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Abstract 

Power-Efficient DRAM Speculation (PEDS) is a pow-
er optimization targeted at broadcast-based shared-
memory multiprocessor systems that speculatively 
access DRAM in parallel with the broadcast snoop.  
Although speculatively accessing DRAM has the po-
tential performance advantage of overlapping DRAM 
latency with the snoop, it wastes power for memory 
requests that obtain data from other processors’ cach-
es.  PEDS takes advantage of information provided by 
a Region Coherence Array to identify requests that 
have a high likelihood of obtaining data from another 
processor’s cache, and does not access DRAM specu-
latively for those requests.  By doing so, PEDS elimi-
nates DRAM reads, reduces DRAM power 
consumption, reduces contention for DRAM resources, 
and increases the opportunity for DRAM power man-
agement.  PEDS requires almost no additional hard-
ware in systems that incorporate Region Coherence 
Arrays.  Detailed simulation results show PEDS re-
duces average DRAM read traffic 28-32%, reduces 
average DRAM power dissipation 17-22%, and reduc-
es average DRAM energy consumption 16-21%.  
 
 
1. Introduction 

Cache-coherent shared-memory multiprocessor sys-
tems have wide-ranging applications from commercial 
transaction processing and database services to large-
scale scientific computing.  They have become a criti-
cal component of internet-based services in general.  
As system architectures have grown to incorporate 
larger numbers of faster processors, power dissipation 
and energy consumption have become serious design 
constraints [1].  The power consumption of DRAM is 

now a first-class design consideration for shared-
memory multiprocessor systems. For example, at a 
recent International Solid-State Circuits Conference 
(ISSCC), Sun Microsystems revealed that the power 
consumption of DRAM in the UltraSPARC T1 (“Nia-
gara”) systems running SPECjbb was approximately 
60 watts [2].  This is approximately 22% of the total 
system power, nearly as much as all the processor 
cores consume.  
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Figure 1: Breakdown of DRAM requests into 
Unused Reads, Used Reads, and Writes. Used 
Reads are read requests for which the DRAM 
data is used by the processor. Unused Reads 
are read requests for which the data was ob-
tained from another processor’s cache. Writes 
are DRAM write requests resulting from write-
backs. See Table 2 for parameters. 
 
Modern broadcast-based shared-memory multiproces-
sor systems commonly access DRAM speculatively to 
maximize performance [3, 4, 5].  The DRAM access is 
started after the memory controller receives the memo-
ry request but before the snoop response is available, 



 

thereby overlapping the DRAM access with the re-
mainder of the broadcast snoop.  While many memory 
requests benefit from the lower latency of speculative-
ly accessing DRAM, a significant fraction of requests 
obtain data from another processor’s cache and do not 
use the data from DRAM.  Simulation results for a 
four-processor system running a set of commercial, 
scientific, and multiprogrammed workloads indicate 
that 36.5% of the lines read from DRAM are not used 
because data is obtained from another processor’s 
cache (See Figure 1).  Approximately 28.7% of all 
DRAM accesses are unnecessary and waste power. 

The data in Figure 1 is not surprising; other stu-
dies have shown that a significant fraction of memory 
requests in a broadcast-based shared-memory multi-
processor system are satisfied by cache-to-cache trans-
fers [6, 7]. Barroso et al. observed that cache-to-cache 
transfers account for 55-62% of the requests in OLTP 
workloads running on a four-processor Alpha server 
with 4MB-8MB 2-way set-associative caches [6]. 
Karlsson et al. observed that “more than half of all 
second-level cache misses” in a large system running 
Java-based middleware result in cache-to-cache trans-
fers [7]. Any increase in the count, size, or associativi-
ty of caches in the system will tend to increase the rate 
of cache-to-cache transfers, which in turn drives up the 
percentage of DRAM reads that go unused. 
 If the system could determine beforehand that a 
memory request will obtain data from another proces-
sor’s cache, it could avoid accessing DRAM for that 
request.  This would eliminate a DRAM read, reduce 
contention for DRAM resources, and more important-
ly reduce energy consumption and power dissipation. 
Performance would be unaffected because requests 
that do need data from DRAM would still access 
DRAM upon arrival at the memory controller.  
 This paper is the first to propose gating of specul-
ative DRAM accesses by utilizing Region Coherence 
Arrays to detect memory requests that will likely ob-
tain data from other processors’ caches. 
 
1.1. Region Coherence Arrays 

Region Coherence Arrays (RCAs) are a recently pro-
posed structure used for avoiding broadcast snoops 
and filtering snoop-induced cache tag lookups in 
broadcast-based shared-memory multiprocessor sys-
tems [8, 9].  RCAs monitor the coherence status of 
regions, where a region is a large, aligned area of 
memory that encompasses a power-of-two number of 
cache lines.  RCAs identify regions of memory that are 
not shared by other processors, and exploit this infor-
mation to avoid unnecessary broadcast snoops.  Mem-
ory requests that do not require a broadcast snoop are 

sent directly to memory, sidestepping the broadcast 
interconnect.  RCAs also identify regions from which 
the processor is caching lines, and thus can filter unne-
cessary snoop-induced cache tag lookups. RCAs are 
inexpensive to implement and have the potential to 
significantly decrease power consumption in the 
broadcast interconnect and cache tag arrays.  This 
paper describes straightforward extensions to RCAs 
that robustly identify memory requests for which a 
speculative DRAM access would not be useful and 
would waste power.  
 
1.2. Power-Efficient DRAM Speculation 

Power-Efficient DRAM Speculation (PEDS) is a new 
optimization targeted at broadcast-based shared-
memory multiprocessor systems that speculatively 
access DRAM before the broadcast snoop cycle com-
pletes.  PEDS takes advantage of information provided 
by a Region Coherence Array to predict which memo-
ry requests are likely to be satisfied from other proces-
sors’ caches, and reduces DRAM power by forgoing 
speculative DRAM accesses for those requests. 
 PEDS adds one bit to memory requests to inform 
the memory controller whether to fetch the requested 
line from DRAM speculatively.  The memory control-
ler buffers requests tagged as bad candidates for a 
speculative DRAM access until the snoop response 
arrives to validate the prediction. If the snoop response 
indicates that another processor will provide the data, 
the prediction was correct and the memory controller 
can drop the request. If the snoop response indicates 
no processor will provide the data, the prediction was 
incorrect and the line is fetched from DRAM.  In this 
case, the request incurs a latency penalty. 
 
1.3. Power-Saving Potential 

First, PEDS eliminates DRAM reads, directly reducing 
DRAM activity and DRAM power consumption.  
Second, by eliminating DRAM reads there is less 
contention for DRAM resources, reducing queuing 
delays, bus turnarounds, and power consumption for 
the remaining DRAM requests. Third, by reducing 
DRAM activity there is increased opportunity for 
DRAM power management [10, 11, 12].  DRAM 
ranks may switch to low-power modes more quickly 
and remain in low-power modes longer.  Though the 
RCAs consume some power, the elimination of 69% 
of the broadcast traffic and over 80% of the snoop-
induced cache tag lookups more than compensates for 
it [9]. The additional power consumed by using an 
existing RCA for PEDS will be negligible. 
 



 

1.4. Paper Overview 

Related work is surveyed in the next section.  This is 
followed by a discussion of the proposed PEDS im-
plementations in Section 3.  Sections 4 and 5 describe 
our methodology and present simulation results for a 
set of commercial, scientific, and multiprogrammed 
workloads.  Section 6 describes avenues for future 
work. Finally, Section 7 concludes the paper. 
 
2. Related Work 

Coarse-Grain Coherence Tracking (CGCT) techniques 
have been proposed to reduce broadcast traffic and 
snoop-induced cache tag lookups in broadcast-based 
shared-memory multiprocessor systems [8, 9, 13].  
Andreas Moshovos proposed the RegionScout Filter, a 
simple mechanism that uses a non-tagged hash table to 
track data cached by the processor, and a small, tagged 
set-associative array for buffering the addresses of 
non-shared regions currently being used by the proces-
sor [14].  Cantin, Lipasti, and Smith proposed Region 
Coherence Arrays. Region Coherence Arrays are 
tagged, set-associative arrays that use a region proto-
col to track the coherence status of regions used by the 
processor [8].  Zebchuk et al. recently described an 
elegant framework for maintaining region coherence 
information with very little overhead [14].  These 
techniques effectively avoid broadcast snoops with 
corresponding improvements in scalability and per-
formance [9].  However, these initial investigations 
were focused only on the potential for avoiding unne-
cessary broadcast snoops and filtering unnecessary 
snoop-induced cache tag lookups.  They did not ex-
ploit CGCT techniques to reduce DRAM power con-
sumption.  Rather, by reducing execution time these 
techniques increase DRAM power consumption.  
 Shen, Huh, and Sinharoy proposed Cache Resi-
dence Prediction (CRP), a set of techniques for pre-
dicting whether a read request will obtain data from 
another processor’s cache [15]. One of these tech-
niques uses the invalid cache frame state to predict 
whether other processors are caching a line. An invalid 
cache frame indicates that the frame was holding a 
cache line previously, but the frame was invalidated 
by another processor’s request for the line it contained. 
If a processor finds such a frame in its cache, there is a 
high likelihood that another processor is still caching 
the line that it formerly held, and DRAM should not 
be accessed speculatively for that line. This technique 
is simple to implement and highly accurate but there is 
no quantitative evaluation available. We will quantita-
tively compare this technique to PEDS. 

 Dodson et al. proposed Adaptive Memory Access 
Speculation, a technique for using the early response 
in shared-memory multiprocessor systems with ring-
based interconnects [16]. The early response is the 
snoop response of processors located between the 
requestor and the memory controller on the ring. 
Based on a saturating counter, the memory controller 
can either fetch data from DRAM speculatively when 
the request arrives, fetch data speculatively when the 
early response arrives, or fetch data after the snoop 
response arrives. In cases of little sharing, read re-
quests speculatively access DRAM upon arrival at the 
memory controller. In cases of moderate sharing, the 
memory controller waits for the early response before 
performing the DRAM access. If the early response 
indicates that a processor is sharing the data, a DRAM 
access is not necessary. In cases of abundant sharing, 
the memory controller does not access DRAM until 
the snoop response arrives. In contrast, PEDS does not 
require early responses to detect requests that will 
result in a cache-to-cache transfer. 
 Fan, Ellis, and Lebeck investigated memory con-
troller policies for utilizing DRAM power modes in 
cache-based systems [10].  This research focused on 
utilizing the low-power modes of modern DRAMs to 
power down chips when not in use.  Analytical model-
ing was used to study the gap between clusters of 
memory requests and the threshold time after which 
the chip should switch to a different mode.  Results 
indicated that the best solution was to power-down 
DRAM chips as soon as they become idle, and not try 
to predict how long they would remain idle.  PEDS 
extends this work by reducing DRAM traffic and 
increasing the effective idle time of DRAM chips.    
 Delaluz et al. proposed Scheduler-Based DRAM 
Energy Management, in which the operating system 
switches DRAM modules to low-power modes [11].  
The operating system scheduler keeps track of ac-
cesses to DRAM modules made by processes, and 
attempts to power down modules whenever possible 
without hurting performance.  This technique benefits 
from the OS scheduler’s global view of processes and 
requires little hardware support.  The authors note that 
this technique can be used in concert with hardware 
techniques to optimize power consumption further. 
 Diniz et al. proposed a set of techniques for mani-
pulating DRAM power states to keep DRAM power 
consumption within a predefined budget at all times, 
and for reducing power further when possible to do so 
without degrading performance beyond a predefined 
threshold [12]. By keeping the power consumption 
within a predefined budget, cooling and power provi-
sioning costs can be reduced. The authors found that 
of the several techniques they evaluated, simple ones 



 

such as Knapsack (offline optimization of DRAM 
power states) and LRU-Ordered (online optimization) 
performed best, and that these techniques are as effec-
tive at reducing energy consumption as performance-
aware techniques, since they impose only minor per-
formance degradation. 
 
3. Implementation 

PEDS is implemented with 1) an RCA, 2) a policy for 
deciding which speculative DRAM read requests 
should be inhibited, 3) a method of communicating 
this information to the memory controller, and 4) 
modifications to the memory controller to buffer such 
requests until the snoop response arrives.  
 Processor requests probe the RCA in parallel with 
the lowest-level cache. The region state indicates 
whether the request must be broadcast to the other 
processors in the system.  If so, the RCA sets a single 
additional bit in the broadcast request to tag it as either 
a good or a bad candidate for a speculative DRAM 
access. 
 When a memory controller receives a read request 
tagged as a bad candidate for a speculative DRAM 
access, it buffers the request in its command queue 
until the snoop response arrives.  If the snoop response 
indicates that another processor will provide the data, 
the memory controller drops the request. Otherwise, 
the DRAM read proceeds and the data is sent to the 
requesting processor.  Reads incorrectly tagged as bad 
candidates for a speculative DRAM access incur a 
modest latency penalty. 
 Before going further, it is important to review the 
protocol RCAs use to track coherence information. 
RCAs utilize a protocol with seven states [8]. The first 
state is “Invalid”, meaning that the processor is not 
caching any lines from the region, and the state of 
lines from the region in other processors’ caches is 
unknown. The next two states are named “CI” and 
“DI”, meaning that the processor may be caching 
clean or potentially modified copies of lines from the 
region (respectively), and that no other processor is 
caching lines from the region. By potentially modified, 
we mean that a processor may have modified copies of 
lines or exclusive copies of lines that may silently 
become modified. Next, we have “CC” and “DC”, 
which mean that the processor may be caching clean 
or potentially modified copies of lines from the region 
(respectively), and other processors may be caching 
clean copies of lines from the region. These are also 
called “externally-clean” states. Finally, we have 
“CD” and “DD”, for which other processors may be 
caching potentially modified copies of lines from the 

region, and the processor may be caching clean or 
potentially modified copies, respectively. These are 
the externally-dirty states.  
 We study four policy variations for PEDS. The 
first policy, PEDS-DKD (Delay-Known-Dirty), delays 
DRAM reads to regions that are in an externally-dirty 
state (i.e., a region state indicating that other proces-
sors may be modifying lines from the region, e. g., CD 
or DD) [8].  The second policy, PEDS-DLD (Delay-
Likely-Dirty), adds an externally-dirty state (ID) to the 
region protocol to track externally-dirty regions that 
have been invalidated from the RCA, and delays 
DRAM reads for lines in regions that are in an exter-
nally-dirty state (i.e., ID, CD, and DD). The third 
policy, PEDS-DNC (Delay-Not-Clean), adds an exter-
nally-clean state (IC) to the region protocol to track 
externally-clean regions (i.e., regions that other pro-
cessors may be caching read-only lines from, e.g., IC, 
CC, DC) that have been invalidated from the RCA, 
and delays DRAM reads for lines in regions that are in 
an externally-dirty or unknown region state. Finally, 
the fourth policy, PEDS-DAS (Delay-All-Snoops), 
forgoes speculative DRAM accesses for all requests 
that require a broadcast snoop (excluding requests sent 
directly to memory by the RCA).   

Table 1 summarizes which region protocol states 
are used for each policy to identify requests that 
should speculatively access DRAM. These policies are 
described in detail in the pages that follow. A “y” 
indicates DRAM will be speculatively accessed for 
processor requests to a region with that state. An “n” 
indicates DRAM will not be speculatively accessed. 
 

Table 1.  Summary of PEDS policies. 
PEDS-DKD PEDS-DLD PEDS-DNC PEDS-DAS

I n n y y
CI  
CC n n n y
CD y y y y
DI
DC n n n y
DD y y y y
IC n
ID y  

 
3.1. The Delay-Known-Dirty Policy (PEDS-
DKD) 

Figures 2 and 3 illustrate the potential accuracy of 
using the existing region protocol states to predict 
whether read requests are good or bad candidates for a 
speculative DRAM access. For each application and 
external region state, the percentage of read requests 
that obtain data from other processors’ caches is 
shown (Figure 2).  The left-hand bars show the percen-
tage of all reads that obtain data from other proces-



 

sors’ caches, 33.4% on average. The next set of bars 
shows the percentage of all broadcast reads that obtain 
data from other processors’ caches for each applica-
tion, 58.7% on average. By broadcast reads, we mean 
read requests that are not sent directly to memory by 
the RCA.  
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Figure 2: Probability that a read request will 
obtain data from another processor’s cache. 
 
Approximately 75.6% of the read requests that are 
broadcast while the region is in the RCA in an exter-
nally-dirty state (i.e., CD and DD) will obtain data 
from another processor’s cache.  These are typically 
reads to shared data, and these are the chief contribu-
tors to wasted DRAM power. On the other hand, only 
15.2% of the read requests broadcast while the region 
is in an externally-clean state obtain data from another 
processor’s cache. The requests to externally-clean 
regions tend to be instruction fetches, and the cohe-
rence protocol of the baseline system does not source 
clean data. The last set of bars in Figure 2, labeled 
“Unknown” corresponds to read requests that miss in 
the RCA. The external region state was unknown at 
the time the request was broadcast, and approximately 
36% of such requests obtain data from other proces-
sors’ caches.   

Figure 3 shows the unused DRAM reads for each 
application, broken down by external region state. As 
we can see, reads to externally-dirty regions are the 
largest contributor to unused reads. The next largest 
contributor is reads to unknown reads. Reads to exter-
nally-clean regions make a very small contribution. 
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Figure 3: Unused Reads, broken down by 
region state. See Table 2 for parameters. 
 
From Figures 2 and 3, one can estimate that by avoid-
ing speculative DRAM accesses for reads from exter-
nally-dirty regions, DRAM read traffic will be reduced 
29%, 36.5%-29% = 7.5% of DRAM reads will go 
unused, and 29% × ((1/75.6%)-1) = 9.4% of the 
DRAM reads will be delayed unnecessarily. However, 
by avoiding speculative DRAM accesses for requests 
with unknown external region state, DRAM read traf-
fic will be reduced only 4% more while nearly doubl-
ing the number of DRAM reads delayed unnecessarily 
(Note that these are rough estimates; avoiding DRAM 
accesses will affect memory latency and system beha-
vior). Based on this data, we propose the PEDS-DKD 
policy, which accesses DRAM speculatively for all 
read requests except those from regions known to be 
in an externally-dirty state. PEDS-DKD achieves the 
highest prediction accuracy using only the existing 
region protocol states. 
 
3.2. The Delay-Likely-Dirty Policy (PEDS-
DLD) 

To reduce DRAM traffic further without harming 
performance, one must improve the prediction accura-
cy for read requests to regions with unknown external 
region state. Read requests that miss in a processor’s 
RCA are the next largest contributor to the unused 
DRAM reads, but only 36% of such reads obtain data 
from another processor’s cache. We observe that the 
cause of many misses in the RCA is dynamic self-
invalidation; an optimization employed by RCAs to 
maximize their ability to inhibit broadcasts [8]. In 
response to external requests, an RCA self-invalidates 
the requested region if the processor is not caching any 
lines from that region.  This increases the probability 
that the requesting processor will gain exclusive 
access to the region. Dynamic self-invalidation signif-
icantly improves the performance of RCAs, but also 



 

throws away information about the external status of 
the region (information useful to PEDS). 
 To preserve the external region state after self-
invalidation, we add a pseudo-invalid state to the re-
gion protocol: Invalid-Externally-Dirty (ID).  This 
state is exclusively for PEDS, and does not affect the 
performance or correctness of the RCA.  The ID state 
indicates that the processor is not caching any lines in 
the region, but other processors may be modifying 
lines in the region (hence, it is likely dirty). A broad-
cast snoop must be performed to promote the region to 
a valid state.  The ID state is entered when a region is 
self-invalidated by an external request for a modifiable 
copy of a line in the region, or when a region in an 
externally-dirty state is self-invalidated (See diagram 
in Figure 4). Because other processors may silently 
replace regions in the RCA, this state is only a hint and 
can become stale without affecting correctness. 
 

DI

DCCC

CI

CD DD

ID

I

Ext. Read/Write,

No lines cached

Ext.
 Read/W

rite
,

No lin
es c

ached

Ex
t. 

Req
ue

st
,

N
o 

lin
es

 c
ac

he
d

E
xt

. R
eq

ue
st

,
N

o 
lin

es
 c

ac
he

d

E
xt. R

ead/W
rite,

N
o lines cached

Ext. Read/Write,

No lines cached

DI

DCCC

CI

CD DD

ID

I

Ext. Read/Write,

No lines cached

Ext.
 Read/W

rite
,

No lin
es c

ached

Ex
t. 

Req
ue

st
,

N
o 

lin
es

 c
ac

he
d

E
xt

. R
eq

ue
st

,
N

o 
lin

es
 c

ac
he

d

E
xt. R

ead/W
rite,

N
o lines cached

Ext. Read/Write,

No lines cached

 
Figure 4: New region protocol state, ID, for 
PEDS-DLD. The state is entered on the self-
invalidations of externally-dirty regions to 
preserve the external region state information. 
 
Our second policy, PEDS-DLD (Delay-Likely-Dirty), 
uses this new state to predict whether speculatively 
accessed DRAM data will be used. If the region is in 
an externally-dirty state (including ID), DRAM ac-
cesses are delayed until the snoop response arrives.  
 
3.3. The Delay-Not-Clean Policy (PEDS-DNC) 

To reduce DRAM traffic even further, the system can 
avoid speculative DRAM accesses for all broadcast 
read requests except those to externally-clean regions 
(i.e., CC and DC). However, many reads to unknown 
regions do not result in a cache-to-cache transfer. 
Many of these are the result of externally-clean re-
gions that were self-invalidated. 

 To preserve the external region state after self-
invalidation, a second, alternative pseudo-invalid state 
is added to the region protocol: Invalid-Externally-
Clean (IC).  This state is exclusively for PEDS, and 
does not affect the performance or correctness of the 
RCA.  The IC state indicates that the processor is not 
caching any lines in the region, but other processors 
may be caching clean copies of lines in the region. A 
broadcast snoop must be performed to promote the 
region to a valid state.  The IC state is entered when an 
externally-clean region is self-invalidated by an in-
struction fetch (See state diagram in Figure 5). This 
state is also only a hint and can become stale.  

Our third policy, PEDS-DNC (Delay-Not-Clean) 
uses the IC state to predict whether speculatively ac-
cessed DRAM data will be used. If the region is in an 
externally-clean state (i.e., CC, DC, and IC), DRAM 
reads are performed right away. All other broadcast 
reads are delayed until the snoop response arrives. 
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Figure 5: New region protocol state, IC, for 
PEDS-DNC. The state is entered on the self-
invalidations of externally-clean regions to 
preserve the external region state information. 
 
3.4. The Delay-All-Snoop Policy (PEDS-DAS) 

To minimize DRAM traffic, we also propose a strict 
PEDS policy, which does not speculatively access 
DRAM for any broadcast reads (including reads to 
externally-dirty, externally-clean, and unknown re-
gions). Only reads to known non-shared regions, 
which are sent directly to memory by the RCA, access 
DRAM immediately; all other reads are buffered until 
the snoop response arrives. Note that read requests 
sent directly to memory by an RCA are non-
speculative; there is no broadcast snoop and no snoop 
response is pending. This PEDS policy is called 
PEDS-DAS (Delay-All-Snoop). PEDS-DAS can limit 



 

DRAM reads to the same extent as a conventional 
(non-RCA-based) system that never speculatively 
accesses DRAM (requiring approximately one third 
fewer DRAM reads than our baseline, according to 
Figure 2). However, the PEDS-DAS policy will not 
have the performance degradation of a conventional 
system that completely avoids speculative accesses to 
DRAM. Provided the RCA is effectively detecting 
non-shared data and avoiding broadcast snoops, most 
read requests will still access DRAM upon arriving at 
the memory controller and will not incur a latency 
penalty. 
 
3.5. Hardware Overhead 

The additional overhead of implementing PEDS in a 
broadcast-based shared-memory multiprocessor sys-
tem that already implements RCAs is quite small.  
However, even if an RCA is not already present in a 
design, an RCA with the same number of sets and 
associativity as the cache increases cache storage by 
only 6% [8].  If storage is a constraint, a smaller 
RCA [9] can be used instead.  Although any such 
structure consumes power, the power it saves by 
avoiding broadcast snoops and filtering snoop-induced 
cache-tag lookups far outweighs its own power con-
sumption. 
 No additional storage in the RCA is required for 
any of the proposed PEDS policies. The PEDS-DKD 
and PEDS-DAS policies require no additional region 
protocol states. The PEDS-DLD and PEDS-DNC 
policies require one additional region protocol state; 
however, there are only seven states in the original 
region protocol. No additional bits will be required to 
encode the region state. 
 To communicate with the memory controller, a bit 
needs to be added to the request packets sent to memo-
ry. This bit marks read requests as good/bad candi-
dates for a speculative DRAM access. This bit may be 
encoded with the request type or other information, 
and constitutes a negligible overhead.  
 Finally, additional command queue capacity may 
be needed in the memory controller to buffer requests 
that do not speculatively access DRAM.  Alternative-
ly, a separate queue may be added to buffer these 
requests.  
 
4. Evaluation Methodology 

We performed detailed timing simulations with an 
execution-driven, shared-memory multiprocessor 
simulator [17] built on top of SimOS-PPC [18].  The 
simulator implements the PowerPC ISA and runs both 

user-level and system code.  We modeled a four-
processor system with a Fireplane-like interconnect [3] 
and 1.5GHz processors with resources similar to the 
UltraSPARC-IV [19].  Unlike the UltraSPARC-IV, the 
simulated processors feature out-of-order issue and 
each processor has a 1MB L2 cache.  Each processor 
also has an RCA with the same organization as the L2-
cache tags (8K sets, 2-way associative), and 512B 
regions (shown to be effective in [8, 9]).  A more 
complete list of parameters is shown in Table 2. 
 

Table 2.  Simulation Parameters. 
Processor
Processor Clock 1.5GHz
Processor Pipeline 15 stages
Fetch Queue Size 16 instructions
BTB 4K sets, 4-way
Branch Predictor 16K-entry Gshare
Return Address Stack 8 entries
Decode/Issue/Commit Width 4/4/4
Issue Window Size 32 entries
ROB 64 entries
Load/Store Queue Size 32 entries
Int-ALU/Int-MULT 2/1
FP-ALU/FP-MULT 1/1
Memory Ports 1
Caches
L1 I-Cache 32KB 4-way, 64B lines, 1-cycle
L1 D-Cache 64KB 4-way, 64B lines, 1-cycle
L2 Cache 1MB 2-way, 64B lines, 12-cycle
Prefetching Power4-style, 8 stream, 5 line runahead

R10000-style exclusive-prefetching
Cache Coherence Protocols Write-Invalidate MOESI (L2), MSI (L1)
Memory Consistency Model Sequential Consistency
Interconnect
System Clock 150Mhz
Snoop Latency 106ns (16 cycles)
DRAM Latency 106ns (16 cycles)
DRAM Latency (Overlapped) 47ns (7 cycles)
Transfer Latency (Same Switch) 20ns (3 cycles)
Transfer Latency (Same Board) 47ns (7 cycles)
Transfer Latency (Remote) 80ns (12 cycles)
Memory
Memory 8GB, Micron DDR200
Memory Channels 2
DMA Buffer Size 512B
Coarse-Grain Coherence Tracking
Region Coherence Array 8K sets, 2-way set-assoc. 512B regions  
  
To compute DRAM power dissipation and energy 
consumption, the execution-driven simulator worked 
in concert with the DRAMsim simulator from Mary-
land [20].  DRAMsim has detailed DRAM timing 
models and computes DRAM power consumption by 
tracking activities and power-down modes at the rank 
level.  Our simulated system has 8GB of DDR-200 
DRAMs running at 100MHz.  The timing and electric-
al characteristics were taken from Micron’s datasheet 
for 1Gb DDR-200 SDRAM DIMMs [21].  We use the 
high-performance SDRAM-close-page-map address 
mapping policy [20] and closed page row-buffer man-
agement policy that has been shown to work best with 
shared-memory multiprocessor systems [22].  We 
model the clock enable and disable feature for power 



 

management in DDR systems where the clock can be 
disabled each cycle the rank is not servicing a com-
mand. 
  

Table 3.  Workloads Simulated. 
Category Benchmark Comments

Ocean SPLASH-2 Ocean Simulation, 514 x 514 Grid

Raytrace SPLASH-2 Raytracing application, Car

Barnes
SPLASH-2 Barnes-Hut N-body Simulation, 8K 
Particles

Radiosity
SPLASH-2 Light Interaction Application (-room -
ae 5000.0 -en 0.050 -bf 0.10) 

SPECint2000Rate
Standard Performance Evaluation Corporation's 
2000 CPU Integer Benchmarks, Combination of 
reduced-input runs

SPECint95Rate
Standard Performance Evaluation Corporation's 
1995 CPU Integer Benchmarks

SPECweb99
Standard Performance Evaulation Corporation's 
World Wide Web Server, Zeus Web Server 
3.3.7, 300 HTTP Requests

SPECjbb2000
Standard Performance Evaulation Corporation's 
Java Business Benchmark, IBM jdk 1.1.8 w/ JIT,
20 Warehouses, 2400 Requests

TPC-W
Transaction Processing Council's Web e-
Commerce Benchmark, DB Tier, Browsing Mix, 
25 Web Transactions

TPC-B
Transaction Processing Council's Original OLTP 
Benchmark, IBM DB2 version 6.1, 20 clients, 
1000 transactions

TPC-H
Transaction Processing Council's Decision 
Support Benchmark, IBM DB2 version 6.1, 
Query 12 on a 512MB Database

Commercial

Multiprogramming

Scientific

 
 
For workloads, we use a combination of commercial, 
scientific, and multiprogrammed benchmarks (Ta-
ble 3).  Execution-driven simulations were started 
from checkpoints taken from a functional simulator 
used to boot AIX and warm up the workloads.  Cache 
checkpoints were included to warm the caches prior to 
simulation.  Due to workload variability, several runs 
of each benchmark were performed with small random 
delays added to memory requests to perturb the sys-
tem, and the results were averaged [23].  The 95% 
confidence intervals for each benchmark are shown 
where appropriate.  Overall means are shown for each 
graph.  The overall means were computed by taking 
the arithmetic means of the results from the scientific, 
multiprogrammed, and commercial workloads sepa-
rately, and then combining the resultant means to form 
an overall arithmetic mean that weights each category 
equally. 

We simulated seven system configurations for 
comparison (Table 4). To compare conventional sys-
tems with and without speculative DRAM accesses, 
two baseline configurations were simulated, one that 
speculatively accesses DRAM for all read requests 
(“Base”) and one that does no speculative DRAM 
accesses (“Base-NoSpec”). Next, we simulated a sys-
tem with Cache Residence Prediction, which does not 

speculatively access DRAM for read requests to lines 
formerly held in invalid cache frames (“Shen-
CRP”) [15]. Four implementations of PEDS were 
simulated for comparison: PEDS-DKD, PEDS-DLD, 
and PEDS-DNC, PEDS-DAS. 
 

Table 4.  Configurations Simulated. 
 Abbreviation Description

 Base Baseline, All Reads Access DRAM Speculatively

 Base-NoSpec Baseline, No Reads Access DRAM Speculatively

 Shen-CRP Baseline, No Invalid-Line Reads Access DRAM Speculatively

 PEDS-DKD RCA, No Ext-Dirty-Region Reads Access DRAM Speculatively

 PEDS-DLD RCA w/ ID, No Ext-Dirty-Region Reads Access DRAM Speculatively

 PEDS-DNC RCA w/ IC, Only Ext-Clean-Region Reads Access DRAM Speculatively

 PEDS-DAS RCA, No Broadcast Reads Access DRAM Speculatively  
 
5. Results 

5.1. Reduction in DRAM Reads Performed 

Figure 6 shows the percentage of the DRAM reads 
that are performed by each of the seven different sys-
tem configurations, normalized to a baseline with 
speculative DRAM accesses.  The shaded portion of 
each bar is the percentage of DRAM read requests 
performed after the snoop response arrived. The lower 
the total height of the bar, the fewer DRAM reads 
performed; the smaller the shaded portion, the fewer 
reads that incur a latency penalty. 
 For the baseline with speculative DRAM ac-
cesses, all DRAM reads were performed, and no reads 
were delayed until the snoop response arrived. In 
contrast, the baseline system without speculative 
DRAM accesses performed the minimum number of 
DRAM reads (67%), delaying all read requests until 
the snoop response was available. The Shen-CRP 
system performs 85% of the DRAM reads with only 
4% of the read requests being delayed unnecessarily. 
For its simplicity and low cost, Shen-CRP provides a 
respectable reduction in DRAM reads with a minimal 
performance impact. However, it does not exploit all 
of the available potential. Utilizing information from 
an RCA, PEDS achieves reductions in DRAM reads 
similar to that of a system that does not speculatively 
access DRAM, only performing 68-72% of the DRAM 
reads), with 6-15% of the reads delayed unnecessarily. 
 
5.2. Opportunity for DRAM Power Manage-
ment 

Figure 7 illustrates the increased opportunity for 
DRAM power management. Along the Y-axis is the 
number of processor cycles between DRAM opera-
tions to a rank (read or write) on a logarithmic scale. 
DRAM ranks do not need to be powered-up for read 



 

requests that obtain data from other processor’s cach-
es, allowing DRAM ranks to switch to low-power 
modes sooner and to remain in low-power modes 
longer.  Compared to the baseline with speculative 
DRAM accesses, PEDS more than doubles the average 
time between DRAM operations to a rank. Note that 

the RCA reduces execution time, decreasing the time 
between DRAM operations. 

The benchmarks that benefit most are Barnes, Ra-
diosity, and TPC-H.  For these benchmarks, a large 
percentage of requests result in cache-to-cache trans-
fers, and removing these increases the time between 
requests 3-6 times. 
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Figure 6: Average DRAM reads performed, normalized to that of the baseline, broken down into 
DRAM reads performed immediately and DRAM reads delayed until the snoop response arrives. 
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Figure 7: Average processor cycles between DRAM requests to a rank. 
 
5.3. DRAM Power and Energy Savings 

Figure 8 shows the average DRAM power consump-
tion for the seven system configurations, normalized 
with respect to the baseline with speculative DRAM 
accesses. Not speculatively accessing DRAM reduces 
average DRAM power consumption 31% for the base-
line. The Shen-CRP configuration achieves a 15% 
reduction in DRAM power consumption over the 
baseline. PEDS-DKD, PEDS-DLD, PEDS-DNC, and 
PEDS-DAS reduce average DRAM power consump-
tion 17%, 20%, 21%, and 22%, respectively. PEDS 
can achieve 69% of the reduction in DRAM power 
consumption of a baseline system without speculative 
DRAM accesses. 

Figure 9 shows the average DRAM energy con-
sumption for the seven system configurations, norma-
lized with respect to the baseline with speculative 
DRAM accesses. The average DRAM energy con-
sumption is the product of the average DRAM power 
consumption and the execution time. Optimizations 
that reduce DRAM power consumption do not neces-
sarily reduce the DRAM energy consumed in running 
an application (not to mention the system energy con-
sumption). PEDS reduces average DRAM energy 
usage 16-21% --close to that of a baseline system 
without speculative DRAM accesses. Note that al-
though the Base-NoSpec configuration in Figure 8 had 
nearly a 10% lower DRAM power consumption than 
PEDS-DAS, the difference in energy consumption is 



 

negligible due to the increased execution time of Base-
NoSpec. Interestingly, PEDS-DAS still provides re-
ductions in energy compared to the less aggressive 
implementations despite delaying more DRAM reads 
unnecessarily. The RCA has identified most of the 

requests to non-shared data and not speculatively 
accessing DRAM for the remaining reads does not 
affect performance enough to offset the energy sav-
ings. 
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Figure 8: Normalized DRAM power consumption. 
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Figure 9: Normalized DRAM energy consumption. 
 

50%

60%

70%

80%

90%

100%

110%

120%

130%

Bar
ne

s

Oce
an

Ray
tra

ce

Rad
ios

ity

SPECint
95

ra
te

SPECint
20

00
ra

te

SPECjbb
20

00

SPECweb
99

TPC-H

TPC-W
TPC-B

Ove
ra

ll M
ea

n

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

Base Base-NoSpec Shen-CRP RCA PEDS-DKD PEDS-DLD PEDS-DNC PEDS-DAS  
Figure 10: Normalized execution time. 



 

5.4. Effect on Execution Time 

Figure 10 shows the execution time of the seven sys-
tem configurations, normalized with respect to the 
baseline with speculative DRAM accesses. In addition, 
Figure 10 contains bars for an RCA where all memory 
reads speculatively access DRAM. These bars are 
labeled “RCA”, and are located to the left of the bars 
for the PEDS implementations to show how PEDS 
degrades performance over a system with an RCA 
alone. RCAs improve performance; hence, the perfor-
mance of a system with PEDS cannot be directly com-
pared to systems that implement other techniques such 
as Shen-CRP. 

For each application, the execution time of PEDS 
is shorter due to the reduction in broadcast snoops 
achieved by the RCA.  Throttling speculative DRAM 
accesses with PEDS degrades average execution time 
less than 1%, not enough to cancel out the execution 
time improvement of the RCA. The Shen-CRP confi-
guration also does not affect performance noticeably. 
In contrast, not speculatively accessing DRAM in the 
baseline system increases average execution time 7%. 
Not speculatively accessing DRAM degrades perfor-
mance significantly; however, utilizing an RCA PEDS 
can throttle DRAM accesses without the performance 
impact. 
 
6. Future Work 

In future work, there is potential to increase the effec-
tiveness of PEDS with more precise information about 
data cached by other processors in the system.  For 
example, state for multiple regions can be collected at 
once with each broadcast snoop, exploiting more spa-
tial locality and minimizing misses in the RCA. Com-
bined with a smaller region size, more precise tracking 
of coherence status can be achieved, resulting in better 
detection of reads that will go unused.  
 Another possibility is to add more bits to memory 
requests to give the memory controller more freedom 
to prioritize requests.  For example, while requests for 
externally-dirty regions are very likely to obtain data 
from other processor’s caches, requests to regions for 
which the external region state is unknown have a 
much lower probability. Communicating this informa-
tion to the memory controller can enable it to prioritize 
requests accordingly. Read requests to non-shared 
regions are non-speculative and have the highest prior-
ity; requests to regions for which the state is unknown 
can have a lower priority, and requests to regions in an 
externally-dirty state can have the lowest priority. 

 Yet another avenue of future work is in combin-
ing PEDS with DRAM scheduling techniques to im-
prove performance and bandwidth utilization [24, 25]. 
PEDS can improve memory access scheduling by 
removing unnecessary DRAM operations and the 
resource conflicts they cause. In addition, PEDS can 
enable memory schedulers to not only choose between 
memory operations based on hardware hazards and the 
program mix, but also based on whether operations are 
likely to fetch data that will be used.  
 Last, but not least, it would be interesting to see 
how well PEDS techniques apply to systems with 
other Coarse-Grain Coherence Tracking techniques, 
such as RegionScout Filters [13] or RegionTrack-
ers [14]. Though this paper investigated only the use 
of PEDS in systems with Region Coherence Arrays, 
the same concepts may apply equally well to systems 
with such structures. 
 
7. Conclusions 

PEDS significantly reduces DRAM activity, achieves 
large reductions in DRAM power dissipation and 
energy consumption, and creates more opportunities 
for DRAM power management. Utilizing an RCA, 
PEDS achieves these benefits with negligible effect on 
performance. The hardware overhead of implementing 
PEDS in a multiprocessor system that incorporates 
RCAs is minimal.  
 The four PEDS policies investigated in this paper 
vary in aggressiveness, providing four alternatives that 
each make a different tradeoff between effectiveness 
and performance impact. PEDS-DKD is the least ag-
gressive, and has the least performance impact. In 
order of increasing aggressiveness and performance 
impact, we have PEDS-DLD, PEDS-DNC, and PEDS-
DAS.  
 We also find Cache Residence Prediction [15] to 
be effective with a minimal affect on performance 
despite its low cost. However, Cache Residence Pre-
diction does not reduce DRAM read traffic and power 
consumption as much as PEDS. 
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