
Fair Queuing Memory Systems

Kyle J. Nesbit, Nidhi Aggarwal, James Laudon†, James E. Smith

University of Wisconsin – Madison
Department of Electrical and Computer Engr.

{nesbit, nidhia, jes}@ece.wisc.edu

†Sun Microsystems, Inc.
james.laudon@sun.com

Abstract

We propose and evaluate a multi-thread memory

scheduler that targets high performance CMPs. The
proposed memory scheduler is based on concepts
originally developed for network fair queuing schedul-
ing algorithms. The memory scheduler is fair and pro-
vides Quality of Service (QoS) while improving system
performance. On a four processor CMP running
workloads containing a mix of applications with a
range of memory bandwidth demands, the proposed
memory scheduler provides QoS to all of the threads in
all of the workloads, improves system performance by
an average of 14% (41% in the best case), and reduces
the variance in the threads’ target memory bandwidth
utilization from .2 to .0058.

1. Introduction
Chip multiprocessors (CMPs) will likely form the

foundation for a wide range of future computer sys-
tems. CMPs allow software threads to share memory
system resources with the objectives of efficient re-
source usage and the accommodation of disparate re-
source requirements across heterogeneous applications.
Of the resources commonly shared, off-chip memory
system resources may have the most significant long-
term effect on CMP system performance [2]. Unman-
aged sharing of these resources can affect system per-
formance in unpredictable ways [10][22] and lead to
destructive interference among threads. Destructive
interference can result in poor system performance and
make OS scheduling policies less effective.

We consider a class of memory scheduling algo-
rithms that service memory requests on a First-Ready
First-Come-First-Serve (FR-FCFS) basis [8][17][18]
(described in Section 2.2), which has been shown to be
a good all-round scheduling algorithm that efficiently
optimizes memory bandwidth utilization for single-
thread general purpose applications [18][8]. In a multi-
thread system, however, naively using FR-FCFS
scheduling allows an aggressive thread to severely
degrade the performance of other threads with which it
is co-scheduled. Figure 1 illustrates this phenomenon

– it shows performance measured in instructions per
cycle (IPC) and memory latency for the SPEC bench-
mark vpr on a dual processor CMP when vpr is run-
ning alone, co-scheduled with benchmark crafty, and
co-scheduled with art. The only shared system re-
source is the SDRAM memory system, i.e., each proc-
essor has its own private caches (system details are
given in Section 4.1). When running alone, vpr con-
sumes a modest 14% of the system’s peak data bus
memory bandwidth. When combined with crafty, an-
other benchmark with modest memory bandwidth
utilization, there is no observable change in vpr’s per-
formance. However, when running with benchmark
art, vpr’s average memory latency goes from 150 cy-
cles (when running alone) to 1070 processor cycles.
The increase in latency translates to a 60% loss of IPC
performance. This example illustrates the effect that
memory sharing can cause, and it highlights QoS (in
the form of performance isolation) as a primary goal of
multi-thread memory scheduling policies.

IPC

0
0.5

1

vpr vpr
w/crafty

vpr
w/art

Memory Latency

0
600

1200

vpr vpr
w/crafty

vpr
w/art

Figure 1: Memory latency and IPC for benchmark
vpr when it is co-scheduled with crafty and with art

In this paper, we present a multithread memory
scheduler that specifically targets general purpose, high
performance CMP systems. The proposed memory
scheduler is based on concepts from network fair queu-
ing (FQ) [1][17][20][24]. The FQ memory scheduler
models each thread as if it were running in a private
virtual time memory system (VTMS). In a thread’s
VTMS, the memory system’s timing characteristics are
time scaled in proportion to the thread’s allocated share
of the memory system, e.g., the VTMS CAS delay (tCL)
of a thread that is allocated one half of the memory
system is doubled. Within this framework, the pro-
posed memory scheduler provides QoS – each hard-
ware thread is offered its allocated share of aggregate
memory system bandwidth regardless of the load
placed on the memory system from other threads [22].

The proposed memory scheduler is fair – any excess
memory bandwidth is distributed evenly to threads that
have consumed less excess bandwidth in the past. Fur-
thermore, the proposed memory scheduler improves
system performance. On a two processor CMP run-
ning workloads that stress the memory system, the
proposed FQ memory scheduler provides QoS on 18
out of 19 workloads, improves system performance by
31% on average (up to 76%) – and provides good
memory system utilization – an average of 92% of the
peak data bus bandwidth. On the one workload where
the FQ memory scheduler does not satisfy the QoS
objective, the performance is within 6% of the objec-
tive. On a four processor CMP running workloads that
have a mix of applications with a range of memory
bandwidth demands, the proposed memory scheduler
provides QoS to all of the threads in all of the work-
loads, improves system performance by 14% on aver-
age (up to 41%), and reduces the variance in the
threads’ target bandwidth utilization (defined in Sec-
tion 4.2) from .2 to .0058.

2. Background

2.1. SDRAM Memory Systems
SDRAM memory systems are organized as a set of

ranks that consist of independent memory banks. Each
bank consists of a two-dimensional array of memory
cells. An activate command moves a row from the
memory array into the row buffer, thereby opening the
row. Once a row is open, any number of read and
write commands can be issued to transfer data into and
out of the row. DDR2 SDRAMs transfer data on both
edges of the clock. A precharge command closes a
row, restores it back to the memory array, and pre-
charges the bank for the next row activation.
Throughout this paper we refer to read and write
commands as CAS commands, and activate and pre-
charge commands as RAS commands.

DDR2 timing constraints dictate the minimum and
maximum time between SDRAM commands. For ex-
ample, Micron’s DDR2-800 timing constraints [14] are
summarized in Table 6 in the Evaluation Section. The
DDR2 burst length (BL) is the number of data bus cy-
cles required to transfer an entire cache line. A more
in-depth description of SDRAM memory systems can
be found in Cuppu et al. [5].

2.2. Memory Controllers
A memory controller acts as the interface between

on-chip processors and caches, and off-chip SDRAM,
i.e., a memory controller translates memory requests
into sequences of SDRAM commands. Figure 2 illus-
trates the basic structure of a high-performance mem-
ory controller [18], which consists of a memory sched-

uler, transaction buffer, a write buffer, and a read
buffer. The transaction buffer holds each memory re-
quest’s state, e.g., request type and request identifier.
The write buffer temporarily holds cache lines being
written to memory, and the read buffer temporarily
holds cache lines read from memory while they are in
transit to the requesting processor’s cache.

The memory scheduler (shown in the center of Fig-
ure 2) is the core of the memory controller. The
scheduler reorders and interleaves memory requests in
order to optimize memory latency and memory band-
width utilization.

…

Bank 1
Scheduler

Bank 1
Requests

Bank n
Requests

Cache Line
Write Buffer

Channel
Scheduler

Bank n
Scheduler

Cache Line
Read Buffer

Transaction
Buffer

Arrival Time Assignment

Processor Data Bus Processor Data Bus

SDRAM Data Bus SDRAM Data BusSDRAM Address Bus

…
Thread 1
Requests

Thread m
Requests

Control PathData Path Request / Command Path
Figure 2: Memory Controller

A high-performance memory scheduler has a logi-
cal priority queue and a bank scheduler for each
SDRAM bank in the memory system. These queues
can be implemented as a single hardware structure,
however. The bank scheduler selects the pending re-
quest with the highest priority and generates a se-
quence of SDRAM commands to read (write) the re-
quest’s data from (to) memory. The bank scheduler
also tracks the bank’s timing constraints to ensure that
the sequence of SDRAM commands conforms to the
DDR2 specification. When an SDRAM command is
ready (with respect to the bank’s timing constraints),
the bank scheduler sends the command to the channel
scheduler.

The channel scheduler scans the banks’ ready com-
mands and issues the command with the highest prior-
ity. When a command is issued, the channel scheduler
ACKs the appropriate bank scheduler, and the bank
scheduler updates its bank state machine appropriately.
The channel scheduler also tracks the state of the ad-
dress bus, data bus, and ranks to ensure there are no
channel scheduling conflicts and that no rank timing
constraints (e.g. tRRD in Table 6) are violated.

Figure 2 illustrates a memory scheduler that em-
ploys the commonly used First-Ready First-Come-
First-Service (FR-FCFS) memory scheduling algo-

rithm [8][17][18]. FR-FCFS bank and channel sched-
ulers use the same priority policy. The best FR-FCFS
policy (as presented by Rixner et al. [19]) has three
priority levels: 1) prioritize ready commands over
commands that are not ready, 2) prioritize CAS com-
mands over RAS commands, and 3) prioritize the
command with the earliest arrival time (i.e. the time
memory request arrived at the memory controller). For
example, the oldest ready CAS command has the high-
est priority. Prioritizing first-ready CAS commands
exploits already open rows and is essential for utilizing
the data bus bandwidth efficiently.

We use a fairly aggressive implementation of the
FR-FCFS algorithm as a baseline for performance
comparisons. Less aggressive (and lower performing)
designs may use separate buffers for read and write
memory requests and may employ a FIFO queue to
ensure SDRAM timing constraints are met [8]. With
such a design, it may be necessary to approximate FR-
FCFS [8].

A scheduling policy can have a closed row policy or
an open row policy. A closed row policy closes the
row buffer after all pending accesses to the row have
been completed, and an open row policy leaves the row
buffer open. Throughout this paper, we use a closed
row policy since it has been shown to perform better
than an open row policy in multiprocessor systems
[15].

The FR-FCFS memory scheduler as just described
provides good memory system utilization (as our re-
sults will show), but it does not provide QoS in a
multi-threaded system. There are two main reasons for
this. First, FCFS gives unfair priority to threads that
have frequent, long bursts of cache misses because a
long burst will tend to capture a long sequence of
FCFS slots, thereby adding considerably to the latency
of other requests that arrive (slightly) later. Second, FR
scheduling suffers long priority inversion blocking
times due to priority chaining [20]. Priority chaining
occurs when a sequence of low priority (later arriving)
SDRAM commands prevent high priority (earlier ar-
riving) commands from becoming ready. For example,
a stream of row buffer hits will become ready and will
be serviced before earlier arriving requests that are to
the same bank, but a different row. Overall, FR-FCFS
scheduling allows high-demand, bursty threads to pre-
vent other threads from receiving memory system ser-
vice.

There are relatively few studies of high-
performance multi-thread memory schedulers. Zhu et
al. [24] study the effects of memory scheduling in si-
multaneous multithreaded (SMT) processors. Their
scheduling techniques primarily focus on scheduling
requests based on the threads’ occupancies in shared
SMT resources, i.e., the reorder buffer (ROB), issue

queue, and miss status handling registers (MSHRs).
Natarajan et al. [15] study the performance impact of
basic memory scheduling techniques (e.g., closed vs.
open page policies and in-order vs. out-of-order sched-
uling) in the context of multiprocessors.

QoS memory schedulers have been proposed for
embedded systems and system-on-a-chip (SoC)
[7][11][21]. In general, these memory schedulers sac-
rifice flexibility and memory system utilization in or-
der to achieve hard real-time guarantees. For example,
these schedulers often rely on knowing memory access
patterns at system design time, which makes them un-
suitable for general purpose high-performance comput-
ing.

2.3. Network Fair Queuing
Network FQ scheduling algorithms offer guaranteed

service to simultaneous network flows over a shared
network link [1][16][19][23]. Most FQ algorithms
approximate an ideal general processor sharing (GPS)
server [16]. An ideal GPS server has multiple input
buffers, each of which is associated with a different
flow and each flow has an allocated service share of
the network link. During any time interval when there
are backlogged buffers, the ideal GPS algorithm ser-
vices all backlogged buffers simultaneously in propor-
tion to their corresponding service share.

GPS provides the network flows Quality of Service
(QoS) and is fair. A scheduling algorithm provides
QoS if each flow receives its allocated service share,
regardless of the load placed on the link by other flows.
A fair network scheduling algorithm distributes excess
service in portion to the flows’ service shares regard-
less of the amount of link service a flow has consumed
in the past

In an FQ scheduling algorithm a flow i is given a
service share φi expressed as a fraction of the total link
capacity. FQ scheduling algorithms often operate
within a virtual time framework where the virtual ser-
vice time is equal to the network packet’s length Li

k
(expressed in units of link capacity) time scaled by the
reciprocal of its service share φi .

Each packet pi
k (kth packet of ith flow) has a virtual

start-time Si
k and a virtual finish-time Fi

k. The virtual
start-time (Equation 1) of a packet is the maximum of
its virtual arrival time ai

k and the virtual finish-time of
the previous packet. A packet’s virtual finish-time
(Equation 2) is the sum of its virtual start-time and its
virtual service time.

[1] Si

k = max {ai
k , Fi

k-1 }
[2] Fi

k = Si
k + Li

k / φi

Network FQ scheduling algorithms use a virtual
clock [1][23] to determine the virtual arrival time ai

k.
In general, a virtual clock algorithm advances the vir-

tual clock at a faster rate when fewer network flows are
backlogged. A virtual clock is necessary to approxi-
mate the GPS fairness policy; the GPS fairness policy
is unattainable since a network link cannot simultane-
ously service more than one packet at a time. An im-
portant characteristic of a scheduling algorithm’s fair-
ness is the extent to which a flow receiving excess ser-
vice in a given time period will be penalized in later
time period(s) [1][23].

Given the virtual start- and finish-times, there are a
number of ways an FQ scheduling algorithm can pri-
oritize packets; each with slightly different QoS and
fairness properties [1]. For example, packets can be
prioritized earliest virtual start-time first [23] or earliest
virtual finish-time first [1][19].

3. Fair Queuing Memory Scheduler
The class of FQ network scheduling algorithms de-

scribed in Section 2.3 forms the basis of the FQ mem-
ory scheduler. In contrast with packet schedulers,
however, the FQ memory scheduler must manage mul-
tiple, inter-dependent resources, e.g., address buses,
data buses, and memory banks. If the FQ scheduler
allows a single thread to over utilize a single resource,
other threads may be adversely affected.

In an FQ memory scheduler’s control registers each
hardware thread i is allocated a fraction φi of the mem-
ory system’s bandwidth – this allocation could be stati-
cally designed-in or could be assigned flexibly by ei-
ther an OS or a virtual machine monitor (VMM), for
example. Allocating a thread a fraction φi of the mem-
ory system is analogous to allocating a thread a private
memory system running at φi of the frequency of the
physical memory, i.e., all of the SDRAM timing char-
acteristics are time scaled by the reciprocal of φi.
Therefore, the FQ memory scheduler’s QoS objective
is: a thread i that is allocated a fraction φi of the
memory system bandwidth will run no slower than the
same thread on a private memory system running at φi
of the frequency of the shared physical memory sys-
tem.

To satisfy the QoS objective, the FQ memory
scheduler prioritizes memory requests earliest virtual
finish-time first (VFTF). A virtual finish-time is the
virtual time a thread’s memory request will finish on
the thread’s private virtual time memory system
(VTMS). In order for the FQ memory scheduler to
offer a thread QoS, the thread’s memory requests must
finish in less time than they would have on its VTMS –
a memory request’s virtual finish-time is its deadline.
Scheduling memory requests earliest VFTF is equiva-
lent to earliest deadline first scheduling (EDF) [3]. If
the sum of each resource’s allocated service shares φi is

less than or equal to one, an ideal EDF schedule will
meet the VTMS deadlines [3].

The FQ memory scheduler’s fairness policy distrib-
utes excess memory system bandwidth to the thread
that has consumed the least excess memory system
bandwidth in the past (relative to its service share).
Prioritizing memory requests VFTF also satisfies this
fairness policy because a thread whose oldest pending
memory request has the earliest virtual finish-time has
consumed less excess service (normalized to its share
φi) than any other backlogged thread [1].

The FQ memory scheduler’s fairness policy differs
from the GPS fairness policy described in Section 2.3.
We introduce a fairness policy specifically for multi-
thread memory scheduling because a memory system
is an integral part of a closed system; in contrast, a
network router is assumed to be in an open system.
For example, in a typical streaming media network
application the bit rate is independent of the delay
through the network. In contrast, a general-purpose
application’s memory request rate is strongly depend-
ent on memory latency, i.e., as the system’s memory
latency increases the memory request rate decreases.
Threads that have consumed more memory system
bandwidth in the past have increased the memory sys-
tem’s latency averaged over all threads; these threads
should not receive excess bandwidth before threads
that have received less excess bandwidth in the past.
This fairness policy is validated as part of our evalua-
tion.

3.1. Virtual Time Memory System
A virtual time memory system (VTMS) captures the

fundamental timing characteristics of a SDRAM mem-
ory system and abstracts away some details. For ex-
ample, a memory system’s address bus and its data bus
are modeled as a single resource: a memory channel.
This level of abstraction is necessary in order to apply
FQ theory and simplify the FQ memory scheduler’s
hardware (described in Section 3.2).

Table 1 summarizes the VTMS notation and terms.
The VTMS notation follows from the network FQ no-
tation used in Section 2.3. In addition, the VTMS no-
tation has a prefix that consists of a resource identifier
followed by a dot.

Each memory request mi
k (kth memory request from

the ith thread) to bank j has a bank service virtual start-
time Bj.Si

k and a bank service virtual finish-time Bj.Fi
k.

The bank service virtual start-time (Equation 3) is the
maximum of its virtual arrival time ai

k (at the memory
controller) and the bank service virtual finish-time of
the previous request to bank j, i.e., Bj.Fi

(k-1)’. We use
the (k-1)’ superscript because memory request mi

k-1 may
not have been the last request to bank j. The bank ser-
vice virtual finish-time (Equation 4) is the sum of its

virtual start-time and its virtual service time. Bj.Li
k is

mi
k’s actual bank service time. The actual bank service

time depends on the state of the bank when the mem-
ory request starts its bank service (discussed in Section
3.2).

Table 1: VTMS Notation and Terms
φ i Thread i’s service share
mi

k kth memory request from thread i
ai

k mi
k’s virtual arrival time

Bj.Li
k mi

k’s bank j service

Bj.Si
k mi

k’s bank j service virtual start-time (assuming
mi

k is to bank j)

Bj.Fi
k mi

k’s bank j service virtual finish-time (assuming
mi

k is to bank j)

Bj.Fi
(k-1)’ Virtual finish-time of the previous request (be-

fore mi
k) to bank j

C.Li
k mi

k’s channel service
C.Si

k mi
k’s channel service virtual start-time

C.Fi
k mi

k’s channel service virtual finish-time

[3] Bj.Si
k = max { ai

k , Bj.Fi
(k-1)’ } (from Equation 1)

[4] Bj.Fi
k = Bj.Si

k + Bj.Li
k / φi (from Equation 2)

Each memory request mi
k has a channel service vir-

tual start-time C.Si
k and a channel service virtual fin-

ish-time C.Fi
k. In this work we focus on single channel

(C) memory systems and leave multi-channel memory
systems for future work. A memory request virtually
arrives at the channel as soon as its bank service is
complete, i.e., a request’s channel arrival-time is its
bank service finish-time Bj.F i

k. Therefore, the channel
service virtual start-time (Equation 5) is the maximum
of the bank service virtual finish-time and the channel
service virtual finish-time of the previous request. The
channel service virtual finish-time (Equation 6) is the
sum of its virtual start-time and its virtual service time.
The channel service virtual finish-time is the memory
request’s virtual finish-time, which is used to prioritize
the request.

[5] C.Si

k = max { Bj.F i
k , C.Fi

k-1 } (from Equation 1)
[6] C.Fi

k = C.Si
k + C.Li

k / φi (from Equation 2)

A virtual clock algorithm is unnecessary for the FQ
scheduler’s desired fairness policy. The FQ memory
scheduler uses a real clock. The clock is incremented
once per cycle, except during refresh periods. Unlike
GPS virtual clock algorithms, a real clock penalizes
threads that have consumed more service in the past
[19].

3.2. Implementation
The FQ memory scheduler has the same basic struc-

ture as the memory scheduler in Section 2.2 Figure 2.
The FQ scheduler’s priority policy is very similar to
FR-FCFS except the FQ scheduler’s priority policy

prioritizes requests earliest virtual finish-time first.
The FQ bank and channel schedulers’ priority policy
is: 1) prioritize ready commands, 2) prioritize CAS
commands, and 3) prioritize commands with the earli-
est virtual finish-time.

To calculate virtual finish-times, the FQ memory
scheduler has a set of VTMS registers and virtual fin-
ish-time logic for each supported hardware thread (see
Figure 3). A thread’s VTMS registers has one finish-
time register for each memory bank Bj.Ri , one finish-
time register for the memory channel C.Ri , one service
share register φi, and one register to track the earliest
arrival time Rai of the pending memory requests. The
virtual finish-time registers hold the VTMS resources’
last virtual finish-times, i.e. Bj.Ri = Bj.Fi

(k-1)’ and C.Ri =
C.Fi

k-1. Table 2 summarizes the terms used in this sec-
tion.

Table 2: VTMS Implementation Terms
Bj.Ri Thread i bank j’s last virtual finish-time register
C.Ri Thread i channel last virtual finish-time register
Rai Thread i oldest virtual arrival time
Bcmd .L i

k mi
k’s current SDRAM command bank service

Ccmd .L i
k mi

k’s current SDRAM command channel service

…

Bank 1
Scheduler

Bank 1
Requests

Bank n
Requests

Channel
Scheduler

Bank n
Scheduler

Transaction
Buffer

SDRAM Address Bus

Thread 1
VTMS

Registers

Thread m
VTMS

Registers

…

Finish-Time and Update
Functions

VTMS Hardware
…

Thread 1
Requests

Thread m
Requests

Figure 3: FQ memory scheduler

The virtual finish-time function in terms of VTMS
registers is given in Equation 7.

[7] C.Fi
k = max { max { Rai

 , Bj.Ri } + B.Li
k / φi , C.Ri

 } +
 C.Li

k / φi
(from Equations 3, 4, 5, and 6)

In contrast with network FQ, a memory request’s
exact service requirements are not known at the time
the request arrives at the memory controller. For ex-
ample, if a memory request results in an open row hit,
then the memory request’s bank service requirement
(B.Li

k) is tCL , the time to read the data out of the row
buffer. If a memory request results in a bank conflict,
then the request’s bank service requirement is tRP + tRCD
+ tCL , the time to precharge the bank, open the row,
and read the data out of the row buffer. A request’s
bank service requirements are not known until the
memory scheduler schedules the request to begin ser-
vice. Table 3 shows the memory requests’ bank ser-

vice requirements based on the bank state at the time
the request begins service. All memory requests re-
quire the same channel service (C.Li

k = BL/2).

Table 3: Bank Service B.Li

k Based on Bank State
Bank State B.Li

k
Open - bank conflict tRP + tRCD + tCL
Closed tRCD + tCL
Open - row buffer hit tCL

There are two ways to resolve the bank service dis-
crepancy. The first solution is to assume at arrival time
an average bank service requirement for all memory
requests, and use the average service requirement to
calculate the request’s virtual finish-time and update
the VTMS finish-time registers. However, this solu-
tion is likely to penalize threads that have lower aver-
age bank service requirements, e.g., threads with a
large number of open row buffer hits. The second so-
lution is to calculate the virtual finish-times of memory
requests just before they are scheduled to begin service
[1], i.e., when a memory request becomes a thread’s
oldest first-ready request, and update the VTMS re-
source finish-time registers after the request has been
issued to the memory system. This approach more
accurately accounts for the amount of bank service
threads actually consume, and consequently, the re-
quest’s virtual finish-times are more accurate – this is
the implementation we evaluate in the Evaluation Sec-
tion. The disadvantage of this implementation is a
thread’s oldest first-ready request may not be the
thread’s oldest memory request, therefore, requests
may receive virtual finish-times out-of-order. Despite
the reordering, virtual finish-times still respect the
bandwidth constraints of a thread’s private VTMS.

 In our implementation, VTMS finish-time registers
are updated whenever a SDRAM command is issued to
the memory system. The bank update function is
shown in Equation 8. The VTMS channel register C.Ri
is only updated when read and write commands are
issued, and it is updated after the bank register Bj.Ri.
The channel register update function is shown in Equa-
tion 9.

[8] Bj.Ri = max { ai
k , Bj.Ri } + Bcmd .L i

k / φi
(from Equation 3 and 4)

[9] C.Ri = max { Bj.Ri , C.Ri } + Ccmd .L i
k / φi

(from Equation 5 and 6)

The bank Bcmd .L i
k and channel Ccmd .L i

k service
times for each type of SDRAM command are summa-
rized in Table 4. The service times for activates,
reads¸ and writes follow from Section 4.1 Table 6.
Precharge service time accounts for the additional
bank service time between issuing an activate and a
precharge that is not accounted for by the activate,
read, or write commands.

Table 4: Update Service Times
SDRAM Command Bcmd .L i

k Ccmd .L i
k

Precharge tRP + (tRAS - tRCD - tCL) n/a
Activate tRCD n/a
Read tCL BL/2
Write tWL BL/2

The FQ scheduler’s hardware is similar to the base-
line FR-FCFS scheduler except for the VTMS hard-
ware. VTMS registers can be stored efficiently in
SRAM-based register files. After the thread’s service
share registers are initialized, the bank virtual service
times (e.g. Bj.Li

k /φi and C.Li
k /φi) are constants and do

not have to be recomputed each time they are used.
Therefore, the update logic and finish-time logic con-
sists of a few adders and muxes. Furthermore, a single
copy of the update logic can be shared by all threads
because only one thread’s registers can be updated in a
single cycle.

3.3. Preventing Priority Inversion
Priority inversion blocking time is the time that low

priority requests block a higher priority request; it has
the potential to significantly degrade the FQ memory
scheduler’s QoS [20]. With first-ready scheduling, the
main source of priority inversion blocking time is bank
priority chaining, e.g., when a sequence of low priority
row buffer hits prevent a higher priority request from
receiving service. To prevent bank priority chaining, a
bank scheduler has to select the request with the high-
est priority and wait for the request’s first SDRAM
command to become ready; otherwise this command
may never become ready. However, scheduling the
highest priority request first without accounting for the
state of the SDRAM can decrease memory system
utilization. For example, a low priority request arrives
at a memory bank and activates its row. Then, a cycle
after the low the row is activated, a higher priority re-
quest arrives at the same bank. A bank priority policy
that schedules the request with the highest priority and
waits for its first SDRAM command to become ready
will wait tRAS -1 cycles before the higher priority re-
quest’s precharge command becomes ready, i.e.,
DDR2 timing constraints (see Table 6) require tRAS
cycles between issuing an activate and a precharge.
During this time the low priority request could have
completed its memory transaction without adding to
the latency of the higher priority request.

In general, a memory scheduler that reduces priority
inversion blocking time decreases data bus utilization.
Consequently, we give the FQ bank scheduler a con-
figurable bound x on priority inversion blocking time.
The FQ bank scheduler’s priority policy is as follows.
When the bank is closed, during the first x memory
cycles after an activate command, the bank scheduler’s
priority policy is the same policy presented in the pre-

vious section. After the bank has been active for x
cycles, the bank scheduler selects the request with the
earliest virtual finish-time and waits for its first
SDRAM command to become ready. In this paper, we
use tRAS for the value of x. This is a tight bound on
priority inversion blocking time, which offers better
QoS, but may decrease data bus utilization.

The FQ memory scheduler offers threads a high de-
gree of QoS. However, strictly speaking, the FQ
memory scheduler does not guarantee QoS since a
thread’s memory resource requirements may change
when the thread’s memory requests are interleaved
with another thread’s memory requests, e.g., a memory
request that would have been a row buffer hit on a pri-
vate memory system may cause a bank conflict on a
shared memory system. Providing strict QoS guaran-
tees would require pessimistic assumptions that are
unsuitable and unnecessary for high-performance com-
puting [7][11][21].

4. Evaluation

4.1. Methodology
The FQ memory scheduler allows arbitrary frac-

tions of memory system bandwidth to be allocated to
an individual processor or a cluster of processors.
However, in this paper our target system is a general
purpose desktop or laptop with off-the-shelf software.
In this scenario, processors on the CMP are statically
allocated an equal share φi of the memory system, e.g.,
in a two processor CMP each processor is allocated φi
= ½ of each memory resource. We show that the FQ
memory scheduler offers threads a high degree of QoS
and that QoS in the form of performance isolation is
essential. Providing QoS in other scenarios (e.g. real-
time multimedia applications, servers with scientific or
commercial multithreaded workloads, logical partition-
ing of servers) are topics for future research.

We use a detailed structural simulator that was de-
veloped at IBM Research. The simulator has a struc-
ture similar to ASIM [6], and the model is defined at
an abstraction level slightly higher than a latch-level
model. Our model partitions processor logic into pipe-
lines – each pipeline consists of multiple pipeline
stages. The simulator models the finite capacity and
bandwidth of each data flow path, buffer, and bus in a
typical processor. The model’s default configuration is
of a single processor IBM 970 system. In its default
configuration, the model’s performance projections
have been validated to be ± 5% of the 970 design
group’s latch-level processor model. In this paper we
use an alternative processor configuration to avoid
some 970-specific design constraints. The primary
differences are: 1) a monolithic reorder buffer instead
of the 970’s instruction dispatch groupings, 2) a uni-

fied issue queue instead of the 970’s distributed issue
queue, and 3) a cache configuration that is more repre-
sentative of modern desktop and laptop processors than
the 970’s cache configuration For example, we use 64
byte line sizes – the 970’s 128 byte lines increase
memory bandwidth contention and amplify the effects
of the FQ scheduler – 64 byte lines result in better
baseline performance.

The simulator has a cycle accurate model of an on-
chip memory controller attached to a DDR2-800 mem-
ory system. The memory controller maps physical
addresses to ranks and banks using an XOR address
mapping [12]. The system configurations are in Table
5. The SDRAM memory system configuration was
chosen to be representative of most modern desktop
and laptop systems. The DDR2-800 timing constraints
[14] are in Table 6.

Table 5: 4 GHz Processor – System Configuration
Issue Buffer 64 entries
Issue Width 8 units (2 FXU, 2 LSU, 2 FPU, 1

BRU, 1 CRU)
Reorder Buffer 128 entries
Load / Store Queues 32 entry load reorder queue, 32

entry store reorder queue
I-Cache 32KB private, 4-ways, 64 byte

lines, 2 cycle latency, 8 MSHRs
D-Cache 32KB private, 4-ways, 64 byte

lines, 2 cycle latency, 16 MSHRs
L2 Cache 512KB private, 8-ways, 64 byte

lines, 12 cycle latency, 16 store
merge buffer entries, 32 transac-
tion buffer entries

Memory Controller 16 transaction buffer entries per
thread, 8 write buffer entries per
thread, closed page policy

SDRAM Channels 1 channel
SDRAM Ranks 1 rank
SDRAM Banks 8 banks

Table 6: Micron DDR2-800 timing constraints (meas-
ured in DRAM address bus cycles)
tRCD Activate to read 5 cycles
tCL Read to data bus valid 5 cycles
tWL Write to data bus valid 4 cycles
tCCD CAS to CAS (CAS is a read or a

write)
2 cycles

tWTR Write to read 3 cycles
tWR Internal write to precharge 6 cycles
tRTP Internal read to precharge 3 cycles
tRP Precharge to activate 5 cycles
tRRD Activate to activate (different

banks)
3 cycles

tRAS Activate to precharge 18 cycles
tRC Activate to activate (same bank) 22 cycles
BL/2 Burst length (Cache Line Size /

64 bits)
4 cycles

tRFC Refresth to activate 51 cycles
tRFC Max refresh to refresh 28,000 cycles

To isolate the effects of sharing main memory, the
SDRAM memory system is the only shared resource in
the system (i.e., the processor cores have private
caches). However, in practice, the FQ memory sched-
uler can be implemented with shared caches and would
likely work well with fair sharing / QoS caches; see
Kim et al. [10]. The memory controller’s transaction
buffer and write buffer are statically partitioned. Each
thread is allocated 16 transaction buffer entries, and 8
write buffer entries. The memory controller NACKs
memory requests from a thread when that thread’s
buffer entries are full, thus applying back pressure to
that thread independent of the other threads on the
CMP. A more flexible partitioning of memory control-
ler’s buffers is possible and is a topic for future re-
search.

We use the SPEC 2000 benchmark suite because it
is the best available source of heterogeneous applica-
tions. We use twenty 100 million instruction SPEC
benchmark sampled traces that have been verified to be
statistically representative of the entire SPEC applica-
tion [8].

We use data bus utilization as a measure of a
thread’s “aggressiveness” in the memory system, al-
though we acknowledge that there are other factors that
might contribute to aggressiveness (e.g., average burst
size, row hits, bank parallelism, etc.). Figure 4 illus-
trates the data bus utilization of the twenty SPEC traces
when running alone on a single processor with the FR-
FCFS memory scheduler. Throughout the results sec-
tion, benchmarks are ordered by their data bus utiliza-
tion; the highest utilization (the most aggressive) is on
the left.

Data Bus Utilization

0%
20%
40%
60%
80%

100%

art

equake

m
cf

facerec

lucas

gcc

sw
im

m
grid

apsi

w
upw

ise

tw
olf

gap

am
m

p

bzip2

gzip

vpr

m
esa

sixtrack

perlbm
k

crafty

U
til

iz
at

io
n

Figure 4: Data Bus Utilization of individual bench-
marks running alone

4.2. Results
The first set of results illustrates the effect of co-

scheduling a subject thread with a very aggressive
background thread. This set of experiments stresses
the FQ memory scheduler’s ability to isolate the per-
formance of the subject thread from the background
thread. Based on data given in Figure 4 we chose art,
the most aggressive benchmark, to be the background
thread and simulated art with every other benchmark
as the subject thread. Figure 5 shows the normalized
IPC, average memory read latency, and data bus utili-

zation of the subject thread listed on the x-axis. FR-
FCFS is the first-ready first come first serve (earliest
arrival time first) scheduling algorithm. FR-VFTF is
the first-ready virtual finish-time first scheduling algo-
rithm; this configuration uses first-ready scheduling
without the FQ bank scheduling algorithm described in
Section 3.3. FQ-VFTF is the FQ memory scheduler.
It prioritizes requests VFTF and uses the FQ bank
scheduling algorithm to prevent priority chaining. IPC
is normalized with respect to the same benchmark run-
ning alone on a private memory system with the timing
constraints in Table 6 time scaled by a factor of two,
i.e., 1 / φi. We refer to this system as the baseline sys-
tem. An ideal QoS memory scheduler would have no
benchmark with a normalized IPC less than one. Data
bus utilization is measured with respect to peak data
bus bandwidth.

Normalized IPC of Subject Thread

0

0.5

1

1.5

equake

m
cf

facerec

lucas

gcc

sw
im

m
grid

apsi

w
upw

ise

tw
olf

gap

am
m

p

bzip2

gzip

vpr

m
esa

sixtrack

perlbm
k

crafty

hm
ean

N
or

m
al

iz
ed

 IP
C

Average Read Latency

0

400

800

1200

equake

m
cf

facerec

lucas

gcc

sw
im

m
grid

apsi

w
upw

ise

tw
olf

gap

am
m

p

bzip2

gzip

vpr

m
esa

sixtrack

perlbm
k

crafty

m
ean

Pr
oc

es
so

r C
yc

le
s

Data Bus Utilization

0%

15%

30%

45%

equake

m
cf

facerec

lucas

gcc

sw
im

m
grid

apsi

w
upw

ise

tw
olf

gap

am
m

p

bzip2

gzip

vpr

m
esa

sixtrack

perlbm
k

crafty

m
ean

U
til

iz
at

io
n

FR-FCFS FR-VFTF FQ-VFTF

Figure 5: A subject thread’s normalized IPC (top),
average read latency (middle), and data bus utiliza-
tion (bottom)

Figure 5 illustrates that an aggressive background
thread can have a significant affect on a less aggressive
subject thread. With the FR-FCFS memory scheduler,
the IPC of the subject thread is often less than one half
the IPC of the baseline system, and the harmonic mean
of normalized IPC is .62. The decrease in IPC is
caused by the dramatic increase in the subject thread’s
average memory read latency (on average 930 proces-
sor cycles). In contrast, the memory system’s
unloaded read latency is 180 cycles. This result sup-
ports the importance of memory system bandwidth and
the need to control memory interference.

In Figure 5, the FR-VFTF scheduler’s results show
that the VFTF priority algorithm is an important com-

ponent of the FQ memory scheduler, but by itself it is
not enough to provide QoS. With the FR-VFTF
scheduler, the normalized IPC is less than one (i.e.,
below the QoS objective) for 14 out of 19 workloads,
and in the case of twolf and vpr, normalized IPC is less
than .6.

The FQ memory scheduler (FQ-VFTF) provides a
high degree of QoS, i.e., it offers the subject thread
QoS on 18 out of 19 workloads. The one bencmark,
vpr, where the FQ memory scheduler does not provide
QoS has a normalized IPC less than one because it has
little memory parallelism. This characteristic makes
vpr very sensitive to the memory system’s preemption
latency, i.e., the time to finish or preempt a lower pri-
ority request in order to service a higher priority re-
quest. Despite this, vpr’s normalized IPC with the FQ
memory scheduler is .94, which is much better than
vpr’s normalized IPC with FR-FCFS (.48) or FR-
VFTF (.58). In addition, with the FQ memory sched-
uler, the data bus utilization of the subject thread tracks
the data bus utilization of the same application when
running alone on its own memory system (Figure 4).
Comparing FR-VFTF with the FQ memory scheduler
(FQ-VFTF) illustrates the effects of first-ready priority
chaining and the FQ bank scheduling algorithm’s ef-
fectiveness. The FR-VFTF scheduler has no mecha-
nism to control priority chaining. Its average normal-
ized IPC .87. The FQ memory scheduler (FQ-VFTF)
scheduler uses the FQ bank scheduling algorithm (Sec-
tion 3.4) to limit the effects of priority chaining and its
average normalized IPC is 1.10, an improvement of
26%.

Figure 6 shows the background thread’s normalized
IPC; the subject thread’s benchmark is listed on the x-
axis. This figure illustrates that the FQ memory
scheduler provides the background thread QoS and
efficiently distributes excess memory service to the
background thread. Starting from the right, the first six
subject threads demand more than half of the memory
system bandwidth (see Figure 4). For these workloads
the actual memory system bandwidth is divided
evenly. Therefore, for the first six workloads the nor-
malized IPC of the background thread is very close to
one. Beyond the first six benchmarks (from the left),
the normalized IPC of the background thread increases
gradually as the background thread receives more ex-
cess service.

In addition to providing QoS, the FQ scheduler
eliminates negative memory interference, and this sig-
nificantly improves overall system performance. The
top graph in Figure 7 shows the performance im-
provement of the FR-VFTF and FQ memory schedul-
ers when compared with FR-FCFS as the baseline.
The performance metric used in Figure 7 is the har-
monic mean of the co-scheduled threads’ normalized

IPCs [13]. Another important memory scheduler per-
formance metric is memory system throughput (meas-
ured as data bus and bank utilization by the bottom two
graphs of Figure 7). Because memory system band-
width is a critical resource for future CMPs, it is im-
portant that the memory scheduler use it efficiently.

Normalized IPC of Background Thread

0
0.5

1
1.5

2

equake

m
cf

facerec

lucas

gcc

sw
im

m
grid

apsi

w
upw

ise

tw
olf

gap

am
m

p

bzip2

gzip

vpr

m
esa

sixtrack

perlbm
k

crafty

hm
ean

N
or

m
al

iz
ed

 IP
C

FR-FCFS FR-VFTF FQ-VFTF

Figure 6: Normalized IPC of background thread

The performance improvement graph in Figure 7 il-
lustrates that an overly aggressive application can sig-
nificantly degrade the performance of the entire sys-
tem, and, in such cases, providing QoS in the form of
performance isolation increases system performance.
For this experiment, the FQ memory scheduler (FQ-
VFTF) has an average performance improvement of
31% (up to 76%).

Aggregate Performance Improvement

0%

20%
40%

60%

80%

equake

m
cf

facerec

lucas

gcc

sw
im

m
grid

apsi

w
upw

ise

tw
olf

gap

am
m

p

bzip2

gzip

vpr

m
esa

sixtrack

perlbm
k

crafty

hm
ean

Pe
rf.

 I
m

pr
ov

em
en

t

Aggregate Data Bus Utilization

0%
25%
50%
75%

100%

equake

m
cf

facerec

lucas

gcc

sw
im

m
grid

apsi

w
upw

ise

tw
olf

gap

am
m

p

bzip2

gzip

vpr

m
esa

sixtrack

perlbm
k

crafty

m
ean

U
til

iz
at

io
n

Aggregate Bank Utilization

0%

10%

20%

30%

equake

m
cf

facerec

lucas

gcc

sw
im

m
grid

apsi

w
upw

ise

tw
olf

gap

am
m

p

bzip2

gzip

vpr

m
esa

sixtrack

perlbm
k

crafty

m
ean

U
til

iz
at

io
n

FR-FCFS FR-VFTF FQ-VFTF

Figure 7: Aggregate performance improvement
(top), aggregate data bus utilization (middle), and
aggregate bank utilization (bottom)

 The data bus utilization graph in Figure 7 show
that the FR-FCFS effectively optimizes data bus utili-
zation. This result supports our decision to use FR-
FCFS as the baseline and as the basis of the FQ mem-
ory scheduler. Overall, FR-VFTF and FQ-VFTF also
have good data bus utilization. On average their data
bus utilizations are 94% and 92%, respectively. How-

ever, there are some benchmarks (e.g., swim and
mgrid) that have a considerable decrease in data bus
utilization – up to 10%. The decrease in data bus utili-
zation is caused by an increase in bank conflicts, which
is illustrated by the increase in aggregate bank utiliza-
tion. The increase in bank utilization is caused partly
by the VFTF priority algorithm and partly by the FQ
bank scheduling algorithm. In general, an increase in
bank utilization is an unavoidable side effect of offer-
ing threads QoS. This result emphasizes the impor-
tance of bank bandwidth in future CMP memory sys-
tems.

The second set of results shows the benefits of FQ
scheduling in a typical desktop scenario – a four CMP
system running heterogeneous applications that have a
range of memory behaviors. To construct the work-
loads, we combined every fourth benchmark (in order
of data bus utilization), e.g. the first workload consists
of the 1st, 5th, 9th, and 13th benchmarks (art, lucas, apsi,
and ammp). We chose to exclude the last four bench-
marks since they have very low memory system utili-
zation; i.e., sixtrack, perlbmk, and crafty utilize less
than 2% of the memory bandwidth.

Figure 8 shows the normalized IPC and data bus
utilization of the four processor workloads. The work-
loads are ordered by memory system demand with the
most demanding workload on the left. The bench-
marks within a workload are ordered by the threads’
aggressiveness with the most aggressive thread on the
left. The baseline for this experiment is a single proc-
essor system with a private memory system time scaled
by a factor of four. Normalized IPC is normalized to
the benchmark running alone on the baseline system.

Normalized IPC

0

1

2

3

art lucas apsi
ammp

equake gcc
wupwise bzip2

mcf swim twolf
gzip

facerec mgrid
gap vpr

N
or

m
al

iz
ed

 IP
C

FR-FCFS FR-FCFS hmean FQ-VFTF FQ-VFTF hmean

Data Bus Utilization

0%

20%

40%

60%

art lucas apsi
ammp

equake gcc
wupwise bzip2

mcf swim twolf
gzip

facerec mgrid
gap vpr

U
til

iz
at

io
n

FR-FCFS FR-FCFS mean FQ-VFTF FQ-VFTF mean

Figure 8: Normalized IPC (top) and data Bus Utiliza-
tion of individual threads in a four processor CMP
system (bottom)

The leftmost workload in Figure 8 (art, lucas, apsi,
and ammp) has the highest aggregate memory band-
width demand, each thread demands over 25% of the
memory bandwidth, and this workload’s constituent

benchmarks have the widest range of memory demands
(see Figure 4). With the FR-FCFS memory scheduler,
the most aggressive thread (art) receives the most
memory system service and has the greatest normal-
ized IPC, while the two least aggressive benchmarks
(gap and vpr) receive the least memory system service
and have a normalized IPC less than one (below the
QoS objective). With the FQ memory scheduler (FQ-
VFTF) the opposite is true; the least aggressive thread
has the greatest normalized IPC, and all threads have a
normalized IPC greater than one. The FQ memory
scheduler’s (FQ-VFTF) data bus bandwidth distribu-
tion (bottom graph of Figure 8) for this workload is
nearly ideal; the ideal distribution is a uniform distribu-
tion. Even with the FQ scheduler, more aggressive
threads still tend to get slightly more memory band-
width. With general purpose processors this appears to
be unavoidable. Threads that are aggressive with re-
spect to the memory system tend to have more memory
level parallelism, which allows them to generate more
memory requests when given less memory service.
This result supports our choice of fairness, i.e., giving
excess memory service to threads that have been less
aggressive in the past.

The effect of the FQ memory scheduler on the re-
maining three workloads is not as clear as the first
workload, mainly because the benchmarks within the
last three workloads have a narrower range of memory
bandwidth demands and not all of the benchmarks de-
mand their full share of the memory system (i.e., gzip
and vpr). Two important trends for the last three work-
loads are: 1) the memory scheduler has a significant
affect on the individual benchmarks’ performances and
2) the FQ memory scheduler more evenly distributes
memory bandwidth when compared with FR-FCFS.

The FQ memory scheduler’s performance im-
provement for first, second, third, and fourth work-
loads (from the left) is 41%, -2%, -2%, and 14% re-
spectively. On the second and third workloads the
overall system performance is virtually unchanged (we
consider ± 2% to be within the error margin of the ex-
periment), however, the normalized IPCs of the indi-
vidual threads are significantly affected. Overall, the
FQ memory scheduler improves the aggregate per-
formance of all the workloads by 14%.

To provide further insight we compare each thread’s
actual data bus utilization (from Figure 8) with its tar-
get bus utilization. A thread’s target data bus utiliza-
tion is the smaller of 1) its data bus utilization when
running alone (solo) on the CMP and 2) the sum of its
allocated service share plus its fair share of excess
memory bandwidth. For a four processor CMP a
thread’s target data bus utilization is: min{ <solo data
bus utilization> , 25% + <fair-share of excess band-
width> }. A threads’ solo data bus utilization is taken

from Figure 4. A thread’s fair-share of excess band-
width is determined by incrementally adding equal
portions of excess service to each thread that demands
service until all excess service is allocated or there are
no threads that demand more service (when a thread’s
target data bus utilization equals its solo data bus utili-
zation). On average, this is the fair-share to which the
FQ memory scheduler’s fairness policy will ideally
converge.

Figure 9 shows the normalized read latency versus
its normalized data bus utilization for all the threads in
Figure 8. Read latency is normalized to the read la-
tency when a benchmark is run alone and data bus
utilization is normalized to the application’s target data
bus utilization – both are derived from the results col-
lected for Figure 4. With an ideal memory scheduler,
all threads would have a normalized data bus utiliza-
tion of one. The vertical line in Figure 9 is a visual aid
to illustrate the ideal.

Read Latency vs. Data Bus Utilization

1

2

3

4

0 1 2 3
Normalized Data Bus Utilization

FR-FCFS
FQ-VFTF

N
or

m
al

iz
ed

 R
ea

d
La

nt
ec

y

Figure 9: Normalized Latency vs. Normalized Data
Bus Utilization of individual threads

The FR-FCFS memory scheduler’s normalized la-
tency and normalized data bus utilization show no dis-
cernable trend. The average normalized data bus utili-
zation is .88, has a range from .28 to 2.1, and a vari-
ance of .20.

In contrast, the FQ memory scheduler’s (FQ-VFTF)
normalized data bus utilization is clustered slightly to
the left of the ideal vertical line at one. For FQ-VFTF,
the average normalized data bus utilization is .88, has a
range from .73 to .98 and a variance of .0058.

The average normalized data bus utilization is a
metric of the scheduler and multithread workload’s
data bus efficiency, i.e., it is a workload weighted aver-
age of the data bus utilization. FR-FCFS and FQ-
VFTF have the same data bus efficiency (.88), which is
approximately the same as the average data bus utiliza-
tion in Figure 8. A data bus efficiency of less than one
causes the FQ-VFTF scheduler’s cluster of normalized
data bus utilization to be slightly to the left of the ideal
vertical line.

Another important observation from Figure 9 is the
increasing relationship between the FQ memory
scheduler’s (FQ-VFTF) normalized data bus utilization
and normalized read latency. This result illustrates
again that aggressive threads tend to get slightly more

bandwidth than less aggressive threads. Furthermore,
the increasing trend illustrates that less aggressive
threads which receive less memory bandwidth have a
lower normalized latency, e.g., the cluster around .8
normalized data bus utilization and 1.7 normalized
read latency. In contrast, more aggressive threads have
a much higher normalized read latency, e.g., the cluster
around .98 normalized data bus utilization and 3.5
normalized read latency. This result further supports
the FQ scheduler’s fairness policy. A formal valida-
tion of the FQ scheduler’s fairness policy is a topic for
future work.

5. Summary and Conclusions
Uncontrolled sharing of memory system resources

can cause destructive interference between threads.
We have shown that the effect on performance due to
memory sharing alone can be significant and a thread
with aggressive memory system usage can starve other
threads, which can make the OS scheduling policies
less effective.

Current memory scheduling policies that are opti-
mized for single-thread environments are not well
suited for multi-thread workloads. FR-FCFS, the best
existing single thread technique, when used in a CMP,
performs poorly because its FCFS priority algorithm
gives unfair advantage to threads with frequent long
bursts of memory access patterns and its FR scheduling
policy is subject to long priority inversion blocking
times.

We proposed the Fair Queuing memory scheduler.
The basis of the FQ memory scheduler is fair queuing
algorithms from computer networking research. The
QoS objective of the FQ scheduler is to ensure each
thread receives its allocated fraction of the memory
system regardless of the load placed on the memory
system by other threads. In addition, the FQ scheduler
fairly distributes excess memory system service to
threads that have consumed less service in the past.

We showed the FQ memory scheduling algorithm
offers threads QoS and can be incorporated in existing
memory schedulers with low implementation complex-
ity. Furthermore, we showed that reducing the destruc-
tive interference due to memory system sharing im-
proves system performance. On a four processor CMP
running workloads that have a mix of applications with
a range of memory bandwidth demands, the proposed
memory scheduler provides QoS to all of the threads in
all of the workloads, improves system performance by
14% on average (up to 41%) and reduces the variance
in a thread’s normalized bandwidth utilization from .2
to .0058.

6. Acknowledgements
This work was supported by an IBM Fellowship

and by equipment donations and financial support from
Intel. The first author would like to thank Professor
Parmesh Ramanathan for his clarity and insights in
teaching real-time systems and his direction during the
formative stages of this research. We would also like
to thank Ravi Nair and Dan Prener of IBM for their
advice and support during the development of simula-
tion infrastructure.

7. References
[1] Bennett, J. C. and Zhang, H. Hierarchical packet fair
queueing algorithms. In Proc. on Apps. Tech., Arch., and
Protocols for Comp. Comm. (Palo Alto, Ca., Aug. 28 - 30,
1996). SIGCOMM '96. 143-156.
[2] Burger, D., Goodman, J. R., and Kägi, A. Memory band-
width limitations of future microprocessors. In Proc. of the
23rdl Intl. Symp. on Comp. Arch. (Philadelphia, PA May 22 -
24, 1996). ISCA '96. 78-89.
[3] Chetto, H. and Chetto, M. Some Results of the Earliest
Deadline Scheduling Algorithm. IEEE Trans. on Software
Eng. 15, 10 (Oct. 1989), 1261-1269.
[4] Cuppu, V. and Jacob, B. Concurrency, latency, or system
overhead: which has the largest impact on uniprocessor
DRAM-system performance. In Proc. of the 28th Intl. Symp.
on Comp. Arch. (Göteborg, Sweden, June 30 - July 04, 2001).
ISCA '01. 62-71.
[5] Cuppu, V., Jacob, B., Davis, B., and Mudge, T. A per-
formance comparison of contemporary DRAM architectures.
In Proc. of the 26th Intl. Symp. on Comp. Arch. (Atlanta,
Georgia, May 01 - 04, 1999). ISCA ’99. 222-233.
[6] Emer J., e.t al. Asim: A Performance Model Framework.
Computer 35, 2 (Feb. 2002), 68-76.
[7] Hofstee P., Nair R., and Wellman J.D. Token Based
DMA, United States Patent 6820142. (Nov. 16, 2004).
[8] Hur, I. and Lin, C. Adaptive History-Based Memory
Schedulers. In Proc. of the 37th Intl. Symp. on Microarchitec-
ture (Portland, Oregon, Dec. 04 - 08, 2004). 343-354.
[9] Iyengar, V. S., Trevillyan, L. H., and Bose, P. 1996. Rep-
resentative Traces for Processor Models with Infinite Cache.
In Proceedings of the 2nd Symp. on High-Perf. Comp. Arch..
(Feb. 03 - 07, 1996). HPCA ‘96.
[10] Kim, S., Chandra, D., and Solihin, Y. Fair Cache Sharing
and Partitioning in a Chip Multiprocessor Architecture. In
Proc. of the 13th Intl.l Conf. on Parallel Arch. and Compila-
tion Techniques (Sept. 29 – Oct. 03, 2004). PACT ‘04. 111-
122.
[11] Lee K., Lin T., Jen C. An Efficient Quality-Aware
Memory Controller for Multimedia Platform SoC. IEEE
Trans. on Circuits and Systems for Video Technology, Vol-
ume 15, Issue 5, (May 2005) 620 – 633.
[12] Lin, W. et al. Reducing DRAM Latencies with an Inte-
grated Memory Hierarchy Design. In Proc. of the 7th Intl.
Symp. on High-Perf. Comp. Arch. (Jan. 20 - 24, 2001). HPCA
‘01. 301.

[13] K. Luo, J. Gummaraju, and M. Franklin. Balancing
throughput and fairness in SMT processors. In Proc. of the
Intl. Symp. on Perf. Analysis of Systems and Software, (Jan.
2001): 164-171,.
[14] Micron. 1Gb DDR2 SDRAM Component:
MT47H128M8B7-25E, June 2006.
[15] Natarajan, C., Christenson, B., and Briggs, F. A study of
performance impact of memory controller features in multi-
processor server environment. In Proc. of the 3rd Workshop
on Memory Perf. Issues (Munich, Germany, June 20 - 20,
2004). WMPI '04. 80-87.
[16] Parekh, A. K. and Gallager, R. G. A generalized proces-
sor sharing approach to flow control in integrated services
networks: the single-node case. IEEE/ACM Trans. Networks
1, 3 (Jun. 1993), 344-357.
[17] Rixner, S., Dally, W J., Kapasi, U. J., Mattson, P., and
Owens, J. D. Memory access scheduling. In Proc. of the 27th
Intl. Symp. on Comp. Arch. (Vancouver, British Columbia,
Canada). ISCA '00. 128-138.
[18] Rixner, S. Memory Controller Optimizations for Web
Servers. In Proc. of the 37th Intl. Symp. on Microarchitecture
(Portland, Oregon, Dec. 04 - 08, 2004). Micro ’04. 355-366.
[19] Sariowan, H., Cruz R.L. G.C. Polyzos. Scheduling for
quality of service guarantees via service curves. In Proc. of
the 4th Intl. Conf. on Comp. Comm. and Networks (September
20 - 23, 1995). ICCCN ‘95. 512.
[20] Sha, L., Rajkumar, R., and Lehoczky, J. P. Priority In-
heritance Protocols: An Approach to Real-Time Synchroniza-
tion. IEEE Trans. on Computers 39, 9 (Sep. 1990),
[21] Sonics MemMax 2.0 Multi-threaded DRAM Access
Scheduler: DataSheet, June 2006.
[22] Verghese, B., Gupta, A., and Rosenblum, M. Perform-
ance isolation: sharing and isolation in shared-memory multi-
processors. In Proc. of the 8th Intl. Conf. on Arch. Support
For Prog. Lang. and Op. Sys. (San Jose, CA, Oct. 02 - 07,
1998). ASPLOS-VIII. 181-192.
[23] Zhang H. Service Disciplines for Guaranteed Perform-
ance Service in Packet-switching Networks, In Proc. of the
IEEE, vol.83, (Oct. 1995).
[24] Zhu, Z. and Zhang, Z. A Performance Comparison of
DRAM Memory System Optimizations for SMT Processors.
In Proc. of the 11th Intl Symp. on High-Perf. Comp. Arch.
(Feb. 12 - 16, 2005). HPCA ‘05. 213-224.

