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Abstract 

 
We propose and evaluate a multi-thread memory 

scheduler that targets high performance CMPs. The 
proposed memory scheduler is based on concepts 
originally developed for network fair queuing schedul-
ing algorithms.  The memory scheduler is fair and pro-
vides Quality of Service (QoS) while improving system 
performance.  On a four processor CMP running 
workloads containing a mix of applications with a 
range of memory bandwidth demands, the proposed 
memory scheduler provides QoS to all of the threads in 
all of the workloads, improves system performance by 
an average of 14% (41% in the best case), and reduces 
the variance in the threads’ target memory bandwidth 
utilization from .2 to .0058. 

1. Introduction 
Chip multiprocessors (CMPs) will likely form the 

foundation for a wide range of future computer sys-
tems.  CMPs allow software threads to share memory 
system resources with the objectives of efficient re-
source usage and the accommodation of disparate re-
source requirements across heterogeneous applications.  
Of the resources commonly shared, off-chip memory 
system resources may have the most significant long-
term effect on CMP system performance [2].  Unman-
aged sharing of these resources can affect system per-
formance in unpredictable ways [10][22] and lead to 
destructive interference among threads.  Destructive 
interference can result in poor system performance and 
make OS scheduling policies less effective. 

We consider a class of memory scheduling algo-
rithms that service memory requests on a First-Ready 
First-Come-First-Serve (FR-FCFS) basis [8][17][18] 
(described in Section 2.2), which has been shown to be 
a good all-round scheduling algorithm that efficiently 
optimizes memory bandwidth utilization for single-
thread general purpose applications [18][8].  In a multi-
thread system, however, naively using FR-FCFS 
scheduling allows an aggressive thread to severely 
degrade the performance of other threads with which it 
is co-scheduled.  Figure 1 illustrates this phenomenon 

– it shows performance measured in instructions per 
cycle  (IPC) and memory latency for the SPEC bench-
mark vpr on a dual processor CMP when vpr is run-
ning alone, co-scheduled with benchmark crafty, and 
co-scheduled with art.  The only shared system re-
source is the SDRAM memory system, i.e., each proc-
essor has its own private caches (system details are 
given in Section 4.1).  When running alone, vpr con-
sumes a modest 14% of the system’s peak data bus 
memory bandwidth.  When combined with crafty, an-
other benchmark with modest memory bandwidth 
utilization, there is no observable change in vpr’s per-
formance.  However, when running with benchmark 
art, vpr’s average memory latency goes from 150 cy-
cles (when running alone) to 1070 processor cycles.  
The increase in latency translates to a 60% loss of IPC 
performance. This example illustrates the effect that 
memory sharing can cause, and it highlights QoS (in 
the form of performance isolation) as a primary goal of 
multi-thread memory scheduling policies. 
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Figure 1: Memory latency and IPC for benchmark 
vpr when it is co-scheduled with crafty and with art 

In this paper, we present a multithread memory 
scheduler that specifically targets general purpose, high 
performance CMP systems. The proposed memory 
scheduler is based on concepts from network fair queu-
ing (FQ) [1][17][20][24].  The FQ memory scheduler 
models each thread as if it were running in a private 
virtual time memory system (VTMS).  In a thread’s 
VTMS, the memory system’s timing characteristics are 
time scaled in proportion to the thread’s allocated share 
of the memory system, e.g., the VTMS CAS delay (tCL) 
of a thread that is allocated one half of the memory 
system is doubled.  Within this framework, the pro-
posed memory scheduler provides QoS – each hard-
ware thread is offered its allocated share of aggregate 
memory system bandwidth regardless of the load 
placed on the memory system from other threads [22]. 



The proposed memory scheduler is fair – any excess 
memory bandwidth is distributed evenly to threads that 
have consumed less excess bandwidth in the past.  Fur-
thermore, the proposed memory scheduler improves 
system performance.  On a two processor CMP run-
ning workloads that stress the memory system, the 
proposed FQ memory scheduler provides QoS on 18 
out of 19 workloads, improves system performance by 
31% on average (up to 76%) – and provides good 
memory system utilization – an average of 92% of the 
peak data bus bandwidth.  On the one workload where 
the FQ memory scheduler does not satisfy the QoS 
objective, the performance is within 6% of the objec-
tive.  On a four processor CMP running workloads that 
have a mix of applications with a range of memory 
bandwidth demands, the proposed memory scheduler 
provides QoS to all of the threads in all of the work-
loads, improves system performance by 14% on aver-
age (up to 41%), and reduces the variance in the 
threads’ target bandwidth utilization (defined in Sec-
tion 4.2) from .2 to .0058. 

2. Background 

2.1. SDRAM Memory Systems 
SDRAM memory systems are organized as a set of 

ranks that consist of independent memory banks.  Each 
bank consists of a two-dimensional array of memory 
cells.  An activate command moves a row from the 
memory array into the row buffer, thereby opening the 
row.  Once a row is open, any number of read and 
write commands can be issued to transfer data into and 
out of the row.  DDR2 SDRAMs transfer data on both 
edges of the clock.  A precharge command closes a 
row, restores it back to the memory array, and pre-
charges the bank for the next row activation.   
Throughout this paper we refer to read and write 
commands as CAS commands, and activate and pre-
charge commands as RAS commands. 

DDR2 timing constraints dictate the minimum and 
maximum time between SDRAM commands.  For ex-
ample, Micron’s DDR2-800 timing constraints [14] are 
summarized in Table 6 in the Evaluation Section.  The 
DDR2 burst length (BL) is the number of data bus cy-
cles required to transfer an entire cache line.  A more 
in-depth description of SDRAM memory systems can 
be found in Cuppu et al. [5]. 

2.2. Memory Controllers 
A memory controller acts as the interface between 

on-chip processors and caches, and off-chip SDRAM, 
i.e., a memory controller translates memory requests 
into sequences of SDRAM commands.  Figure 2 illus-
trates the basic structure of a high-performance mem-
ory controller [18], which consists of a memory sched-

uler, transaction buffer, a write buffer, and a read 
buffer.  The transaction buffer holds each memory re-
quest’s state, e.g., request type and request identifier.  
The write buffer temporarily holds cache lines being 
written to memory, and the read buffer temporarily 
holds cache lines read from memory while they are in 
transit to the requesting processor’s cache. 

The memory scheduler (shown in the center of Fig-
ure 2) is the core of the memory controller.  The 
scheduler reorders and interleaves memory requests in 
order to optimize memory latency and memory band-
width utilization.  
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Figure 2: Memory Controller 

A high-performance memory scheduler has a logi-
cal priority queue and a bank scheduler for each 
SDRAM bank in the memory system.  These queues 
can be implemented as a single hardware structure, 
however.  The bank scheduler selects the pending re-
quest with the highest priority and generates a se-
quence of SDRAM commands to read (write) the re-
quest’s data from (to) memory.  The bank scheduler 
also tracks the bank’s timing constraints to ensure that 
the sequence of SDRAM commands conforms to the 
DDR2 specification.  When an SDRAM command is 
ready (with respect to the bank’s timing constraints), 
the bank scheduler sends the command to the channel 
scheduler.   

The channel scheduler scans the banks’ ready com-
mands and issues the command with the highest prior-
ity.  When a command is issued, the channel scheduler 
ACKs the appropriate bank scheduler, and the bank 
scheduler updates its bank state machine appropriately.  
The channel scheduler also tracks the state of the ad-
dress bus, data bus, and ranks to ensure there are no 
channel scheduling conflicts and that no rank timing 
constraints (e.g. tRRD in Table 6) are violated. 

Figure 2 illustrates a memory scheduler that em-
ploys the commonly used First-Ready First-Come-
First-Service (FR-FCFS) memory scheduling algo-



rithm [8][17][18].  FR-FCFS bank and channel sched-
ulers use the same priority policy.  The best FR-FCFS 
policy (as presented by Rixner et al. [19]) has three 
priority levels: 1) prioritize ready commands over 
commands that are not ready, 2) prioritize CAS com-
mands over RAS commands, and 3) prioritize the 
command with the earliest arrival time (i.e. the time 
memory request arrived at the memory controller).  For 
example, the oldest ready CAS command has the high-
est priority.  Prioritizing first-ready CAS commands 
exploits already open rows and is essential for utilizing 
the data bus bandwidth efficiently.   

We use a fairly aggressive implementation of the 
FR-FCFS algorithm as a baseline for performance 
comparisons.  Less aggressive (and lower performing) 
designs may use separate buffers for read and write 
memory requests and may employ a FIFO queue to 
ensure SDRAM timing constraints are met [8].  With 
such a design, it may be necessary to approximate FR-
FCFS [8]. 

A scheduling policy can have a closed row policy or 
an open row policy.  A closed row policy closes the 
row buffer after all pending accesses to the row have 
been completed, and an open row policy leaves the row 
buffer open.  Throughout this paper, we use a closed 
row policy since it has been shown to perform better 
than an open row policy in multiprocessor systems 
[15]. 

The FR-FCFS memory scheduler as just described 
provides good memory system utilization (as our re-
sults will show), but it does not provide QoS in a 
multi-threaded system.  There are two main reasons for 
this. First, FCFS gives unfair priority to threads that 
have frequent, long bursts of cache misses because a 
long burst will tend to capture a long sequence of 
FCFS slots, thereby adding considerably to the latency 
of other requests that arrive (slightly) later. Second, FR 
scheduling suffers long priority inversion blocking 
times due to priority chaining [20].  Priority chaining 
occurs when a sequence of low priority (later arriving) 
SDRAM commands prevent high priority (earlier ar-
riving) commands from becoming ready. For example, 
a stream of row buffer hits will become ready and will 
be serviced before earlier arriving requests that are to 
the same bank, but a different row.  Overall, FR-FCFS 
scheduling allows high-demand, bursty threads to pre-
vent other threads from receiving memory system ser-
vice. 

There are relatively few studies of high-
performance multi-thread memory schedulers.  Zhu et 
al. [24] study the effects of memory scheduling in si-
multaneous multithreaded (SMT) processors.  Their 
scheduling techniques primarily focus on scheduling 
requests based on the threads’ occupancies in shared 
SMT resources, i.e., the reorder buffer (ROB), issue 

queue, and miss status handling registers (MSHRs).  
Natarajan et al. [15] study the performance impact of 
basic memory scheduling techniques (e.g., closed vs. 
open page policies and in-order vs. out-of-order sched-
uling) in the context of multiprocessors.   

QoS memory schedulers have been proposed for 
embedded systems and system-on-a-chip (SoC) 
[7][11][21].  In general, these memory schedulers sac-
rifice flexibility and memory system utilization in or-
der to achieve hard real-time guarantees.  For example, 
these schedulers often rely on knowing memory access 
patterns at system design time, which makes them un-
suitable for general purpose high-performance comput-
ing. 

2.3. Network Fair Queuing 
Network FQ scheduling algorithms offer guaranteed 

service to simultaneous network flows over a shared 
network link [1][16][19][23].  Most FQ algorithms 
approximate an ideal general processor sharing (GPS) 
server [16].  An ideal GPS server has multiple input 
buffers, each of which is associated with a different 
flow and each flow has an allocated service share of 
the network link.  During any time interval when there 
are backlogged buffers, the ideal GPS algorithm ser-
vices all backlogged buffers simultaneously in propor-
tion to their corresponding service share.  

GPS provides the network flows Quality of Service 
(QoS) and is fair.  A scheduling algorithm provides 
QoS if each flow receives its allocated service share, 
regardless of the load placed on the link by other flows.  
A fair network scheduling algorithm distributes excess 
service in portion to the flows’ service shares regard-
less of the amount of link service a flow has consumed 
in the past 

In an FQ scheduling algorithm a flow i is given a 
service share φi expressed as a fraction of the total link 
capacity.  FQ scheduling algorithms often operate 
within a virtual time framework where the virtual ser-
vice time is equal to the network packet’s length Li

k 
(expressed in units of link capacity) time scaled by the 
reciprocal of its service share φi . 

Each packet pi
k (kth packet of ith flow) has a virtual 

start-time Si
k and a virtual finish-time Fi

k.  The virtual 
start-time (Equation 1) of a packet is the maximum of 
its virtual arrival time ai

k and the virtual finish-time of 
the previous packet.  A packet’s virtual finish-time 
(Equation 2) is the sum of its virtual start-time and its 
virtual service time.   

 
[1]  Si

k = max {ai
k , Fi

k-1 } 
[2]  Fi

k = Si
k + Li

k / φi 
 

Network FQ scheduling algorithms use a virtual 
clock [1][23] to determine the virtual arrival time ai

k.  
In general, a virtual clock algorithm advances the vir-



tual clock at a faster rate when fewer network flows are 
backlogged.  A virtual clock is necessary to approxi-
mate the GPS fairness policy; the GPS fairness policy 
is unattainable since a network link cannot simultane-
ously service more than one packet at a time.  An im-
portant characteristic of a scheduling algorithm’s fair-
ness is the extent to which a flow receiving excess ser-
vice in a given time period will be penalized in later 
time period(s) [1][23]. 

Given the virtual start- and finish-times, there are a 
number of ways an FQ scheduling algorithm can pri-
oritize packets; each with slightly different QoS and 
fairness properties [1].  For example, packets can be 
prioritized earliest virtual start-time first [23] or earliest 
virtual finish-time first [1][19].  

3. Fair Queuing Memory Scheduler 
The class of FQ network scheduling algorithms de-

scribed in Section 2.3 forms the basis of the FQ mem-
ory scheduler.  In contrast with packet schedulers, 
however, the FQ memory scheduler must manage mul-
tiple, inter-dependent resources, e.g., address buses, 
data buses, and memory banks.  If the FQ scheduler 
allows a single thread to over utilize a single resource, 
other threads may be adversely affected.   

In an FQ memory scheduler’s control registers each 
hardware thread i is allocated a fraction φi of the mem-
ory system’s bandwidth – this allocation could be stati-
cally designed-in or could be assigned flexibly by ei-
ther an OS or a virtual machine monitor (VMM), for 
example.  Allocating a thread a fraction φi of the mem-
ory system is analogous to allocating a thread a private 
memory system running at φi of the frequency of the 
physical memory, i.e., all of the SDRAM timing char-
acteristics are time scaled by the reciprocal of φi.  
Therefore, the FQ memory scheduler’s QoS objective 
is:  a thread i  that is allocated a fraction φi of the 
memory system bandwidth will run no slower than the 
same thread on a private memory system running at φi 
of the frequency of the shared physical memory sys-
tem. 

To satisfy the QoS objective, the FQ memory 
scheduler prioritizes memory requests earliest virtual 
finish-time first (VFTF).  A virtual finish-time is the 
virtual time a thread’s memory request will finish on 
the thread’s private virtual time memory system 
(VTMS).  In order for the FQ memory scheduler to 
offer a thread QoS, the thread’s memory requests must 
finish in less time than they would have on its VTMS – 
a memory request’s virtual finish-time is its deadline.  
Scheduling memory requests earliest VFTF is equiva-
lent to earliest deadline first scheduling (EDF) [3].   If 
the sum of each resource’s allocated service shares φi is 

less than or equal to one, an ideal EDF schedule will 
meet the VTMS deadlines [3]. 

The FQ memory scheduler’s fairness policy distrib-
utes excess memory system bandwidth to the thread 
that has consumed the least excess memory system 
bandwidth in the past (relative to its service share).  
Prioritizing memory requests VFTF also satisfies this 
fairness policy because a thread whose oldest pending 
memory request has the earliest virtual finish-time has 
consumed less excess service (normalized to its share 
φi) than any other backlogged thread [1]. 

The FQ memory scheduler’s fairness policy differs 
from the GPS fairness policy described in Section 2.3.  
We introduce a fairness policy specifically for multi-
thread memory scheduling because a memory system 
is an integral part of a closed system; in contrast, a 
network router is assumed to be in an open system.  
For example, in a typical streaming media network 
application the bit rate is independent of the delay 
through the network.  In contrast, a general-purpose 
application’s memory request rate is strongly depend-
ent on memory latency, i.e., as the system’s memory 
latency increases the memory request rate decreases.  
Threads that have consumed more memory system 
bandwidth in the past have increased the memory sys-
tem’s latency averaged over all threads; these threads 
should not receive excess bandwidth before threads 
that have received less excess bandwidth in the past.  
This fairness policy is validated as part of our evalua-
tion. 

3.1. Virtual Time Memory System 
A virtual time memory system (VTMS) captures the 

fundamental timing characteristics of a SDRAM mem-
ory system and abstracts away some details.  For ex-
ample, a memory system’s address bus and its data bus 
are modeled as a single resource: a memory channel.  
This level of abstraction is necessary in order to apply 
FQ theory and simplify the FQ memory scheduler’s 
hardware (described in Section 3.2).  

Table 1 summarizes the VTMS notation and terms.  
The VTMS notation follows from the network FQ no-
tation used in Section 2.3.  In addition, the VTMS no-
tation has a prefix that consists of a resource identifier 
followed by a dot. 

Each memory request mi
k (kth memory request from 

the ith thread) to bank j has a bank service virtual start-
time Bj.Si

k and a bank service virtual finish-time Bj.Fi
k.  

The bank service virtual start-time (Equation 3) is the 
maximum of its virtual arrival time ai

k (at the memory 
controller) and the bank service virtual finish-time of 
the previous request to bank j, i.e., Bj.Fi

(k-1)’.  We use 
the (k-1)’ superscript because memory request mi

k-1 may 
not have been the last request to bank j.  The bank ser-
vice virtual finish-time (Equation 4) is the sum of its 



virtual start-time and its virtual service time.  Bj.Li
k is 

mi
k’s actual bank service time.  The actual bank service 

time depends on the state of the bank when the mem-
ory request starts its bank service (discussed in Section 
3.2). 

Table 1: VTMS Notation and Terms 
φ i  Thread i’s service share 
mi

k kth memory request from thread i 
ai

k mi
k’s virtual arrival time  

Bj.Li
k mi

k’s bank j service 

Bj.Si
k mi

k’s bank j service virtual start-time (assuming 
mi

k is to bank j) 

Bj.Fi
k mi

k’s bank j service virtual finish-time (assuming 
mi

k is to bank j) 

Bj.Fi
(k-1)’ Virtual finish-time of the previous request (be-

fore mi
k) to bank j  

C.Li
k mi

k’s channel service 
C.Si

k mi
k’s channel service virtual start-time 

C.Fi
k mi

k’s channel service virtual finish-time 
 
 

[3]  Bj.Si
k = max { ai

k , Bj.Fi
(k-1)’ } (from Equation 1) 

[4]  Bj.Fi
k = Bj.Si

k + Bj.Li
k / φi  (from Equation 2) 

 

Each memory request mi
k has a channel service vir-

tual start-time C.Si
k and a channel service virtual fin-

ish-time C.Fi
k.  In this work we focus on single channel 

(C) memory systems and leave multi-channel memory 
systems for future work.  A memory request virtually 
arrives at the channel as soon as its bank service is 
complete, i.e., a request’s channel arrival-time is its 
bank service finish-time Bj.F i

k.  Therefore, the channel 
service virtual start-time (Equation 5) is the maximum 
of the bank service virtual finish-time and the channel 
service virtual finish-time of the previous request.  The 
channel service virtual finish-time (Equation 6) is the 
sum of its virtual start-time and its virtual service time.  
The channel service virtual finish-time is the memory 
request’s virtual finish-time, which is used to prioritize 
the request.  

 
[5]  C.Si

k = max { Bj.F i
k , C.Fi

k-1  } (from Equation 1) 
[6]  C.Fi

k = C.Si
k + C.Li

k / φi (from Equation 2) 
 

A virtual clock algorithm is unnecessary for the FQ 
scheduler’s desired fairness policy.  The FQ memory 
scheduler uses a real clock.  The clock is incremented 
once per cycle, except during refresh periods.  Unlike 
GPS virtual clock algorithms, a real clock penalizes 
threads that have consumed more service in the past 
[19]. 

3.2. Implementation 
The FQ memory scheduler has the same basic struc-

ture as the memory scheduler in Section 2.2 Figure 2.  
The FQ scheduler’s priority policy is very similar to 
FR-FCFS except the FQ scheduler’s priority policy 

prioritizes requests earliest virtual finish-time first.  
The FQ bank and channel schedulers’ priority policy 
is: 1) prioritize ready commands, 2) prioritize CAS 
commands, and 3) prioritize commands with the earli-
est virtual finish-time. 

To calculate virtual finish-times, the FQ memory 
scheduler has a set of VTMS registers and virtual fin-
ish-time logic for each supported hardware thread (see 
Figure 3). A thread’s VTMS registers has one finish-
time register for each memory bank Bj.Ri , one finish-
time register for the memory channel C.Ri , one service 
share register φi, and one register to track the earliest 
arrival time Rai of the pending memory requests.  The 
virtual finish-time registers hold the VTMS resources’ 
last virtual finish-times, i.e. Bj.Ri = Bj.Fi

(k-1)’ and C.Ri = 
C.Fi

k-1.  Table 2 summarizes the terms used in this sec-
tion. 

Table 2: VTMS Implementation Terms 
Bj.Ri Thread i bank j’s last virtual finish-time register 
C.Ri Thread i channel last virtual finish-time register 
Rai Thread i oldest virtual arrival time 
Bcmd .L i

k mi
k’s current SDRAM command bank service 

Ccmd .L i
k mi

k’s current SDRAM command channel service 
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Figure 3: FQ memory scheduler 

The virtual finish-time function in terms of VTMS 
registers is given in Equation 7. 

 

[7]  C.Fi
k = max { max { Rai

 , Bj.Ri } + B.Li
k / φi , C.Ri

 } + 
                   C.Li

k / φi 
(from Equations 3, 4, 5, and 6) 

 

In contrast with network FQ, a memory request’s 
exact service requirements are not known at the time 
the request arrives at the memory controller.  For ex-
ample, if a memory request results in an open row hit, 
then the memory request’s bank service requirement 
(B.Li

k) is tCL , the time to read the data out of the row 
buffer.  If a memory request results in a bank conflict, 
then the request’s bank service requirement is tRP + tRCD 
+ tCL , the time to precharge the bank, open the row, 
and read the data out of the row buffer.  A request’s 
bank service requirements are not known until the 
memory scheduler schedules the request to begin ser-
vice.  Table 3 shows the memory requests’ bank ser-



vice requirements based on the bank state at the time 
the request begins service.  All memory requests re-
quire the same channel service (C.Li

k = BL/2). 

Table 3: Bank Service B.Li

k Based on Bank State 
Bank State B.Li

k 
Open - bank conflict tRP + tRCD + tCL 
Closed tRCD + tCL 
Open - row buffer hit tCL 

 

There are two ways to resolve the bank service dis-
crepancy.  The first solution is to assume at arrival time 
an average bank service requirement for all memory 
requests, and use the average service requirement to 
calculate the request’s virtual finish-time and update 
the VTMS finish-time registers.  However, this solu-
tion is likely to penalize threads that have lower aver-
age bank service requirements, e.g., threads with a 
large number of open row buffer hits.  The second so-
lution is to calculate the virtual finish-times of memory 
requests just before they are scheduled to begin service 
[1], i.e., when a memory request becomes a thread’s 
oldest first-ready request, and update the VTMS re-
source finish-time registers after the request has been 
issued to the memory system.  This approach more 
accurately accounts for the amount of bank service 
threads actually consume, and consequently, the re-
quest’s virtual finish-times are more accurate – this is 
the implementation we evaluate in the Evaluation Sec-
tion.  The disadvantage of this implementation is a 
thread’s oldest first-ready request may not be the 
thread’s oldest memory request, therefore, requests 
may receive virtual finish-times out-of-order.  Despite 
the reordering, virtual finish-times still respect the 
bandwidth constraints of a thread’s private VTMS. 

  In our implementation, VTMS finish-time registers 
are updated whenever a SDRAM command is issued to 
the memory system.  The bank update function is 
shown in Equation 8.  The VTMS channel register C.Ri 
is only updated when read and write commands are 
issued, and it is updated after the bank register Bj.Ri.  
The channel register update function is shown in Equa-
tion 9. 

 

[8]  Bj.Ri = max { ai
k  , Bj.Ri } + Bcmd .L i

k   / φi  
(from Equation 3 and 4) 

[9]  C.Ri = max { Bj.Ri , C.Ri } + Ccmd .L i
k  / φi   

(from Equation 5 and 6) 
 

The bank Bcmd .L i
k and channel Ccmd .L i

k service 
times for each type of SDRAM command are summa-
rized in Table 4.  The service times for activates, 
reads¸ and writes follow from Section 4.1 Table 6.  
Precharge service time accounts for the additional 
bank service time between issuing an activate and a 
precharge that is not accounted for by the activate, 
read, or write commands.   

Table 4: Update Service Times 
SDRAM Command Bcmd .L i

k Ccmd .L i
k 

Precharge tRP + (tRAS - tRCD - tCL) n/a 
Activate tRCD n/a 
Read tCL BL/2 
Write tWL BL/2 

 

The FQ scheduler’s hardware is similar to the base-
line FR-FCFS scheduler except for the VTMS hard-
ware.  VTMS registers can be stored efficiently in 
SRAM-based register files.  After the thread’s service 
share registers are initialized, the bank virtual service 
times (e.g. Bj.Li

k /φi and C.Li
k /φi) are constants and do 

not have to be recomputed each time they are used.  
Therefore, the update logic and finish-time logic con-
sists of a few adders and muxes.  Furthermore, a single 
copy of the update logic can be shared by all threads 
because only one thread’s registers can be updated in a 
single cycle. 

3.3. Preventing Priority Inversion 
Priority inversion blocking time is the time that low 

priority requests block a higher priority request; it has 
the potential to significantly degrade the FQ memory 
scheduler’s QoS [20].  With first-ready scheduling, the 
main source of priority inversion blocking time is bank 
priority chaining, e.g., when a sequence of low priority 
row buffer hits prevent a higher priority request from 
receiving service.  To prevent bank priority chaining, a 
bank scheduler has to select the request with the high-
est priority and wait for the request’s first SDRAM 
command to become ready; otherwise this command 
may never become ready.   However, scheduling the 
highest priority request first without accounting for the 
state of the SDRAM can decrease memory system 
utilization.  For example, a low priority request arrives 
at a memory bank and activates its row.  Then, a cycle 
after the low the row is activated, a higher priority re-
quest arrives at the same bank.  A bank priority policy 
that schedules the request with the highest priority and 
waits for its first SDRAM command to become ready 
will wait tRAS -1 cycles before the higher priority re-
quest’s precharge command becomes ready, i.e., 
DDR2 timing constraints (see Table 6) require tRAS 
cycles between issuing an activate and a precharge.  
During this time the low priority request could have 
completed its memory transaction without adding to 
the latency of the higher priority request. 

In general, a memory scheduler that reduces priority 
inversion blocking time decreases data bus utilization.  
Consequently, we give the FQ bank scheduler a con-
figurable bound x on priority inversion blocking time.  
The FQ bank scheduler’s priority policy is as follows.  
When the bank is closed, during the first x memory 
cycles after an activate command, the bank scheduler’s 
priority policy is the same policy presented in the pre-



vious section.  After the bank has been active for x 
cycles, the bank scheduler selects the request with the 
earliest virtual finish-time and waits for its first 
SDRAM command to become ready.  In this paper, we 
use tRAS for the value of x.  This is a tight bound on 
priority inversion blocking time, which offers better 
QoS, but may decrease data bus utilization. 

The FQ memory scheduler offers threads a high de-
gree of QoS.  However, strictly speaking, the FQ 
memory scheduler does not guarantee QoS since a 
thread’s memory resource requirements may change 
when the thread’s memory requests are interleaved 
with another thread’s memory requests, e.g., a memory 
request that would have been a row buffer hit on a pri-
vate memory system may cause a bank conflict on a 
shared memory system.   Providing strict QoS guaran-
tees would require pessimistic assumptions that are 
unsuitable and unnecessary for high-performance com-
puting [7][11][21]. 

4. Evaluation 

4.1. Methodology 
The FQ memory scheduler allows arbitrary frac-

tions of memory system bandwidth to be allocated to 
an individual processor or a cluster of processors.  
However, in this paper our target system is a general 
purpose desktop or laptop with off-the-shelf software.  
In this scenario, processors on the CMP are statically 
allocated an equal share φi of the memory system, e.g., 
in a two processor CMP each processor is allocated φi 
= ½ of each memory resource. We show that the FQ 
memory scheduler offers threads a high degree of QoS 
and that QoS in the form of performance isolation is 
essential. Providing QoS in other scenarios (e.g. real-
time multimedia applications, servers with scientific or 
commercial multithreaded workloads, logical partition-
ing of servers) are topics for future research. 

We use a detailed structural simulator that was de-
veloped at IBM Research.  The simulator has a struc-
ture similar to ASIM [6], and the model is defined at 
an abstraction level slightly higher than a latch-level 
model.  Our model partitions processor logic into pipe-
lines – each pipeline consists of multiple pipeline 
stages.  The simulator models the finite capacity and 
bandwidth of each data flow path, buffer, and bus in a 
typical processor.  The model’s default configuration is 
of a single processor IBM 970 system.  In its default 
configuration, the model’s performance projections 
have been validated to be ± 5% of the 970 design 
group’s latch-level processor model.  In this paper we 
use an alternative processor configuration to avoid 
some 970-specific design constraints.  The primary 
differences are: 1) a monolithic reorder buffer instead 
of the 970’s instruction dispatch groupings, 2) a uni-

fied issue queue instead of the 970’s distributed issue 
queue, and 3) a cache configuration that is more repre-
sentative of modern desktop and laptop processors than 
the 970’s cache configuration  For example, we use 64 
byte line sizes – the 970’s 128 byte lines increase 
memory bandwidth contention and amplify the effects 
of the FQ scheduler – 64 byte lines result in better 
baseline performance.   

The simulator has a cycle accurate model of an on-
chip memory controller attached to a DDR2-800 mem-
ory system.  The memory controller maps physical 
addresses to ranks and banks using an XOR address 
mapping [12].  The system configurations are in Table 
5.  The SDRAM memory system configuration was 
chosen to be representative of most modern desktop 
and laptop systems.  The DDR2-800 timing constraints 
[14] are in Table 6. 

Table 5: 4 GHz Processor – System Configuration 
Issue Buffer 64 entries 
Issue Width 8 units (2 FXU, 2 LSU, 2 FPU, 1 

BRU, 1 CRU) 
Reorder Buffer 128 entries 
Load / Store Queues 32 entry load reorder queue, 32 

entry store reorder queue 
I-Cache 32KB private, 4-ways, 64 byte 

lines, 2 cycle latency, 8 MSHRs 
D-Cache 32KB private, 4-ways, 64 byte 

lines, 2 cycle latency, 16 MSHRs 
L2 Cache 512KB private, 8-ways, 64 byte 

lines, 12 cycle latency, 16 store 
merge buffer entries, 32 transac-
tion buffer entries 

Memory Controller 16 transaction buffer entries per 
thread, 8 write buffer entries per 
thread, closed page policy 

SDRAM Channels 1 channel 
SDRAM Ranks 1 rank 
SDRAM Banks 8 banks 

Table 6: Micron DDR2-800 timing constraints (meas-
ured in DRAM address bus cycles) 
tRCD Activate to read 5 cycles 
tCL Read to data bus valid 5 cycles 
tWL Write to data bus valid 4 cycles 
tCCD CAS to CAS (CAS is a read or a 

write) 
2 cycles 

tWTR Write to read 3 cycles 
tWR Internal write to precharge 6 cycles 
tRTP Internal read to precharge 3 cycles 
tRP Precharge to activate 5 cycles 
tRRD Activate to activate (different 

banks) 
3 cycles 

tRAS Activate to precharge 18 cycles 
tRC Activate to activate (same bank) 22 cycles 
BL/2 Burst length (Cache Line Size / 

64 bits) 
4 cycles 

tRFC Refresth to activate 51 cycles 
tRFC Max refresh to refresh 28,000 cycles 



 

To isolate the effects of sharing main memory, the 
SDRAM memory system is the only shared resource in 
the system (i.e., the processor cores have private 
caches).  However, in practice, the FQ memory sched-
uler can be implemented with shared caches and would 
likely work well with fair sharing / QoS caches; see 
Kim et al. [10].  The memory controller’s transaction 
buffer and write buffer are statically partitioned.  Each 
thread is allocated 16 transaction buffer entries, and 8 
write buffer entries.  The memory controller NACKs 
memory requests from a thread when that thread’s 
buffer entries are full, thus applying back pressure to 
that thread independent of the other threads on the 
CMP.  A more flexible partitioning of memory control-
ler’s buffers is possible and is a topic for future re-
search. 

We use the SPEC 2000 benchmark suite because it 
is the best available source of heterogeneous applica-
tions.  We use twenty 100 million instruction SPEC 
benchmark sampled traces that have been verified to be 
statistically representative of the entire SPEC applica-
tion [8]. 

We use data bus utilization as a measure of a 
thread’s “aggressiveness” in the memory system, al-
though we acknowledge that there are other factors that 
might contribute to aggressiveness (e.g., average burst 
size, row hits, bank parallelism, etc.).  Figure 4 illus-
trates the data bus utilization of the twenty SPEC traces 
when running alone on a single processor with the FR-
FCFS memory scheduler.  Throughout the results sec-
tion, benchmarks are ordered by their data bus utiliza-
tion; the highest utilization (the most aggressive) is on 
the left. 
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Figure 4: Data Bus Utilization of individual bench-
marks running alone 

4.2. Results 
The first set of results illustrates the effect of co-

scheduling a subject thread with a very aggressive 
background thread.  This set of experiments stresses 
the FQ memory scheduler’s ability to isolate the per-
formance of the subject thread from the background 
thread.  Based on data given in Figure 4 we chose art, 
the most aggressive benchmark, to be the background 
thread and simulated art with every other benchmark 
as the subject thread.  Figure 5 shows the normalized 
IPC, average memory read latency, and data bus utili-

zation of the subject thread listed on the x-axis.  FR-
FCFS is the first-ready first come first serve (earliest 
arrival time first) scheduling algorithm.  FR-VFTF is 
the first-ready virtual finish-time first scheduling algo-
rithm; this configuration uses first-ready scheduling 
without the FQ bank scheduling algorithm described in 
Section 3.3.  FQ-VFTF is the FQ memory scheduler.  
It prioritizes requests VFTF and uses the FQ bank 
scheduling algorithm to prevent priority chaining.  IPC 
is normalized with respect to the same benchmark run-
ning alone on a private memory system with the timing 
constraints in Table 6 time scaled by a factor of two, 
i.e., 1 / φi.  We refer to this system as the baseline sys-
tem.  An ideal QoS memory scheduler would have no 
benchmark with a normalized IPC less than one.  Data 
bus utilization is measured with respect to peak data 
bus bandwidth.  
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Figure 5: A subject thread’s normalized IPC (top), 
average read latency (middle), and data bus utiliza-
tion (bottom) 

Figure 5 illustrates that an aggressive background 
thread can have a significant affect on a less aggressive 
subject thread.  With the FR-FCFS memory scheduler, 
the IPC of the subject thread is often less than one half 
the IPC of the baseline system, and the harmonic mean 
of normalized IPC is .62.  The decrease in IPC is 
caused by the dramatic increase in the subject thread’s 
average memory read latency (on average 930 proces-
sor cycles).  In contrast, the memory system’s 
unloaded read latency is 180 cycles.   This result sup-
ports the importance of memory system bandwidth and 
the need to control memory interference. 

In Figure 5, the FR-VFTF scheduler’s results show 
that the VFTF priority algorithm is an important com-



ponent of the FQ memory scheduler, but by itself it is 
not enough to provide QoS.  With the FR-VFTF 
scheduler, the normalized IPC is less than one (i.e., 
below the QoS objective) for 14 out of 19 workloads, 
and in the case of twolf and vpr, normalized IPC is less 
than .6. 

The FQ memory scheduler (FQ-VFTF) provides a 
high degree of QoS, i.e., it offers the subject thread 
QoS on 18 out of 19 workloads. The one bencmark, 
vpr, where the FQ memory scheduler does not provide 
QoS has a normalized IPC less than one because it has 
little memory parallelism.  This characteristic makes 
vpr very sensitive to the memory system’s preemption 
latency, i.e., the time to finish or preempt a lower pri-
ority request in order to service a higher priority re-
quest.  Despite this, vpr’s normalized IPC with the FQ 
memory scheduler is .94, which is much better than 
vpr’s normalized IPC with FR-FCFS (.48) or FR-
VFTF (.58).  In addition, with the FQ memory sched-
uler, the data bus utilization of the subject thread tracks 
the data bus utilization of the same application when 
running alone on its own memory system (Figure 4).  
Comparing FR-VFTF with the FQ memory scheduler 
(FQ-VFTF) illustrates the effects of first-ready priority 
chaining and the FQ bank scheduling algorithm’s ef-
fectiveness.  The FR-VFTF scheduler has no mecha-
nism to control priority chaining.  Its average normal-
ized IPC .87.  The FQ memory scheduler (FQ-VFTF) 
scheduler uses the FQ bank scheduling algorithm (Sec-
tion 3.4) to limit the effects of priority chaining and its 
average normalized IPC is 1.10, an improvement of 
26%. 

Figure 6 shows the background thread’s normalized 
IPC; the subject thread’s benchmark is listed on the x-
axis.  This figure illustrates that the FQ memory 
scheduler provides the background thread QoS and 
efficiently distributes excess memory service to the 
background thread.  Starting from the right, the first six 
subject threads demand more than half of the memory 
system bandwidth (see Figure 4).  For these workloads 
the actual memory system bandwidth is divided 
evenly.  Therefore, for the first six workloads the nor-
malized IPC of the background thread is very close to 
one.  Beyond the first six benchmarks (from the left), 
the normalized IPC of the background thread increases 
gradually as the background thread receives more ex-
cess service. 

In addition to providing QoS, the FQ scheduler 
eliminates negative memory interference, and this sig-
nificantly improves overall system performance.  The 
top graph in Figure 7 shows the performance im-
provement of the FR-VFTF and FQ memory schedul-
ers when compared with FR-FCFS as the baseline.  
The performance metric used in Figure 7 is the har-
monic mean of the co-scheduled threads’ normalized 

IPCs [13].  Another important memory scheduler per-
formance metric is memory system throughput (meas-
ured as data bus and bank utilization by the bottom two 
graphs of Figure 7).  Because memory system band-
width is a critical resource for future CMPs, it is im-
portant that the memory scheduler use it efficiently. 
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Figure 6: Normalized IPC of background thread 

The performance improvement graph in Figure 7 il-
lustrates that an overly aggressive application can sig-
nificantly degrade the performance of the entire sys-
tem, and, in such cases, providing QoS in the form of 
performance isolation increases system performance.  
For this experiment, the FQ memory scheduler (FQ-
VFTF) has an average performance improvement of 
31% (up to 76%). 
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Figure 7: Aggregate performance improvement 
(top), aggregate data bus utilization (middle), and 
aggregate bank utilization (bottom) 

  The data bus utilization graph in Figure 7 show 
that the FR-FCFS effectively optimizes data bus utili-
zation.  This result supports our decision to use FR-
FCFS as the baseline and as the basis of the FQ mem-
ory scheduler.  Overall, FR-VFTF and FQ-VFTF also 
have good data bus utilization.  On average their data 
bus utilizations are 94% and 92%, respectively.  How-



ever, there are some benchmarks (e.g., swim and 
mgrid) that have a considerable decrease in data bus 
utilization – up to 10%.  The decrease in data bus utili-
zation is caused by an increase in bank conflicts, which 
is illustrated by the increase in aggregate bank utiliza-
tion.  The increase in bank utilization is caused partly 
by the VFTF priority algorithm and partly by the FQ 
bank scheduling algorithm.  In general, an increase in 
bank utilization is an unavoidable side effect of offer-
ing threads QoS.  This result emphasizes the impor-
tance of bank bandwidth in future CMP memory sys-
tems. 

The second set of results shows the benefits of FQ 
scheduling in a typical desktop scenario – a four CMP 
system running heterogeneous applications that have a 
range of memory behaviors.  To construct the work-
loads, we combined every fourth benchmark (in order 
of data bus utilization), e.g. the first workload consists 
of the 1st, 5th, 9th, and 13th benchmarks (art, lucas, apsi, 
and ammp).  We chose to exclude the last four bench-
marks since they have very low memory system utili-
zation; i.e., sixtrack, perlbmk, and crafty utilize less 
than 2% of the memory bandwidth.   

Figure 8 shows the normalized IPC and data bus 
utilization of the four processor workloads.  The work-
loads are ordered by memory system demand with the 
most demanding workload on the left.  The bench-
marks within a workload are ordered by the threads’ 
aggressiveness with the most aggressive thread on the 
left.  The baseline for this experiment is a single proc-
essor system with a private memory system time scaled 
by a factor of four.  Normalized IPC is normalized to 
the benchmark running alone on the baseline system. 
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Figure 8: Normalized IPC (top) and data Bus Utiliza-
tion of individual threads in a four processor CMP 
system (bottom) 

The leftmost workload in Figure 8 (art, lucas, apsi, 
and ammp) has the highest aggregate memory band-
width demand, each thread demands over 25% of the 
memory bandwidth, and this workload’s constituent 

benchmarks have the widest range of memory demands 
(see Figure 4).  With the FR-FCFS memory scheduler, 
the most aggressive thread (art) receives the most 
memory system service and has the greatest normal-
ized IPC, while the two least aggressive benchmarks 
(gap and vpr) receive the least memory system service 
and have a normalized IPC less than one (below the 
QoS objective).  With the FQ memory scheduler (FQ-
VFTF) the opposite is true; the least aggressive thread 
has the greatest normalized IPC, and all threads have a 
normalized IPC greater than one.  The FQ memory 
scheduler’s (FQ-VFTF) data bus bandwidth distribu-
tion (bottom graph of Figure 8) for this workload is 
nearly ideal; the ideal distribution is a uniform distribu-
tion.  Even with the FQ scheduler, more aggressive 
threads still tend to get slightly more memory band-
width.  With general purpose processors this appears to 
be unavoidable.  Threads that are aggressive with re-
spect to the memory system tend to have more memory 
level parallelism, which allows them to generate more 
memory requests when given less memory service.  
This result supports our choice of fairness, i.e., giving 
excess memory service to threads that have been less 
aggressive in the past. 

The effect of the FQ memory scheduler on the re-
maining three workloads is not as clear as the first 
workload, mainly because the benchmarks within the 
last three workloads have a narrower range of memory 
bandwidth demands and not all of the benchmarks de-
mand their full share of the memory system (i.e., gzip 
and vpr).  Two important trends for the last three work-
loads are: 1) the memory scheduler has a significant 
affect on the individual benchmarks’ performances and 
2) the FQ memory scheduler more evenly distributes 
memory bandwidth when compared with FR-FCFS.   

The FQ memory scheduler’s performance im-
provement for first, second, third, and fourth work-
loads (from the left) is 41%, -2%, -2%, and 14% re-
spectively.   On the second and third workloads the 
overall system performance is virtually unchanged (we 
consider ± 2% to be within the error margin of the ex-
periment), however, the normalized IPCs of the indi-
vidual threads are significantly affected.  Overall, the 
FQ memory scheduler improves the aggregate per-
formance of all the workloads by 14%. 

To provide further insight we compare each thread’s 
actual data bus utilization (from Figure 8) with its tar-
get bus utilization.  A thread’s target data bus utiliza-
tion is the smaller of 1) its data bus utilization when 
running alone (solo) on the CMP and 2) the sum of its 
allocated service share plus its fair share of excess 
memory bandwidth.  For a four processor CMP a 
thread’s target data bus utilization is: min{ <solo data 
bus utilization> , 25% + <fair-share of excess band-
width> }.  A threads’ solo data bus utilization is taken 



from Figure 4.  A thread’s fair-share of excess band-
width is determined by incrementally adding equal 
portions of excess service to each thread that demands 
service until all excess service is allocated or there are 
no threads that demand more service (when a thread’s 
target data bus utilization equals its solo data bus utili-
zation).  On average, this is the fair-share to which the 
FQ memory scheduler’s fairness policy will ideally 
converge. 

Figure 9 shows the normalized read latency versus 
its normalized data bus utilization for all the threads in 
Figure 8.  Read latency is normalized to the read la-
tency when a benchmark is run alone and data bus 
utilization is normalized to the application’s target data 
bus utilization – both are derived from the results col-
lected for Figure 4.  With an ideal memory scheduler, 
all threads would have a normalized data bus utiliza-
tion of one.  The vertical line in Figure 9 is a visual aid 
to illustrate the ideal. 

 

Read Latency vs. Data Bus Utilization

1

2

3

4

0 1 2 3
Normalized Data Bus Utilization

FR-FCFS
FQ-VFTF

N
or

m
al

iz
ed

 R
ea

d 
La

nt
ec

y

 
Figure 9: Normalized Latency vs. Normalized Data 
Bus Utilization of individual threads 

The FR-FCFS memory scheduler’s normalized la-
tency and normalized data bus utilization show no dis-
cernable trend. The average normalized data bus utili-
zation is .88, has a range from .28 to 2.1, and a vari-
ance of .20.   

In contrast, the FQ memory scheduler’s (FQ-VFTF) 
normalized data bus utilization is clustered slightly to 
the left of the ideal vertical line at one.  For FQ-VFTF, 
the average normalized data bus utilization is .88, has a 
range from .73 to .98 and a variance of .0058. 

The average normalized data bus utilization is a 
metric of the scheduler and multithread workload’s 
data bus efficiency, i.e., it is a workload weighted aver-
age of the data bus utilization.  FR-FCFS and FQ-
VFTF have the same data bus efficiency (.88), which is 
approximately the same as the average data bus utiliza-
tion in Figure 8.  A data bus efficiency of less than one 
causes the FQ-VFTF scheduler’s cluster of normalized 
data bus utilization to be slightly to the left of the ideal 
vertical line. 

Another important observation from Figure 9 is the 
increasing relationship between the FQ memory 
scheduler’s (FQ-VFTF) normalized data bus utilization 
and normalized read latency.  This result illustrates 
again that aggressive threads tend to get slightly more 

bandwidth than less aggressive threads.  Furthermore, 
the increasing trend illustrates that less aggressive 
threads which receive less memory bandwidth have a 
lower normalized latency, e.g., the cluster around .8 
normalized data bus utilization and 1.7 normalized 
read latency.  In contrast, more aggressive threads have 
a much higher normalized read latency, e.g., the cluster 
around .98 normalized data bus utilization and 3.5 
normalized read latency.  This result further supports 
the FQ scheduler’s fairness policy.  A formal valida-
tion of the FQ scheduler’s fairness policy is a topic for 
future work. 

5. Summary and Conclusions 
Uncontrolled sharing of memory system resources 

can cause destructive interference between threads.  
We have shown that the effect on performance due to 
memory sharing alone can be significant and a thread 
with aggressive memory system usage can starve other 
threads, which can make the OS scheduling policies 
less effective. 

Current memory scheduling policies that are opti-
mized for single-thread environments are not well 
suited for multi-thread workloads.  FR-FCFS, the best 
existing single thread technique, when used in a CMP, 
performs poorly because its FCFS priority algorithm 
gives unfair advantage to threads with frequent long 
bursts of memory access patterns and its FR scheduling 
policy is subject to long priority inversion blocking 
times.   

We proposed the Fair Queuing memory scheduler.  
The basis of the FQ memory scheduler is fair queuing 
algorithms from computer networking research.  The 
QoS objective of the FQ scheduler is to ensure each 
thread receives its allocated fraction of the memory 
system regardless of the load placed on the memory 
system by other threads.  In addition, the FQ scheduler 
fairly distributes excess memory system service to 
threads that have consumed less service in the past.   

We showed the FQ memory scheduling algorithm 
offers threads QoS and can be incorporated in existing 
memory schedulers with low implementation complex-
ity.  Furthermore, we showed that reducing the destruc-
tive interference due to memory system sharing im-
proves system performance.  On a four processor CMP 
running workloads that have a mix of applications with 
a range of memory bandwidth demands, the proposed 
memory scheduler provides QoS to all of the threads in 
all of the workloads, improves system performance by 
14% on average (up to 41%) and reduces the variance 
in a thread’s normalized bandwidth utilization from .2 
to .0058. 
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