

PEDS is implemented with 1) an RCA, 2) a policy for
deciding which speculative DRAM read requests
should be inhibited, 3) a method of communicating
this information to the memory controller, and 4)
modifications to the memory controller to buffer such
requests until the snoop response arrives.
 Processor requests probe the RCA in parallel with
the lowest-level cache. The region state indicates
whether the request must be broadcast to the other
processors in the system. If so, the RCA sets a single
additional bit in the broadcast request to tag it as either
a good or a bad candidate for a speculative DRAM
access.
 When a memory controller receives a read request
tagged as a bad candidate for a speculative DRAM
access, it buffers the request in its command queue
until the snoop response arrives. If the snoop response
indicates that another processor will provide the data,
the memory controller drops the request. Otherwise,
the DRAM read proceeds and the data is sent to the
requesting processor. Reads incorrectly tagged as bad
candidates for a speculative DRAM access incur a
modest latency penalty.
 Before going further, it is important to review the
protocol RCAs use to track coherence information.
RCAs utilize a protocol with seven states [8]. The first
state is “Invalid”, meaning that the processor is not
caching any lines from the region, and the state of
lines from the region in other processors’ caches is
unknown. The next two states are named “CI” and
“DI”, meaning that the processor may be caching
clean or potentially modified copies of lines from the
region (respectively), and that no other processor is
caching lines from the region. By potentially modified,
we mean that a processor may have modified copies of
lines or exclusive copies of lines that may silently
become modified. Next, we have “CC” and “DC”,
which mean that the processor may be caching clean
or potentially modified copies of lines from the region
(respectively), and other processors may be caching
clean copies of lines from the region. These are also
called “externally-clean” states. Finally, we have
“CD” and “DD”, for which other processors may be
caching potentially modified copies of lines from the

region, and the processor may be caching clean or
potentially modified copies, respectively. These are
the externally-dirty states.
 We study four policy variations for PEDS. The
first policy, PEDS-DKD (Delay-Known-Dirty), delays
DRAM reads to regions that are in an externally-dirty
state (i.e., a region state indicating that other proces-
sors may be modifying lines from the region, e. g., CD
or DD) [8]. The second policy, PEDS-DLD (Delay-
Likely-Dirty), adds an externally-dirty state (ID) to the
region protocol to track externally-dirty regions that
have been invalidated from the RCA, and delays
DRAM reads for lines in regions that are in an exter-
nally-dirty state (i.e., ID, CD, and DD). The third
policy, PEDS-DNC (Delay-Not-Clean), adds an exter-
nally-clean state (IC) to the region protocol to track
externally-clean regions (i.e., regions that other pro-
cessors may be caching read-only lines from, e.g., IC,
CC, DC) that have been invalidated from the RCA,
and delays DRAM reads for lines in regions that are in
an externally-dirty or unknown region state. Finally,
the fourth policy, PEDS-DAS (Delay-All-Snoops),
forgoes speculative DRAM accesses for all requests
that require a broadcast snoop (excluding requests sent
directly to memory by the RCA).

Table 1 summarizes which region protocol states
are used for each policy to identify requests that
should speculatively access DRAM. These policies are
described in detail in the pages that follow. A “y”
indicates DRAM will be speculatively accessed for
processor requests to a region with that state. An “n”
indicates DRAM will not be speculatively accessed.

Table 1. Summary of PEDS policies.
PEDS-DKD PEDS-DLD PEDS-DNC PEDS-DAS

I n n y y
CI
CC n n n y
CD y y y y
DI
DC n n n y
DD y y y y
IC n
ID y

3.1. The Delay-Known-Dirty Policy (PEDS-
DKD)

Figures 2 and 3 illustrate the potential accuracy of
using the existing region protocol states to predict
whether read requests are good or bad candidates for a
speculative DRAM access. For each application and
external region state, the percentage of read requests
that obtain data from other processors’ caches is
shown (Figure 2). The left-hand bars show the percen-
tage of all reads that obtain data from other proces-

sors’ caches, 33.4% on average. The next set of bars
shows the percentage of all broadcast reads that obtain
data from other processors’ caches for each applica-
tion, 58.7% on average. By broadcast reads, we mean
read requests that are not sent directly to memory by
the RCA.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Bar
ne

s

Oce
an

Ray
tra

ce

Rad
ios

ity

SPECint
95

ra
te

SPECint
20

00
ra

te

SPECjbb
20

00

SPECweb
99

TPC-H

TP
C-W

TPC-B

Ove
ra

ll M
ea

n

P
ro

ba
bi

lit
y

D
R

A
M

 R
ea

d
U

nu
se

d

All Reads All Broadcast Reads Externally-Dirty Externally-Clean Unknown
Figure 2: Probability that a read request will
obtain data from another processor’s cache.

Approximately 75.6% of the read requests that are
broadcast while the region is in the RCA in an exter-
nally-dirty state (i.e., CD and DD) will obtain data
from another processor’s cache. These are typically
reads to shared data, and these are the chief contribu-
tors to wasted DRAM power. On the other hand, only
15.2% of the read requests broadcast while the region
is in an externally-clean state obtain data from another
processor’s cache. The requests to externally-clean
regions tend to be instruction fetches, and the cohe-
rence protocol of the baseline system does not source
clean data. The last set of bars in Figure 2, labeled
“Unknown” corresponds to read requests that miss in
the RCA. The external region state was unknown at
the time the request was broadcast, and approximately
36% of such requests obtain data from other proces-
sors’ caches.

Figure 3 shows the unused DRAM reads for each
application, broken down by external region state. As
we can see, reads to externally-dirty regions are the
largest contributor to unused reads. The next largest
contributor is reads to unknown reads. Reads to exter-
nally-clean regions make a very small contribution.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Bar
ne

s

Oce
an

Ray
tra

ce

Rad
ios

ity

SPECint
95

ra
te

SPECint
20

00
ra

te

SPECjbb
20

00

SPECweb
99

TPC-H

TPC-W
TPC-B

Ove
ra

ll M
ea

n

D
R

A
M

 R
ea

ds

Externally-
Dirty

Externally-
Clean

Unknown

Figure 3: Unused Reads, broken down by
region state. See Table 2 for parameters.

From Figures 2 and 3, one can estimate that by avoid-
ing speculative DRAM accesses for reads from exter-
nally-dirty regions, DRAM read traffic will be reduced
29%, 36.5%-29% = 7.5% of DRAM reads will go
unused, and 29% × ((1/75.6%)-1) = 9.4% of the
DRAM reads will be delayed unnecessarily. However,
by avoiding speculative DRAM accesses for requests
with unknown external region state, DRAM read traf-
fic will be reduced only 4% more while nearly doubl-
ing the number of DRAM reads delayed unnecessarily
(Note that these are rough estimates; avoiding DRAM
accesses will affect memory latency and system beha-
vior). Based on this data, we propose the PEDS-DKD
policy, which accesses DRAM speculatively for all
read requests except those from regions known to be
in an externally-dirty state. PEDS-DKD achieves the
highest prediction accuracy using only the existing
region protocol states.

3.2. The Delay-Likely-Dirty Policy (PEDS-
DLD)

To reduce DRAM traffic further without harming
performance, one must improve the prediction accura-
cy for read requests to regions with unknown external
region state. Read requests that miss in a processor’s
RCA are the next largest contributor to the unused
DRAM reads, but only 36% of such reads obtain data
from another processor’s cache. We observe that the
cause of many misses in the RCA is dynamic self-
invalidation; an optimization employed by RCAs to
maximize their ability to inhibit broadcasts [8]. In
response to external requests, an RCA self-invalidates
the requested region if the processor is not caching any
lines from that region. This increases the probability
that the requesting processor will gain exclusive
access to the region. Dynamic self-invalidation signif-
icantly improves the performance of RCAs, but also

throws away information about the external status of
the region (information useful to PEDS).
 To preserve the external region state after self-
invalidation, we add a pseudo-invalid state to the re-
gion protocol: Invalid-Externally-Dirty (ID). This
state is exclusively for PEDS, and does not affect the
performance or correctness of the RCA. The ID state
indicates that the processor is not caching any lines in
the region, but other processors may be modifying
lines in the region (hence, it is likely dirty). A broad-
cast snoop must be performed to promote the region to
a valid state. The ID state is entered when a region is
self-invalidated by an external request for a modifiable
copy of a line in the region, or when a region in an
externally-dirty state is self-invalidated (See diagram
in Figure 4). Because other processors may silently
replace regions in the RCA, this state is only a hint and
can become stale without affecting correctness.

DI

DCCC

CI

CD DD

ID

I

Ext. Read/Write,

No lines cached

Ext.
 Read/W

rite
,

No lin
es c

ached

Ex
t.

Req
ue

st
,

N
o

lin
es

 c
ac

he
d

E
xt

. R
eq

ue
st

,
N

o
lin

es
 c

ac
he

d

E
xt. R

ead/W
rite,

N
o lines cached

Ext. Read/Write,

No lines cached

DI

DCCC

CI

CD DD

ID

I

Ext. Read/Write,

No lines cached

Ext.
 Read/W

rite
,

No lin
es c

ached

Ex
t.

Req
ue

st
,

N
o

lin
es

 c
ac

he
d

E
xt

. R
eq

ue
st

,
N

o
lin

es
 c

ac
he

d

E
xt. R

ead/W
rite,

N
o lines cached

Ext. Read/Write,

No lines cached

Figure 4: New region protocol state, ID, for
PEDS-DLD. The state is entered on the self-
invalidations of externally-dirty regions to
preserve the external region state information.

Our second policy, PEDS-DLD (Delay-Likely-Dirty),
uses this new state to predict whether speculatively
accessed DRAM data will be used. If the region is in
an externally-dirty state (including ID), DRAM ac-
cesses are delayed until the snoop response arrives.

3.3. The Delay-Not-Clean Policy (PEDS-DNC)

To reduce DRAM traffic even further, the system can
avoid speculative DRAM accesses for all broadcast
read requests except those to externally-clean regions
(i.e., CC and DC). However, many reads to unknown
regions do not result in a cache-to-cache transfer.
Many of these are the result of externally-clean re-
gions that were self-invalidated.

 To preserve the external region state after self-
invalidation, a second, alternative pseudo-invalid state
is added to the region protocol: Invalid-Externally-
Clean (IC). This state is exclusively for PEDS, and
does not affect the performance or correctness of the
RCA. The IC state indicates that the processor is not
caching any lines in the region, but other processors
may be caching clean copies of lines in the region. A
broadcast snoop must be performed to promote the
region to a valid state. The IC state is entered when an
externally-clean region is self-invalidated by an in-
struction fetch (See state diagram in Figure 5). This
state is also only a hint and can become stale.

Our third policy, PEDS-DNC (Delay-Not-Clean)
uses the IC state to predict whether speculatively ac-
cessed DRAM data will be used. If the region is in an
externally-clean state (i.e., CC, DC, and IC), DRAM
reads are performed right away. All other broadcast
reads are delayed until the snoop response arrives.

DI

DCCC

CI

CD DD

IC

I

Ext. IFetch,

No lines cached

Ext. I
Fetch,

No lin
es c

ached

E
xt. IFetch,

N
o lines cached

Ext. IFetch,
No linescached

DI

DCCC

CI

CD DD

IC

I

Ext. IFetch,

No lines cached

Ext. I
Fetch,

No lin
es c

ached

E
xt. IFetch,

N
o lines cached

Ext. IFetch,
No linescached

Figure 5: New region protocol state, IC, for
PEDS-DNC. The state is entered on the self-
invalidations of externally-clean regions to
preserve the external region state information.

3.4. The Delay-All-Snoop Policy (PEDS-DAS)

To minimize DRAM traffic, we also propose a strict
PEDS policy, which does not speculatively access
DRAM for any broadcast reads (including reads to
externally-dirty, externally-clean, and unknown re-
gions). Only reads to known non-shared regions,
which are sent directly to memory by the RCA, access
DRAM immediately; all other reads are buffered until
the snoop response arrives. Note that read requests
sent directly to memory by an RCA are non-
speculative; there is no broadcast snoop and no snoop
response is pending. This PEDS policy is called
PEDS-DAS (Delay-All-Snoop). PEDS-DAS can limit

DRAM reads to the same extent as a conventional
(non-RCA-based) system that never speculatively
accesses DRAM (requiring approximately one third
fewer DRAM reads than our baseline, according to
Figure 2). However, the PEDS-DAS policy will not
have the performance degradation of a conventional
system that completely avoids speculative accesses to
DRAM. Provided the RCA is effectively detecting
non-shared data and avoiding broadcast snoops, most
read requests will still access DRAM upon arriving at
the memory controller and will not incur a latency
penalty.

3.5. Hardware Overhead

The additional overhead of implementing PEDS in a
broadcast-based shared-memory multiprocessor sys-
tem that already implements RCAs is quite small.
However, even if an RCA is not already present in a
design, an RCA with the same number of sets and
associativity as the cache increases cache storage by
only 6% [8]. If storage is a constraint, a smaller
RCA [9] can be used instead. Although any such
structure consumes power, the power it saves by
avoiding broadcast snoops and filtering snoop-induced
cache-tag lookups far outweighs its own power con-
sumption.
 No additional storage in the RCA is required for
any of the proposed PEDS policies. The PEDS-DKD
and PEDS-DAS policies require no additional region
protocol states. The PEDS-DLD and PEDS-DNC
policies require one additional region protocol state;
however, there are only seven states in the original
region protocol. No additional bits will be required to
encode the region state.
 To communicate with the memory controller, a bit
needs to be added to the request packets sent to memo-
ry. This bit marks read requests as good/bad candi-
dates for a speculative DRAM access. This bit may be
encoded with the request type or other information,
and constitutes a negligible overhead.
 Finally, additional command queue capacity may
be needed in the memory controller to buffer requests
that do not speculatively access DRAM. Alternative-
ly, a separate queue may be added to buffer these
requests.

4. Evaluation Methodology

We performed detailed timing simulations with an
execution-driven, shared-memory multiprocessor
simulator [17] built on top of SimOS-PPC [18]. The
simulator implements the PowerPC ISA and runs both

user-level and system code. We modeled a four-
processor system with a Fireplane-like interconnect [3]
and 1.5GHz processors with resources similar to the
UltraSPARC-IV [19]. Unlike the UltraSPARC-IV, the
simulated processors feature out-of-order issue and
each processor has a 1MB L2 cache. Each processor
also has an RCA with the same organization as the L2-
cache tags (8K sets, 2-way associative), and 512B
regions (shown to be effective in [8, 9]). A more
complete list of parameters is shown in Table 2.

Table 2. Simulation Parameters.
Processor
Processor Clock 1.5GHz
Processor Pipeline 15 stages
Fetch Queue Size 16 instructions
BTB 4K sets, 4-way
Branch Predictor 16K-entry Gshare
Return Address Stack 8 entries
Decode/Issue/Commit Width 4/4/4
Issue Window Size 32 entries
ROB 64 entries
Load/Store Queue Size 32 entries
Int-ALU/Int-MULT 2/1
FP-ALU/FP-MULT 1/1
Memory Ports 1
Caches
L1 I-Cache 32KB 4-way, 64B lines, 1-cycle
L1 D-Cache 64KB 4-way, 64B lines, 1-cycle
L2 Cache 1MB 2-way, 64B lines, 12-cycle
Prefetching Power4-style, 8 stream, 5 line runahead

R10000-style exclusive-prefetching
Cache Coherence Protocols Write-Invalidate MOESI (L2), MSI (L1)
Memory Consistency Model Sequential Consistency
Interconnect
System Clock 150Mhz
Snoop Latency 106ns (16 cycles)
DRAM Latency 106ns (16 cycles)
DRAM Latency (Overlapped) 47ns (7 cycles)
Transfer Latency (Same Switch) 20ns (3 cycles)
Transfer Latency (Same Board) 47ns (7 cycles)
Transfer Latency (Remote) 80ns (12 cycles)
Memory
Memory 8GB, Micron DDR200
Memory Channels 2
DMA Buffer Size 512B
Coarse-Grain Coherence Tracking
Region Coherence Array 8K sets, 2-way set-assoc. 512B regions

To compute DRAM power dissipation and energy
consumption, the execution-driven simulator worked
in concert with the DRAMsim simulator from Mary-
land [20]. DRAMsim has detailed DRAM timing
models and computes DRAM power consumption by
tracking activities and power-down modes at the rank
level. Our simulated system has 8GB of DDR-200
DRAMs running at 100MHz. The timing and electric-
al characteristics were taken from Micron’s datasheet
for 1Gb DDR-200 SDRAM DIMMs [21]. We use the
high-performance SDRAM-close-page-map address
mapping policy [20] and closed page row-buffer man-
agement policy that has been shown to work best with
shared-memory multiprocessor systems [22]. We
model the clock enable and disable feature for power

management in DDR systems where the clock can be
disabled each cycle the rank is not servicing a com-
mand.

Table 3. Workloads Simulated.
Category Benchmark Comments

Ocean SPLASH-2 Ocean Simulation, 514 x 514 Grid

Raytrace SPLASH-2 Raytracing application, Car

Barnes
SPLASH-2 Barnes-Hut N-body Simulation, 8K
Particles

Radiosity
SPLASH-2 Light Interaction Application (-room -
ae 5000.0 -en 0.050 -bf 0.10)

SPECint2000Rate
Standard Performance Evaluation Corporation's
2000 CPU Integer Benchmarks, Combination of
reduced-input runs

SPECint95Rate
Standard Performance Evaluation Corporation's
1995 CPU Integer Benchmarks

SPECweb99
Standard Performance Evaulation Corporation's
World Wide Web Server, Zeus Web Server
3.3.7, 300 HTTP Requests

SPECjbb2000
Standard Performance Evaulation Corporation's
Java Business Benchmark, IBM jdk 1.1.8 w/ JIT,
20 Warehouses, 2400 Requests

TPC-W
Transaction Processing Council's Web e-
Commerce Benchmark, DB Tier, Browsing Mix,
25 Web Transactions

TPC-B
Transaction Processing Council's Original OLTP
Benchmark, IBM DB2 version 6.1, 20 clients,
1000 transactions

TPC-H
Transaction Processing Council's Decision
Support Benchmark, IBM DB2 version 6.1,
Query 12 on a 512MB Database

Commercial

Multiprogramming

Scientific

For workloads, we use a combination of commercial,
scientific, and multiprogrammed benchmarks (Ta-
ble 3). Execution-driven simulations were started
from checkpoints taken from a functional simulator
used to boot AIX and warm up the workloads. Cache
checkpoints were included to warm the caches prior to
simulation. Due to workload variability, several runs
of each benchmark were performed with small random
delays added to memory requests to perturb the sys-
tem, and the results were averaged [23]. The 95%
confidence intervals for each benchmark are shown
where appropriate. Overall means are shown for each
graph. The overall means were computed by taking
the arithmetic means of the results from the scientific,
multiprogrammed, and commercial workloads sepa-
rately, and then combining the resultant means to form
an overall arithmetic mean that weights each category
equally.

We simulated seven system configurations for
comparison (Table 4). To compare conventional sys-
tems with and without speculative DRAM accesses,
two baseline configurations were simulated, one that
speculatively accesses DRAM for all read requests
(“Base”) and one that does no speculative DRAM
accesses (“Base-NoSpec”). Next, we simulated a sys-
tem with Cache Residence Prediction, which does not

speculatively access DRAM for read requests to lines
formerly held in invalid cache frames (“Shen-
CRP”) [15]. Four implementations of PEDS were
simulated for comparison: PEDS-DKD, PEDS-DLD,
and PEDS-DNC, PEDS-DAS.

Table 4. Configurations Simulated.
 Abbreviation Description

 Base Baseline, All Reads Access DRAM Speculatively

 Base-NoSpec Baseline, No Reads Access DRAM Speculatively

 Shen-CRP Baseline, No Invalid-Line Reads Access DRAM Speculatively

 PEDS-DKD RCA, No Ext-Dirty-Region Reads Access DRAM Speculatively

 PEDS-DLD RCA w/ ID, No Ext-Dirty-Region Reads Access DRAM Speculatively

 PEDS-DNC RCA w/ IC, Only Ext-Clean-Region Reads Access DRAM Speculatively

 PEDS-DAS RCA, No Broadcast Reads Access DRAM Speculatively

5. Results

5.1. Reduction in DRAM Reads Performed

Figure 6 shows the percentage of the DRAM reads
that are performed by each of the seven different sys-
tem configurations, normalized to a baseline with
speculative DRAM accesses. The shaded portion of
each bar is the percentage of DRAM read requests
performed after the snoop response arrived. The lower
the total height of the bar, the fewer DRAM reads
performed; the smaller the shaded portion, the fewer
reads that incur a latency penalty.
 For the baseline with speculative DRAM ac-
cesses, all DRAM reads were performed, and no reads
were delayed until the snoop response arrived. In
contrast, the baseline system without speculative
DRAM accesses performed the minimum number of
DRAM reads (67%), delaying all read requests until
the snoop response was available. The Shen-CRP
system performs 85% of the DRAM reads with only
4% of the read requests being delayed unnecessarily.
For its simplicity and low cost, Shen-CRP provides a
respectable reduction in DRAM reads with a minimal
performance impact. However, it does not exploit all
of the available potential. Utilizing information from
an RCA, PEDS achieves reductions in DRAM reads
similar to that of a system that does not speculatively
access DRAM, only performing 68-72% of the DRAM
reads), with 6-15% of the reads delayed unnecessarily.

5.2. Opportunity for DRAM Power Manage-
ment

Figure 7 illustrates the increased opportunity for
DRAM power management. Along the Y-axis is the
number of processor cycles between DRAM opera-
tions to a rank (read or write) on a logarithmic scale.
DRAM ranks do not need to be powered-up for read

requests that obtain data from other processor’s cach-
es, allowing DRAM ranks to switch to low-power
modes sooner and to remain in low-power modes
longer. Compared to the baseline with speculative
DRAM accesses, PEDS more than doubles the average
time between DRAM operations to a rank. Note that

the RCA reduces execution time, decreasing the time
between DRAM operations.

The benchmarks that benefit most are Barnes, Ra-
diosity, and TPC-H. For these benchmarks, a large
percentage of requests result in cache-to-cache trans-
fers, and removing these increases the time between
requests 3-6 times.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

B
as

e

B
as

e-
N

oS
pe

c

S
he

n-
C

R
P

P
E

D
S

-D
K

D

P
E

D
S

-D
LD

P
E

D
S

-D
N

C

P
E

D
S

-D
A

S

B
as

e

B
as

e-
N

oS
pe

c

S
he

n-
C

R
P

P
E

D
S

-D
K

D

P
E

D
S

-D
LD

P
E

D
S

-D
N

C

P
E

D
S

-D
A

S

B
as

e

B
as

e-
N

oS
pe

c

S
he

n-
C

R
P

P
E

D
S

-D
K

D

P
E

D
S

-D
LD

P
E

D
S

-D
N

C

P
E

D
S

-D
A

S

B
as

e

B
as

e-
N

oS
pe

c

S
he

n-
C

R
P

P
E

D
S

-D
K

D

P
E

D
S

-D
LD

P
E

D
S

-D
N

C

P
E

D
S

-D
A

S

Scientific Mean Multiprogrammed Mean Commercial Mean Overall Mean

N
or

m
al

iz
ed

 D
R

A
M

 R
ea

d
R

eq
ue

st
s

Reads
Performed
After Snoop

Reads
Performed
Immediately

Figure 6: Average DRAM reads performed, normalized to that of the baseline, broken down into
DRAM reads performed immediately and DRAM reads delayed until the snoop response arrives.

100

1000

10000

100000

Bar
ne

s

Oce
an

Ray
tra

ce

Rad
ios

ity

SPECint
95

ra
te

SPECint
20

00
ra

te

SPECjbb
20

00

SPECweb
99

TPC-H

TPC-W
TP

C-B

Ove
ra

ll M
ea

n

P
ro

ce
ss

or
 C

yc
le

s

Base Base-NoSpec Shen-CRP PEDS-DKD PEDS-DLD PEDS-DNC PEDS-DAS

Figure 7: Average processor cycles between DRAM requests to a rank.

5.3. DRAM Power and Energy Savings

Figure 8 shows the average DRAM power consump-
tion for the seven system configurations, normalized
with respect to the baseline with speculative DRAM
accesses. Not speculatively accessing DRAM reduces
average DRAM power consumption 31% for the base-
line. The Shen-CRP configuration achieves a 15%
reduction in DRAM power consumption over the
baseline. PEDS-DKD, PEDS-DLD, PEDS-DNC, and
PEDS-DAS reduce average DRAM power consump-
tion 17%, 20%, 21%, and 22%, respectively. PEDS
can achieve 69% of the reduction in DRAM power
consumption of a baseline system without speculative
DRAM accesses.

Figure 9 shows the average DRAM energy con-
sumption for the seven system configurations, norma-
lized with respect to the baseline with speculative
DRAM accesses. The average DRAM energy con-
sumption is the product of the average DRAM power
consumption and the execution time. Optimizations
that reduce DRAM power consumption do not neces-
sarily reduce the DRAM energy consumed in running
an application (not to mention the system energy con-
sumption). PEDS reduces average DRAM energy
usage 16-21% --close to that of a baseline system
without speculative DRAM accesses. Note that al-
though the Base-NoSpec configuration in Figure 8 had
nearly a 10% lower DRAM power consumption than
PEDS-DAS, the difference in energy consumption is

negligible due to the increased execution time of Base-
NoSpec. Interestingly, PEDS-DAS still provides re-
ductions in energy compared to the less aggressive
implementations despite delaying more DRAM reads
unnecessarily. The RCA has identified most of the

requests to non-shared data and not speculatively
accessing DRAM for the remaining reads does not
affect performance enough to offset the energy sav-
ings.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Bar
ne

s

Oce
an

Ray
tra

ce

Rad
ios

ity

SPECint
95

ra
te

SPECint
20

00
ra

te

SPECjbb
20

00

SPECweb
99

TPC-H

TPC-W
TP

C-B

Ove
ra

ll M
ea

n

 N
or

m
al

iz
ed

 D
R

A
M

 P
ow

er
 C

on
su

m
pt

io
n

Base Base-NoSpec Shen-CRP PEDS-DKD PEDS-DLD PEDS-DNC PEDS-DAS
Figure 8: Normalized DRAM power consumption.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

Bar
ne

s

Oce
an

Ray
tra

ce

Rad
ios

ity

SPECint
95

ra
te

SPECint
20

00
ra

te

SPECjbb
20

00

SPECweb
99

TPC-H

TP
C-W

TPC-B

Ove
ra

ll M
ea

n

N
or

m
al

iz
ed

 D
R

A
M

 E
ne

rg
y

C
on

su
m

pt
io

n

Base Base-NoSpec Shen-CRP PEDS-DKD PEDS-DLD PEDS-DNC PEDS-DAS

Figure 9: Normalized DRAM energy consumption.

50%

60%

70%

80%

90%

100%

110%

120%

130%

Bar
ne

s

Oce
an

Ray
tra

ce

Rad
ios

ity

SPECint
95

ra
te

SPECint
20

00
ra

te

SPECjbb
20

00

SPECweb
99

TPC-H

TPC-W
TPC-B

Ove
ra

ll M
ea

n

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Base Base-NoSpec Shen-CRP RCA PEDS-DKD PEDS-DLD PEDS-DNC PEDS-DAS
Figure 10: Normalized execution time.

5.4. Effect on Execution Time

Figure 10 shows the execution time of the seven sys-
tem configurations, normalized with respect to the
baseline with speculative DRAM accesses. In addition,
Figure 10 contains bars for an RCA where all memory
reads speculatively access DRAM. These bars are
labeled “RCA”, and are located to the left of the bars
for the PEDS implementations to show how PEDS
degrades performance over a system with an RCA
alone. RCAs improve performance; hence, the perfor-
mance of a system with PEDS cannot be directly com-
pared to systems that implement other techniques such
as Shen-CRP.

For each application, the execution time of PEDS
is shorter due to the reduction in broadcast snoops
achieved by the RCA. Throttling speculative DRAM
accesses with PEDS degrades average execution time
less than 1%, not enough to cancel out the execution
time improvement of the RCA. The Shen-CRP confi-
guration also does not affect performance noticeably.
In contrast, not speculatively accessing DRAM in the
baseline system increases average execution time 7%.
Not speculatively accessing DRAM degrades perfor-
mance significantly; however, utilizing an RCA PEDS
can throttle DRAM accesses without the performance
impact.

6. Future Work

In future work, there is potential to increase the effec-
tiveness of PEDS with more precise information about
data cached by other processors in the system. For
example, state for multiple regions can be collected at
once with each broadcast snoop, exploiting more spa-
tial locality and minimizing misses in the RCA. Com-
bined with a smaller region size, more precise tracking
of coherence status can be achieved, resulting in better
detection of reads that will go unused.
 Another possibility is to add more bits to memory
requests to give the memory controller more freedom
to prioritize requests. For example, while requests for
externally-dirty regions are very likely to obtain data
from other processor’s caches, requests to regions for
which the external region state is unknown have a
much lower probability. Communicating this informa-
tion to the memory controller can enable it to prioritize
requests accordingly. Read requests to non-shared
regions are non-speculative and have the highest prior-
ity; requests to regions for which the state is unknown
can have a lower priority, and requests to regions in an
externally-dirty state can have the lowest priority.

 Yet another avenue of future work is in combin-
ing PEDS with DRAM scheduling techniques to im-
prove performance and bandwidth utilization [24, 25].
PEDS can improve memory access scheduling by
removing unnecessary DRAM operations and the
resource conflicts they cause. In addition, PEDS can
enable memory schedulers to not only choose between
memory operations based on hardware hazards and the
program mix, but also based on whether operations are
likely to fetch data that will be used.
 Last, but not least, it would be interesting to see
how well PEDS techniques apply to systems with
other Coarse-Grain Coherence Tracking techniques,
such as RegionScout Filters [13] or RegionTrack-
ers [14]. Though this paper investigated only the use
of PEDS in systems with Region Coherence Arrays,
the same concepts may apply equally well to systems
with such structures.

7. Conclusions

PEDS significantly reduces DRAM activity, achieves
large reductions in DRAM power dissipation and
energy consumption, and creates more opportunities
for DRAM power management. Utilizing an RCA,
PEDS achieves these benefits with negligible effect on
performance. The hardware overhead of implementing
PEDS in a multiprocessor system that incorporates
RCAs is minimal.
 The four PEDS policies investigated in this paper
vary in aggressiveness, providing four alternatives that
each make a different tradeoff between effectiveness
and performance impact. PEDS-DKD is the least ag-
gressive, and has the least performance impact. In
order of increasing aggressiveness and performance
impact, we have PEDS-DLD, PEDS-DNC, and PEDS-
DAS.
 We also find Cache Residence Prediction [15] to
be effective with a minimal affect on performance
despite its low cost. However, Cache Residence Pre-
diction does not reduce DRAM read traffic and power
consumption as much as PEDS.

Acknowledgements

We thank our many anonymous reviewers for their
comments and suggestions. We also thank Prasun
Agarwal, Candy Cantin, and Pattabi Seshadri for
comments and help proofreading. This research was
supported in part by the National Science Foundation
under grants CCR-0133437, CCF-0429854, and CCF-
0702272, as well as grants and equipment donations
from IBM and Intel.

References

[1] Barroso, L., The Price of Performance, ACM Queue,
Volume 3, Number 7, September 2005.

[2] Laudon, J., UltraSPARC T1: Architecture and Physical
Design of a 32-threaded General Purpose CPU, Pro-
ceedings of the ISSCC Multi-Core Architectures, De-
signs, and Implementation Challenges Forum, 2006.

[3] Charlesworth, A., The Sun Fireplane System Intercon-
nect, Proceedings of SC2001.

[4] Kalla, R., Sinharoy, B., and Tendler, J., IBM Power5
Chip: A Dual-Core Multithreaded Processor, IEEEMi-
cro, 2004.

[5] Weber, F., Opteron and AMD64, A Commodity 64 bit
x86 SOC, Presentation, Advanced Micro Devices, 2003.

[6] Barroso, L., Gharachorloo, K., and Bugnion, E., Memo-
ry System Characterization of Commercial Workloads.
Proceedings of the 25th International Symposium on
Computer Architecture, 1998.

[7] Karlsson, M., Moore, K., Hagersten, E., and Wood, D.,
Memory System Behavior of Java-Based Middleware.
Proceedings of the 9th International Symposium on
High-Performance Computer Architecture, 2003.

[8] Cantin, J., Lipasti, M., and Smith J., Improving Multi-
processor Performance with Coarse-Grain Coherence
Tracking, Proceedings of the 32nd International Sympo-
sium on Computer Architecture, 2005.

[9] Cantin, J., Moshovos, A., Lipasti, M., Smith, J., and
Falsafi, B., Coarse-Grain Coherence Tracking: Re-
gionScout and Region Coherence Arrays, IEEE Micro
Special Issue on Top Picks from 2005 Computer Archi-
tecture Conferences, 2006.

[10] Fan, X., Ellis, C., and Lebeck, A., Memory Controller
Policies for DRAM Power Management, International
Symposium on Low-Power Electronics Design, 2001.

[11] Delaluz, V., Sivasubramaniam, A., Kendemir, M.,
Vijaykrishnan N., and Irwin, M., Scheduler-Based
DRAM Energy Management, Design Automation Con-
ference, 2002.

[12] Diniz, B., Guedes, D., Meira, W., Bianchini, R., Limit-
ing the Power Consumption of Main Memory. Proceed-
ings of the 34th International Symposium on Computer
Architecture, 2007.

[13] Moshovos, A., RegionScout: Exploiting Coarse Grain
Sharing in Snoop-Based Coherence, Proc. of the 32nd
International Symposium on Computer Architecture,
2005.

[14] Zebchuk, J., Safi, E., and Moshovos, A. A Framework
for Coarse-Grain Optimizations in the On-Chip Memo-
ry Hierarchy. Proceedings of the 40th IEEE/ACM In-
ternational Symposium on Microarchitecture, 2007.

[15] Shen, X., Huh, J., and Sinharoy, B., Cache Residence
Prediction. United States Patent #7,266,642, IBM, Sep-
tember 2007.

[16] Dodson, S., Fields, S., Ghai, S., and Stuecheli, J., Adap-
tive memory access speculation. U.S. Patent #7058767,
IBM, June 2006.

[17] Cain, H., Lepak, K., Schwartz, B., and Lipasti, M.,
Precise and Accurate Processor Simulation. Proceed-
ings of the 5th Workshop on Computer Architecture
Evaluation Using Commercial Workloads, 2002.

[18] Keller, T., Maynard, A., Simpson, R., and Bohrer, P.,
Simos-ppc Full System Simulator.
http://www.cs.utexas.edu/users/cart/simOS.

[19] UltraSPARC IV Processor, User’s Manual Supplement,
Sun Microsystems Inc., 2004.

[20] Wang, D., Ganesh, B., Tuaycharoen, N., Baynes, K.,
Jaleel, A., and Jacob, B., DRAMsim: A memory-system
simulator. SIGARCH Computer Architecture News,
Volume 33, Number 4, September 2005.

[21] DDR-200 datasheet.
http://www.micron.com/products/partdetail?part=MT46
V128M8P-6T. Micron 2003.

[22] Natarajan, C., Christenson, B., and Briggs, F., A study
of performance impact of memory controller features in
multi-processor server environment. Proceedings of
the 3rd Workshop on Memory Performance Issues,
2004.

[23] Alameldeen, A., Martin, M., Mauer, C., Moore, K., Xu,
M., Hill, M., and Wood, D. Simulating a $2M Commer-
cial Server on a $2K PC. IEEE Computer, 2003.

[24] Rixner, S., Dally, W., Kapasi, U., Mattson, P., and
Owens, J., Memory Access Scheduling. Proceedings of
the 27th International Symposium on Computer Archi-
tecture, 2000.

[25] Hur, I., and Lin, C., Adaptive History-Based Memory
Schedulers, Proceedings of the 37th IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2004.

