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Abstract

The RSA cryptosystem is really extraordinary, and I cannot fault anyone for teaching it to under-
graduates. However, all of the resources I found taught RSA from the “bottom up”—first number theory,
then RSA. It was hard for me and others to piece that together, so I wrote this to present RSA in a
“top-down” fashion, with only the smallest amount of necessary modular arithmetic. The presentation is
my own, but all of the proofs and reasoning are from [DPV08, CLRS01], and I will cite to clarify which
in the body.

I assume you’ve given some effort understanding the RSA algorithm from one of those sources. This
is because I’m a bit casual with my definitions and motivation in the text.

1 A Tiny Bit of Modular Arithmetic

Integer arithmetic (essentially addition and multiplication) is defined over an infinite set. But what if you
only have a finite set of integers? This naturally comes up in computer science (if integers are only 64 bits
or what-have-you). We still want addition and multiplication, but ones that “work” even if we run into the
MAX INT value.

We define modular arithmetic in this simple way: say N is the largest integer. Then, do whatever
arithmetic operation(s) you’d like to get the result r. Then, subtract from r as many copies of N as needed
until 0 ≤ r < N . You can do this “shrinking” at any point, and as many times as you’d like, during your
computation.

1.1 A simple example

Here’s a concrete example, also to introduce our notation. For instance, if you have (x+y) ·z (mod N), that
means we want to talk about the result of that arithmetic, but with the fact that N is the largest integer
we’ll allow. So, say that x = 14, y = 2, z = 6, N = 11. Then, we see that x = 14 > N , so we replace it with
x−N and get (3 + 2) · 6 (mod N). Then let’s multiply by 6: we get 18 + 12 (mod N). But both of those
are too big again! So we replace those values again: (18− 11) + (12− 11), and get 8.

The key fact is that we could these “shrinking operations” whenever, and still get 8. Let’s say we save
it until the end: then we get 16 ∗ 6 = 96. Clearly we can subtract N = 11 from this 8 times, and we get
96− 88 = 8. Amazing, no?

1.2 Key Concept: Equivalence “mod” N

In the previous example, we would say that we were computing things “mod N” or “mod eleven”. This
fascinating property that we can “shrink” by N at whatever stage in the arithmetic we’d like is expressed
by the idea of equivalence in modular arithmetic. Formally, if we write:

x ≡ y (mod N) (1)
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to say that x is equivalent to y mod (shrinking-by) N . What this means in real-life arithmetic is that there
is some integer k such that

x = y + kN. (2)

Note the actual equality sign used there. Going back to our example, we can say that 14 ≡ 3 (mod 11).
What that means is that, when N = 11, we can interchange any instance of the value 3 with 14 (or vice-
versa). This is the case because 14 = 3 + 11 · 1. In a similar vein, we know that 96 ≡ 8 (mod N) because
96− 8 ·N = 8 (in this case, N = 11 and k = 8).

That we can compute modular arithmetic without regards to when we “shrink” the values according to
N is based on the following two equivalences:

x + y = z =⇒ x + y ≡ z (mod N) (3)

x · y = z =⇒ x · y ≡ z (mod N). (4)

These statements are important when, implicitly, z > N . To prove these statements is a common exercise,
but for brevity those proofs are not included. (Note that because multiplication “works” mod N as expressed
by eq. (4), so too does exponentiation, as it is just defined in terms of multiplication.) (Further note that we
can extend this whole notion to negative numbers: to get −x (mod N), simply add N to −x enough times
until the resulting value 0 ≤ kN − x < N .)

An important idea is modular inverse. You may have noticed that 6 ·2 ≡ 1 (mod 11). The number 1 is
important because, well, it’s 1! Obviously, x ·1 ≡ x (mod N), which can come in handy. More pragmatically,
if we know x · y ≡ 1 (mod N), and we have a · x ≡ b (mod N), we know that a ≡ by (mod N). Explicitly:

x · y ≡ 1 (mod N) By assumption (5)

a · x ≡ b (mod N) By assumption (6)

a · x · y ≡ b · y (mod N) We just mult. both sides by y (7)

a · 1 ≡ b · y (mod N) As x · y ≡ 1 (mod N), we do that. (8)

We call x the “inverse of y (mod N)” in that case. (And of course, we can also say y is the inverse of x
(mod N).) Note that inverses are dependent on the value of N !

Lastly, remember these two final equivalences: N ≡ 0 (mod N) (and by extension, kN ≡ 0 (mod N)).
Furthermore, if x = y, then surely x ≡ y (mod N).

1.3 Equivalence for Encryption

Now that we understand, at least on a functional level, what equivalence is, why do we care about this for
the RSA algorithm? The fundamental concept is this: say we have some message x < N . (That is to say,
we have some message that is a binary string, which we interpret as a number. Then we choose some really
big N .) Then we encrypt x by the function f , and we get y = f(x), but y > N . Our encryption scheme will
transmit y′ < N, y′ ≡ y (mod N). Thus, y′ is the encrypted version of the message x. This is troubling,
because intuitively we have “shrunk” y into y′, perhaps losing information.

However, as we’ve established, arithmetic operations “work” in the modular universe. Say the decryption
method f−1(y) is defined only in terms of addition and multiplication. Then, even though we only have y′,
we can apply f−1(y′) and get f−1(y) = x. This is surprising!

2 The Algorithm

The algorithm is worryingly simple. Alice chooses two large primes: p, q and defines N = p · q. Alice also
chooses a power e. Lastly, Alice computes the inverse of e (mod (p − 1)(q − 1)) called d. In other words,
she computes some value d such that ed ≡ 1 (mod (p− 1)(q− 1)). Then Alice publishes (e,N) as her public
key.
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Bob gets (e,N) and wants to send some message x < N to Alice. He sends y′ ≡ xe (mod N) to Alice.
That’s all Bob does!

Lastly, Alice decodes Bob’s message y′ by this simple arithmetic: we claim that y′d ≡ x (mod N). That’s
it! She simply powers y′ to the d-th power and then takes it modulo N .

Concretely, the encryption is multiplying x to itself e times. Then we multiply the resulting y′ by itself
d times, and we claim we get x back! (Obviously, this is only possible when we work in a modular universe.)
In modular-arithmetic terms, what we’re really claiming is this:

xed ≡ x (mod N). (9)

That’s it! That’s the whole thing. Recall that xe is the encryption of x, and raising that encrypted value to
the d-th power (mod N) is the way to decrypt it. So we compress those ideas in eq. (9). The only thing
left is proving that equation is correct!

3 The Correctness

3.1 Two Quick Theorems

We will use two theorems, which I will not prove:

Theorem 1 (Fermat’s Little Theorem). For any prime p and any integer a:

ap−1 ≡ 1 (mod p). (10)

Theorem 2 (Chinese Remainder Theorem). For two values p, q coprime with one another, and some integer
a, if:

a ≡ 1 (mod p) (11)

a ≡ 1 (mod q) (12)

then
a ≡ 1 (mod p · q). (13)

(This is usually presented as a corollary to a much-more-general formulation of the Chinese Remainder
Theorem, but this is all we need for the proof.)

The proofs of these two statements make key (and brilliant) use of the properties of modular arithmetic,
and for that reason we’ll skip them: we want to get straight to the RSA proof of correctness. Plus, they’re
often assigned as homework. In any case, here are the equations which will show eq. (9) correct:

xe ≡ x′ (mod N) By assumption/definition. (14)

xed ≡ (x′)d (mod N) By modular arithmetic. (15)

xed = x1+k(p−1)(q−1) By definitions of inverses (mod k). (16)

x1+k(p−1)(q−1) ≡ (x′)d (mod N) Plugging in eq. (16) for eq. (15). (17)

The key trick is eq. (16): using the definition of modular equivalence, we know that if ed ≡ 1 (mod (p −
1)(q − 1)), then there must be some integer k such that ed = 1 + k(p− 1)(q − 1). So, we simply replace ed
with that value. These ideas (the equality and the replacement) were covered in section 1.2.

With that final equation, eq. (17), established, we bring to bear those two theorems we stated:

(xk(p−1))q−1 ≡ 1 (mod q) By Fermat’s theorem (18)

(xk(q−1))p−1 ≡ 1 (mod p) By Fermat’s theorem (19)

xk(p−1)(q−1) ≡ 1 (mod pq = N) By the Chinese Remainder Theorem. (20)
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Why do we care about about that xk(p−1)(q−1) value? Well, observe that x1+k(p−1)(q−1) = x · xk(p−1)(q−1).
Let’s use that in our final reasoning:

xed ≡ x · xk(p−1)(q−1) mod N By eq. (17) (21)

≡ x · 1 mod N By eq. (20) (22)

≡ x mod N Our goal. (23)

And that concludes the proof of correctness!

4 The Things Left Unsaid

The goal of this exposition was to trick you into thinking you understand how the algorithm works. More
positively, I hope this illustrates the outline of the proof that RSA really works. The main conceptual gap
is just a more rigorous understanding of modular arithmetic: I’ve glossed over the fact that multiplicative
inverses don’t always exist (mod N) (but they do when N is prime!) and the proofs that modular arithmetic
really works. The key idea for modular arithmetic working stems from the fact that x ≡ y (mod N) =⇒
x = kN +y for some k, and then kN ≡ 0 (mod N). The two theorems take some proving. Lastly, there’s the
super-critical proof that breaking this encryption is actually hard! That’s usually a homework assignment
though. Regardless, a standard algorithms textbook has an excellent coverage of the RSA algorithm [DPV08],
though the proof of correctness here more closely follows that of CLRS [CLRS01]. Look to them for more
information!
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