Alexandria University - Faculty of Engineering

A NEW ALGORITHM FOR INCREMENTAL MINING OF
CONSTRAINED ASSOCIATION RULES

A thesis submitted to the
Department of Computer Science and Automatic Control
in partial fulfillment of the requirements for the degree of

Master of Science

By
Eng. Ahmed Medhat Ayad

Alexandria University - 2000

To Nour,
The new shining light of my life.

We certify that we have read this thesis and that, in our opinion, it is fully
adequate, in scope and quality, as a dissertation for the degree of Master of

Science.

Examination Committee:

1. Prof. Dr. Abd El-Moneim Youssef Belal
Faculty of Engineering,

Cairo University.

2. Prof. Dr. Khalil Mohamed Ahmed
Faculty of Engineering,

Alexandria University.

3. Prof. Dr. Nagwa Moustafa EI-Makky
Faculty of Engineering,

Alexandria University.

For the Faculty Council:

Prof. Dr. Hassan Farag
Vice Dean for Graduate Studies and Research

Faculty of Engineering, Alexandria University.

C.V.

Name: Ahmed Medhat Ayad
Date of birth: 14-2-1975
Place of Birth: Alexandria.
Nationality: Egyptian

Home Address:
17b. Syria St.,
Roushdy, Alexandria,

Egypt.

Office Address:

Department of Computer Science and Automatic Control,
Faculty of Engineering,

Alexandria University,

Alexandria, Egypt.

Current profession:

Teaching Assistant at:

Department of Computer Science and Automatic Control,
Faculty of Engineering,

Alexandria University.

Educational Record:
e The General Secondary Certificate (Al-Thanawya Al Aama), 1992 , Egypt.
e B.Sc.: Department of Computer Science and Automatic Control, Faculty of Engineering,

Alexandria University, 1997

Supervisors

Prof. Dr. Nagwa M. El-Makky

Associate professor at:

Department of Computer Science and Automatic Control,
Faculty of Engineering,

Alexandria University,

Egypt.

Dr. Yousry Taha

Assistant Professor at:

Department of Computer Science and Automatic Control,
Faculty of Engineering,

Alexandria University,

Egypt.

ABSTRACT

The problem of mining association rules has attracted a lot of attention in the research
community. Several techniques for efficient discovery of association rules have appeared.
However, it is nontrivial to perform incremental mining or efficient mining of constrained
association rules, in spite of their practical benefits. The research community has recently
focused on providing separate solutions for these two problems.

Since many believe that constrained mining will be the standard, incremental mining of
constrained rules will be necessary. In this thesis, a new algorithm, /CAP, for incremental
mining of constrained association rules is introduced. The concept of constrained negative
border is also introduced and its usage for the maintenance of constrained association rules
when new transaction data is added to a transactional database is proposed. This fast
incremental mining technique is applied to the constrained association mining algorithm
CAP. A key feature of the proposed algorithm is that it requires at most one scan of the
original database only if the database insertions cause the constrained negative border to
expand. Thus the speed-up of incremental mining is combined with the flexibility of the
framework of constrained frequent-set queries, CFQs, used for specifying user constraints on
the produced association rules. The correctness of the proposed algorithm is studied and a
proof of it is given.

Several experiments were conducted to measure the relative performance of the new
algorithm compared to the single alternative approach available so far, which is rerunning the
CAP algorithm on the whole updated database. The results of the experiments show a

significant improvement over rerunning CAP in almost all of the cases.

ACKNOWLEDGMENTS

Thanks GOD before everything and after everything for giving me the knowledge and ability

to complete this work in this final form.

I am very grateful and indebted to Prof. Dr. Nagwa M. El-Makky for her valuable and
thorough supervision throughout all phases of this work, without which it would have never
been complete. Her continuous and strong support and encouragement had some very

profound effects on me that went beyond scientific supervision.

I would like to express my special thanks and gratitude to Dr. Yousry Taha for his
supervision. His unlimited help and genuine support and encouragement are greatly

appreciated.

Acknowledging my beloved wife for her unlimited support and encouragement through the
hard times, her understanding and appreciation of my work and her indispensable assistance

makes me feel much like I am acknowledging myself!

I am forever indebted to my family especially my mother and father for all their help both
materially and morally. I would like to thank my mother for constantly including me in her

prayers.

I would like to thank all the honorable faculty members of the department and my dear
friends and colleagues for their help. My special thanks go to my dear friend Islam Mahmoud
for his JIT support. He proved that he is my friend forever, especially in need.

TABLE OF CONTENTS

[0 =T o1 - e PPN 8
1. Introduction ... ————— 8
L1, GeNETaAl c.uuuneecnnicnniineiiniineninnecnessnnessecssesssessssssssssssssesssessssssssssssesssassessasssassssssssasssase 8
1.2. Motivation of the WOrK........eiiiiniiisiinniiinninsninnnineinsninnecssesnsessesssssssessseesees 9
1.3. SCOPE Of the WOTK...ecovvueieieinisnricnnicssnnnnisssanissnnsssnnssssssssssssssssssssssssssssssssassssssssssasssses 10
1.4.Thesis OrganizZationcoeeeecseicssancsssniersssanessssssssasssassssss 10

L0 3 - T o =Y 12
2. Background...........ccooiimeiiiieiiir s s s e 12
2.1. Knowledge discovery In databasesc..cceveiciserecsnicsissnnensnncssnnesssnncsssncsssssencsanes 12
2.1.1 Necessities OF KIDDcoouiiiiiiiiiiiiece ettt 12

2.1.2 KDD 01 data Mining?.........ccccueiiiiuiieiiiieeeieiieeeeieeeeereeeesiveeeeavsreessssseeesssaeessseeens 13

2.1.3 Data Mining taskS........cceeuiiiiiiieeeiiie ettt e et esere e e b e e e s eae e e enaaee e 15

2.2, ASSOCIiation rule MIiNINGcceeeeieecisnensseeeicsssncssnecssseessssscsssnessssssesssssessssssssssessssses 16
2.2.1 Problem definitioncccueiiiiiiiiiiii e 16

2.2.2 Benefits and appliCationscccuveeeriiiieiiiee et e et eiree et sre e e eeeaaeeeeaes 17

2.3. Classical algorithms For finding frequent itemsetsccooeeveesseecsuenseeescsnensaecsannes 18
2.3. 1 AIS @nd SEtM.....ceiiiiiee e e 18
2.3.1.1 The ALS QIGOVIIRM ..ot 18
2.3.1.2 The SetM GIGOTItIN wuvvveeirreeenesssssssissssnnneesssssssssssssssssesssssssssssssnnnsnsssssssses 18

2.3.2 The Apriori algorithmi..........cceiiviiiiiiiiieeee e 19

2.4. Improvements on the classical algOrithmsc.cceevveeiiveiiivnicissnenssnncssnnecseresnnnes 20
2.4.1 Transaction and item Pruning...........ccccoeeveiiiiiii it 20
2.4.1.1 AprioriTID and AprioriHybridccccccovviiiiiiiiiiiiiiiieiieee e, 20

204 0.2 DHP.......cooiiiiiiiiiiii i 21

2.4.2 Reducing the number of database PasSes..........ccveeeeieeeriiieeeriiieeeeiieeeeieeeerveeens 22
2.4.2.1 Database PArtitioningc..ccceeeiueeoeeaieaiieaieeeee et 22
2.4.2.2 Dynamic itemMsSet COUNLINGc..ceuouueeseieaiieeeeieeeeiiee e e 22
2.4.2.3 Using Sampling teCANIQUES...................cccceeveeiiiiaiiaiieaiiesie et 23

2.4.3 Handling the problem of long frequent itemsetscccceeeevveeeriieecieiieeeiees 24
2.4.3.1 Finding maximal freqUent-Sets................c..cccouvueviemieaiieiie e, 24
2.4.3.2 FP-growth and TreeProjection....................ccccccuucueieiaieesiieiieeeeeeeee e, 24

2.5. Extensions and variations of the problem of mining association rules 25
2.6. Constrained association rule MiniNgceeeeenennseenseesssenssecssesssscsssessassssnssssnses 26
2.6.1 Types of TUle CONSIIAINESeieiiiieeiiieeeciee e eeee et eere e eve e e eesra e e e raeeeeseeeenes 27
2.6.2 Constrained frequent-set QUETIEScecvveeeriiiieeiiieecieiieeeeieeeeereeeeseaeeeeereree e 27
2.7. Incremental mining of association rulescceicvveiiieicssneeicinecssnccsnncssnnecsnnnes 28

2.7 1 FUP aNd FUP ..ottt ettt e ensne e 28

2.7.2 Using sampling techniques to trigger update..........cccceeeeuveeeniieeeiieiie e, 29

2.7.3 USING €AY PIUNING ...eeevviieiiiiieciiie ettt et et e e e e e eaae e e s taeeesanaeeens 29

2.7.4 Using the negative DOTAETcccuueiiiiiiiiiieecteee ettt e e 30

2. 7.5 ECUT and ECUToiiiiiiiieeeeeeeeeee et 30

L0 3 - T o - e 32
3. Foundations of the proposed algorithm ICAP 32
3.1. The Problemeiccnneiicnsssnniccsesssssicssssssecssssssessass 32
3.2. Constrained mining of association rulesoeeeeersennseenseeenisnensnensenssncsssecsaensanes 34

3.2.1 The framework of constrained frequent-set qUETIESccceeevvreeerrireeiinreeennee. 34
3.2.1.1 definition of constrained frequent-set QUETIEs...................ccoccvevcueecuveneeannnnn. 34
3.2.1.2 Anti-monotonicity and SUCCINCINESScceeeeeeeeeaieeniieeieeeiee e, 36

3.2.2 The Constrained APriori (CAP) algorithm............cccoeeviiiiiiiiiiieieeeeeeee, 39

3.3. Incremental mining of assoCIaAtion rulesecevveecvsercsseicisssnncssnnicssencssnnecsneesnnes 43
3.3.1 Problem definitionc.eeiiuiiiiiiiiie e 43

3.3.2 Definition of the negative bOrder.............coevuiiiiiiiieeiiiie e 44

3.4. Incremental mining of constrained association rulescccceeveecieecsseneeecsneennns 46
3.4.1 Formal problem definition...........cccccuiiiiiiieiiiiiee et 46

3.4.2 The constrained negative DOTAETc.eeeevviiieiiiieeceiiee et 46

L0 3 - T o = 51
4. The proposed algorithm ICAP..........cecoiiiricrrrrrre e 51
4.1. Algorithm deSCrIPLiONccceieiviiiisencisencsssstrinsnicsssnesssnicsssnessssssscsssnessssscsssessssessases 51
4.2. Computing the constrained negative bordereeeeecneenieesseeensecssnnssncssaecsaens 54
4.3. COorrectness Proofeeccceicnseiniseiesissnnnsssncssnecsssnessssscsssssssssssssssssessssssssssesssssssoses 55
4.4 WHen t0 USE ICAPY ...uuuueeenveresnrinnnresssnnissssrsssssscssssesssssesssssssssssssssssssssssssssssssssssssnss 57
4.5. Implementation detailS........ccceeevveiicscrnicsssssssannccsssanecssssssscssssssessesssssssssssssssssssssssase 58
4.5.1 Choice Of data StIUCIUTES.eeiuieiiieeiie ettt ettt e e 59

4.5.2 Notes on the implementation 0f CaPc.eeevevviieriiiieeiiieeeeeee e 60

L0 =1 o1 = S 62
5. Performance study.............cccoiimmmmmmininnii e, 62
5.1. The experimental environment and performance parametersc..cceceeeveecuncene 62

5.2. Measuring performance for different increment sizes and different query

EYPES cecrrerercnnicssnnesssnrcsssnesssssnnsssssssssssssssssssssssssssassssssssssssssssassssssssssasssssssssesssssssssssssnsessssssssnss 64
5.3. Measuring scalability with database SiZecccceevvereivrinireicicssnncssnrcssnnsssercssaneee 69
5.4. Measuring sensitivity to item SEleCtiVityccccceervercssurcsssnrcssnnercssnicssnncssnssssanessannes 71

L0 3 - T o =Y < 73

6. Conclusion and suggestions for future Work...........cccccevrvennnnnee. 73
6.1, CONCIUSION a...coreericiicnricnssnnicsssssssnsecssssssessssnssessssssessesssssssssssssssssssssssssssssssasssssssasssssns 73
6.2. Suggestions for future WOrKceicoeicivicnceicscssncnsnncssencssnisssssssssnssssssssssssssssases 73

7. References...... et e e e e e 75

Figure 2.1:
Figure 2.2:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:

Figure 5.7:

TABLE OF FIGURES

An overview of the steps comprising the KDD process..........cccceeeeveeeeciieeeevennnenn. 14
ALZOTIENM APFIOFT ..ottt e 20
Syntax of Constraint CONSIIUCESc..cccviiriieriierieeneieeereeeieeereeereeereesaaeesaneens 35
A database eXAMPIEcccuiiiiiiieieiee e e as 38
High level description of the CAP algorithmcooceiiiiiiiiiiiiee, 42
The set of frequent itemsets with their negative border (shaded)...............c......... 44
A high level description of the algorithm JCAPcccocvveviveeiieiciieeiieeieeeee. 53
A high level description of the function constrained-negativeborder-gen............ 55
A Venn diagram of the possible intersections of L”* , CNBd (Lf ?) ,and L ... 55
A PIETIX tTCC .eeeeiviieeiiie e eiee ettt e et e et e e et e e e s tta e e e s ataeeeenaaeeesssaeeenssesteeennneeas 59
The implementation of Prefix treec.oovvuieeiiirciieiiieeee e 60
Speed up for succinct only and non-succinct non-anti-monotone constraints....... 65
Speedup for succinct anti-monotone CoNStraint...........ccceeeeeveeeeeveeeeieceeeesveeeennnenn. 65
Speedup for anti-monotone CONSIAINTccuveeeruireeiieeeeeieeeereeeeree e eeee e 66
Speedup for a hybrid CONSraINteeeeiiiieeiiie e 68
Average Speedup for the hybrid constraintccccceevveeiiieniiieniieeiieeeeeees 68
Measuring performance for different database Sizesc.ccecvveevvieeciieeciieenneeennen. 70
Measuring performance with item seleCtiVity........ccceevveieevieeinciiie e 71

Chapter 1

INTRODUCTION

1.1. General

Following the explosive growth of the amount of data gathered by transactional systems, a
challenge for finding new techniques to extract useful patterns from such a huge amount of
data arose. Data mining emerged as the new research area to meet this challenge. Recently,
data mining attracted a lot of research attention.

Two important issues demonstrate themselves in the data mining field, namely interactive
mining and incremental mining. The first one is due to the huge amount of time it takes
virtually all mining tasks to complete. Besides, if those tasks are left unguided, they can
produce a great number of patterns leaving the user confused trying to extract what is really
interesting for him. Thus, interactive mining through user-defined constrained queries in
which the user specifies his interests (constrained mining) is essential to prevent data mining
from becoming itself a knowledge problem [15, 26, 29, 43, 27, 28, 46, 1, 14].

The second issue, incremental mining, demonstrates itself in normal working environments.
After initial investigation of the stored data, data starts to accumulate in small increments. It
would be natural to try to adapt the mining tasks to handle those increments in an efficient
manner using previously discovered patterns rather than mining from scratch [12, 20, 21, 23,
24, 30, 36, 39, 44].

Mining association rules, as one of the several data mining tasks, has a big share in the data
mining research. This is attributed to its wide area of applications. Applications of association
rule mining span a wide area of business from market basket analysis, to analysis of
promotions and catalog design and from designing store layout to customer segmentation
based on buying patterns. Other applications include health insurance, fraudulent discovery
and loss-leader analysis [5, 8].

Mining association rules has the same challenges facing data mining in general. It is non
trivial to perform incremental or constrained mining of association rules in spite of their
obvious practical benefits. Many research efforts tried to present separate solutions for these

two problems. Furthermore, the future is for constrained association rule mining and many

see that it should become the standard [26, 29, 35, 27]. A challenge lies in how to efficiently
maintain the discovered rules that satisfy certain constraints incrementally without having to

redo the whole task from scratch.

1.2. Motivation Of The Work

The great practical benefits of mining association rules and its wide area of applications have
led to several proposals for fast mining of association rules. Those proposals, although
contributed towards making the process more applicable in practical systems, still suffer from
the problem of the huge amount of generated rules that are both confusing and most of the
time not useful to the user. That’s why constrained mining of association rules is a necessity
for interactive mining. This is best described in what is quoted from [26]: “Data mining is
most effective when the computer does what it does best - like searching large databases or
counting - and users do what they do best, like specifying the current mining session’s focus.
This division of labor is best achieved through constraint-based mining, in which the user
provides restraints that guide a search.”

Incremental mining is also a necessity if we are ever going to implement true practical data
mining systems. Several research efforts showed that we could benefit greatly from
previously discovered association rules to speed-up the process of producing the new set of
rules after updates to the database. This gives a great improvement over the naive approach of
running a traditional algorithm over the new set of data no matter how good such an
algorithm.

The research community focused on providing solutions for the two problems separately.
Incremental association mining algorithms focused on maintaining the discovered rules that
have the same support constraints, namely those which qualify for the same setting of
minimum support as the original database before updates. On the other hand, the framework
introduced in [35] and the introduction of other kinds of constraints together with the notion
of anti-monotonicity and succinctness of constraints served the purpose of optimizing the
execution of the mining algorithm for a set of user-defined constraints.

The previous points can be summarized by saying that the importance of mining association
rules and the necessity of interactive and ad-hoc mining together with the need for
incremental mining of associations highly motivate the need for effective techniques to
incrementally mine association rules with constraints other than the traditional minimum

support constraint [27]. So far, no such techniques have been proposed in the literature.

1.3. Scope Of The Work

In this thesis, a new algorithm for incremental mining of constrained association rules is
proposed. The proposed algorithm fills the existing gap between incremental mining
researches and constrained mining researches. The algorithm incrementally maintains the
constrained frequent-sets after a database update. These frequent-sets were generated
according to a user-defined constrained frequent-set query and originally discovered using
the constrained association rule mining algorithm CAP (Constrained APriori) [35]. The
output of the algorithm is the frequent-sets in the updated database that obey the original
constraints specified in the query.

For the purpose of developing the algorithm, the concept of constrained negative border is
introduced. It is the counterpart of the original negative border introduced in [45]. Proof'is
provided that it is an indicator for the necessity of checking the original database.

The key benefit of the proposed algorithm is that it requires at most one scan of the original
database only when database updates cause the constrained negative border to expand.
Several experiments were conducted to explore the relative merits of the new algorithm when

compared to rerunning the CAP algorithm on the whole updated database from scratch.
1.4. Thesis Organization

This thesis is organized as follows:

Chapter 2 presents the necessary background for the thesis. It presents the formal definition
of the problem of mining association rules and the classical approaches to the solution of the
problem. It also presents the recent improvements to the classical approaches and extensions
to the original problem.

Chapter 3 includes the necessary theoretical foundations for the proposed algorithm. First,
attention is devoted to the problems of incremental and constrained mining of association
rules since they perform the groundwork upon which the proposed algorithm is built. Both
problems are formally defined and the framework of constrained frequent-set queries is
presented. The important theoretical bases of both problems are also given. The necessary
formal definition of the problem of incremental mining of constrained association rules is
then given. The concept of the constrained negative border is introduced and it is proved that
it is an indicator for the necessity of checking the original database. Chapter 4 presents the

proposed algorithm in details and proves its correctness. The chapter also discussed when to

10

use the algorithm and gives some of the important implementation details. Chapter 5 presents
the performance study conducted on the proposed algorithm. Each conducted experiment is
discussed and detailed comments on the results are given. Finally, Chapter 6 concludes the

thesis and gives some suggestions for future work.

11

Chapter 2

BACKGROUND

This chapter surveys the background necessary for the rest of the thesis. It starts in section 2.1

by a discussion of the importance of the recently emerging field "knowledge discovery in
databases" (KDD). It differentiates between the two terms KDD and Data Mining and then

presents the different data mining tasks. Focus is rapidly moved in section 2.2 to the task of

mining association rules. The section formally presents the problem and discusses the

different applications of association rule mining. In section 2.3, the classical algorithms for
finding frequent itemsets are presented. Section 2.4 surveys the different optimizations to the
classical methods. Section 2.5 discusses the many natural extensions to the association
mining problem that were discussed in the literature. Sections 2.6 and 2.7 are devoted to the

discussion of two of the main extensions to the problem, namely constrained and incremental
mining of association rules. Due to the specific relevance of these two areas to the subject of
the thesis, both sections survey the research done in the two areas and set the necessary

background before formally discussing the two problems in more detail in Chapter 3.
2.1. Knowledge Discovery in Databases

This section briefly introduces the general area of Knowledge Discovery in Databases (KDD)

to which this thesis belongs. Section 2.1.1 presents the motivations of this important research
area in brief. Section 2.1.2 differentiates between the general term KDD and the specific step
of Data Mining by formally defining both terms, and finally section 2.1.3 skims on the rather
diverse tasks of data mining.

2.1.1 Necessities of KDD

Recently, our capabilities of both generating and collecting data have been increasing rapidly.
The widespread use of bar codes for most commercial products, the computerization of many
business and government transactions, and the advances in data collection tools have

provided us with huge amounts of data. Millions of databases have been used in business

12

management, government administration, scientific and engineering data management, and
many other applications. It is noted that the number of such databases keeps growing rapidly
because of the availability of powerful and affordable database systems. This explosive
growth in data and databases has generated an urgent need for new techniques and tools that
can intelligently and automatically transform the processed data into useful information and
knowledge. Consequently, data mining has become a research area with increasing
importance [19]
In [16], three questions were posed, in which Data Mining would make a good answer:

a- The query formulation problem: how can we provide access to data when the user

does not know how to describe the goal in terms of a specific query?

b- How can we visualize and understand a large data set?

c- How can we cope with the increasing volume of data with time?
In the first problem, a good — and a rather natural — answer would be to state the query by
example. In this case, the analyst would label a training set of cases of one class versus
another and let the data mining system build a model for distinguishing one class from
another. A typical example of such task is classification.
As for the second question, the problem is that data increases in both the number of fields
(dimensions) and the number of cases (tuples). A solution of the number of dimension
increase is to project the data set along a fewer-dimension space. However, this both
increases the difficulty in modeling the data set for analysis and increases the number of
possible combination for dimension reduction for higher numbers of dimensions. The Data
Mining solution is to help perform the appropriate reductions by exploring all possibilities
and selecting the right samples and attributes, then it may proceed to visualize the results for
the user or analyst.
Concerning the fast increase in the rate of data volume growth, data mining can help in
employing all available data in the analysis by utilizing the results performed on the previous
one an adding the results of the new set in an incremental manner in such a way that no
manual techniques could cope with. This is actually the distinguishing goal of KDD; dealing

with a huge amount of data.
2.1.2 KDD or data mining?

Many publications use the term Knowledge Discovery in Databases as a synonym for Data
Mining. Among the definitions for Data Mining are: “The efficient discovery of previously

unknown patterns in large databases.” [6] and “The non-trivial extraction of implicit,

13

previously unknown and potentially useful information (such as rules, constraints and
regularities) from data in databases.” [19]. However in [16] there is a preferable distinction

between the two terms which will be chosen as their formal definition.

Definition 2.1: Knowledge Discovery in Databases (KDD)

It is the process of identifying valid, novel, potentially useful, and ultimately understandable

structure in data. a

Definition 2.2: Data Mining

It is a step in the KDD process that, under acceptable computational efficiency limitations,

enumerates structures (patterns or models) over the data. Q

Data Mining refers to a particular step in the process of KDD. The additional steps in the
KDD process, such as data preparation, data selection, data cleaning, incorporating
appropriate prior knowledge, and proper interpretation of the results of mining, are essential
to ensure that useful knowledge is derived from the data. The following figure represents the

required processes for effective knowledge discovery.

c o | =

o — £ | o o

HEEREEE |5

o3 S o st = Structures, ==
R E &S M e3|—™" » Patternsand | 5.2

°s L5 ? ":EE £ Models ®w =

[ud fud | & (] LU

O o ; I:

e S

—— s
—
.H-\-"—\. —
a
—

Figure 2.1: An overview of the steps comprising the KDD process [16]

"Knowledge” Visualization

14

2.1.3 Data mining tasks

Several data mining tasks exist. There are many attempts towards classifying and
enumerating them (e.g. [16, 19]). However, the field is experiencing quite an explosion in
research directions and extensions that might deem any attempt to enumerate those tasks and
their variations and extensions incomplete. In the following, the most famous and agreed
upon tasks are enumerated.

Association Rule Mining: 1t is the task of inferring rules which states that certain values occur

with other values above a certain frequency in data with some pre-specified certainty. It is the

focus of this thesis and thus will be given more attention shortly.

Classification: 1t is the process which finds the common properties among a set of objects in
a database and classifies them into different classes, according to a classification model. The
objective of the classification is to first analyze the training data and develop an accurate
description or a model for each class using the features available in the data. Such class
descriptions are then used to classify future test data in the database or to develop a better

description (called classification rules) for each class in the database.

Clustering: It is the process of grouping physical or abstract objects into classes of similar
objects. The term unsupervised classification is also often used. The term comes from the
differentiation between Clustering and classification. The difference is that — though both
methods produce a set of clusters with similar properties — in clustering, we don’t know the
number of output classes in advance. Clustering analysis helps construct meaningful
partitioning of a large set of objects based on a “divide and conquer” methodology which
decomposes a large scale system into smaller components to simplify design and

implementation.

Mining Discriminant Rules: A discriminant rule is an assertion which discriminates concepts

of the class being examined (the target class) from other classes (called contrasting classes).
For example, to distinguish one disease from others, a discriminant rule should summarize

the symptoms that discriminate this disease from others.

Mining Sequential Patterns: It can be stated informally as follows: The input data is a set of

sequences, called data-sequences. Each data sequence is a list of transactions, where each
transaction is a sets of items (literals). Typically there is a transaction-time associated with

each transaction. A sequential pattern consists of alist of sets of items. The problem is to

15

find all sequential patterns with a user-specified minimum support, where the support of a

sequential pattern is the percentage of data sequences that contain the pattern.

Pattern-Based Similarity Search: This is closely related to mining sequential patterns. Here,

however, it is required to identify patterns in the data that are similar to each other. This
similarity search can be defined as relative to a certain object or within a specified range of a
user-specified metric, or else the task might be to find all pairs of similar patterns within a

pre-specified range of the metric function.

Change and Deviation Detection: Deviations have been considered in many applications (e.g.

Al) as outliers or noise in the data. However, they are the main focus of deviation detection
schemes. The role of these schemes is to spot and isolate deviations in the data. The
deviation detection problem can be considered a special case of the clustering problem as
requiring to cluster data into deviations and non-deviations clusters. Deviation detection
techniques rely on the redundancy present in the data to spot deviations as opposed to
explicit information sources that resides outside the data as integrity constraints or predefined

error/non-error patterns.

2.2. Association rule mining

2.2.1 Problem definition

The problem of finding association rules can be stated as follows [19]: given a database of
sales transactions, it is desirable to discover the important associations among items such that
the presence of some items in a transaction will imply the presence of other items in the same
transaction. An example of an association rule is: 30% of transactions that contain beer also
contain diapers; 2% of all transactions contain both of these items. Here 30% is called the
confidence of the rule, and 2% the support of the rule. The problem is to find all association
rules that satisfy user-specified minimum support and minimum confidence constraints [3].

The problem of mining association rules was first introduced in [5] and the following formal

definition was proposed in [8] to address the problem.

16

Definition 2.3: Association Rules

Let ltem = {il Y S }be a set of literals called items, DB be a database of transactions where
each transaction T < Item and has a unique identifier, 7/D. Given an itemset X < Item, X is
contained in 7 iff X < T. An association rule is an implication of the form S, = S, where

both S, (rule antecedent) and S, (rule consequent) are itemsets and S, NS, = @ . A rule has
support s iff s% of the transactions in DB contain S, U S, . A rule has confidence c iff ¢% of
the transactions containing S, also contain S, U S, . An itemset is frequent iff its support

exceeds a certain support threshold minsup. Q

The problem of discovering all association rules can be decomposed into two sub-

problems [5]:

a- Find all sets of items (itemsets) that have transaction support above the minimum
support. These are the frequent itemsets. Other itemset called infrequent itemsets.

b- Use the frequent itemsets to generate the desired rules.
There is a wide agreement among the literature that the first sub-problem is the most
important of the two. This is because it is more time consuming due to the huge search space
(the power set of the set of all items) and the rule generation phase can be done in main
memory in a straightforward manner once the frequent itemsets are found [8]. That is the
reason for the great attention researchers paid to this problem in the recent years. Another
reason for such attention may be due to the dispute among the research community about the
confidence as a measure of rule importance or interestingness. Contrary to support,
confidence received much criticism and many alternatives have been suggested with no

global acceptance of one measure (e.g. [10, 17]).
2.2.2 Benefits and applications

The most famous application of association rules is its use for market basket analysis [4].
Consider a supermarket setting where the database records items purchased by a customer at
a single time as a transaction. The planning department may be interested in finding
“associations” between sets of items with some minimum specified confidence. Such
associations might be helpful in designing promotions and discounts or shelf organization and

store layout.

17

However, association rules have many other fields in which it have been helpful. In [11], two
successful examples for the application of association rules in the telecommunications and
medical fields for performing partial classification is reported. Association rule mining has
been also used on other types of data sets. It has been used to mine web servers log files to
discover the patterns that access different resources consistently and occur together or the
access of a particular place occurring at regular times. Other types of data include census data
and text documents as in [17] for example. Other examples of applications of association
rules include catalog design, customer segmentation based on buying patterns, fraudulent

discovery and health insurance.
2.3. Classical algorithms for finding frequent itemsets

All classical approaches to the problem benefit from the downward closure property of
frequent itemsets with respect to set inclusion. It is proved that if an itemset is frequent then
so must be all its subsets [8]. Using this property, all classical approaches, lest for the first
two algorithms AIS and SETM, start by finding frequent itemsets of size 1 and continue
extending the search to their supersets of size 2 as candidates of which large 2-itemsets are
generated and so on. This is why such approach is often called the level-wise or the bottom-

up approach because of the way they search the lattice of subsets.

2.3.1 AIS and SETM

2.3.1.1 The AIS algorithm [5, 8]

Candidate itemsets are generated and counted on-the-fly as the database is scanned. After
reading a transaction, it is determined which of the itemsets that were found to be large in the
previous pass are contained in this transaction. New candidate itemsets are generated by
extending these large itemsets with other items in the transaction. A large itemset / is
extended with only those items that are large and occur later in the lexicographic ordering of
items than any of the items in /. The candidates generated from a transaction are added to the
set of candidate itemsets maintained for the pass, or the counts of the corresponding entries

are increased if they were created by an earlier transaction.

2.3.1.2 The SETM algorithm [8]

The SETM algorithm was motivated by the desire to use SQL to compute large itemsets. Like

AIS, the SETM algorithm also generates candidates on-the-fly based on transactions read

18

from the database. It thus generates and counts every candidate itemset that the AIS
algorithm generates. However, to use the standard SQL join operation for candidate
generation, SETM separates candidate generation from counting. It saves a copy ofthe
candidate itemset together with the transaction identifier (7/D) of the generating transaction
in a sequential structure. At the end of the pass, the support count of candidate itemsets is
determined by sorting and aggregating this sequential structure.

The problem with these two algorithms was the size of the candidate sets generated of which
many will be found infrequent. However, those algorithms remain important as the first

attempts to generate association rules.
2.3.2 The Apriori algorithm

This pioneering work appeared first in 1994 [8] and remained the standard reference of all
algorithms for finding association rules. It outperformed the previous algorithms by a great
margin. The major difference in Apriori was the much less candidate set of itemsets it
generates for testing in every database pass. Here comes the time saving. The algorithm
benefited of the fact that for an itemset to be frequent, all its subsets must be frequent.

The algorithm starts by collecting all the frequent 1-itemsets in the first pass. It uses this set
(called L;) to generate the candidate sets to be frequent in the next pass (called C5) by joining
L; with itself. The trick here is that the algorithm eliminates from C, any set that has a subset
not in L;, because it knows a-priori that it can’t be frequent, hence reducing its size
dramatically. The algorithm proceeds in the same manner generating the candidates of size k
from the large itemsets of size k-1, then reduces the candidate set by eliminating all those
which have infrequent -1 subsets, then counts occurrences of the remaining candidates in the
next pass to find the frequent k£ itemsets. The algorithm terminates when there are no

candidates to be counted in the next pass. Figure 2.2 gives the high-level description of the

Apriori algorithm.

From the above, it can be seen that the algorithm makes k passes on the database where & is
the size of the largest frequent itemset. This is the main drawback of the algorithm, especially
if this k£ is large enough. Despite this drawback, the algorithm inspired the research
community to further investigate the problem, and this lead to several optimizations and
extensions to the algorithm and other approaches to the problem that differed from the level-

wise approach. These extensions will be surveyed in the next sections.

19

Procedure AprioriAlg()

1 Begin

2 L; = {frequent 1-itemsets};

3 for (k=2;L,;#¢;k+t+)do{

4 C; = apriori-gen(L,.;); // New candidates
5 forall transactions ¢ in the dataset do {

6 forall candidates ¢ € C; contained in 7 do
7 c.count++;

8 H

9 L, = {c € C; | c.count > min-support}

10 }

11 Answer = Uk L,;

12 End

Figure 2.2: Algorithm Apriori [8]

2.4. Improvements on the classical algorithms

Following the presentation of the Apriori algorithm, which greatly improved the performance
of discovering association rules, making it more practical and appealing, the research
literature was flooded by several efforts trying to improve on it. These efforts came in many

forms and are the subject of this section.
2.4.1 Transaction and item pruning

This is one of the main optimizations of the Apriori algorithm. It is not needed to inspect the
whole database each time it is needed to count occurrences of the candidate itemsets. This
optimization reduces drastically the time needed to count the support for the candidate sets

and enhances performance. Transaction pruning was present in two algorithms; AprioriTid

[8] and DHP [37].

2.4.1.1 AprioriTid and AprioriHybrid

AprioriTid was proposed in the same paper with Apriori [8]. Though it does not state it
explicitly, it uses transaction pruning to improve Apriori’s performance. The main difference
from Apriori is that it does not use the whole database to count support for candidate sets,
rather, it uses another set it called C;’ in which every member is in the form of <TID, {X}}>,

where each Xj is a potentially large k-itemset present in the transaction with identifier 77D.

20

Thus, if a transaction does not contain any large k-itemset, it will not be present in Cj’ hence
dropped out of consideration. This reduces the database size drastically especially in later
phases when k increases. The rationale behind the operation of AprioriTid is obvious, since
for a transaction to contain any frequent k+1-itemset, it must contain all its subsets which are
also frequent, hence it must contain at least one frequent k-itemset.

The main drawback of this algorithm is that the size of the alternative set C;’ that represents
the database may exceed the size of the actual database in early stages thus loosing its edge
on Apriori. This motivated the authors of the algorithm to propose another algorithm,
AprioriHybrid, that uses Apriori at the first stages and then switches to AprioriTid when
transaction pruning becomes more effective. When to switch between the algorithms is not

clear, however, and the authors showed that it can be determined heuristically.

2.4.1.2 DHP

In 1995, Park et al. [37] proposed DHP, which stands for Direct Hashing and Pruning. They
observed that the bottleneck of Apriori is in the early stages, thus they proposed an effective
hashing technique to further reduce the size of the candidate 2-itemsets. The reduction of the
number of candidate sets gives the opportunity for effectively reducing the database size for
the next counting pass. The authors observed that for a transaction to contain a frequent k+1-
itemset, it must contain at least k+1 frequent k-itemsets. The algorithm then counts the
number of candidate k-itemsets a transaction contains while counting support for candidates.
If the transaction does not meet the required threshold, it can be eliminated from
consideration in the next pass.

Another optimization, item pruning, in which the transaction size is reduced by eliminating
certain items from consideration was also proposed. The authors observed that for an item to
appear in a frequent k+1-itemset, it should appear in at least & frequent k-itemsets (the
possible k subsets of size k of the frequent k+1-itemset that includes it). Thus while counting
support for candidate k-itemsets, an item is pruned off the transaction if it is found to appear
in less than k candidates.

DHP, with its optimizations, effectively improved on Apriori and turned attention towards
methods to decrease the I/O overhead. However, it still required the same number of database
passes as Apriori leaving this problem still unsolved. Another critique to the pruning methods
presented in DHP, cited in [48], is that to exploit their benefits, the whole database should be
rewritten several times which is obviously worse than just reading it. Otherwise, such pruning

methods can be done logically by filtering the transactions.

21

2.4.2 Reducing the number of database passes

As mentioned before, the main drawback of the classical Apriori is the several passes it has to
do on the database the number of which is equal to the length of the longest frequent itemset
(pattern)” present in the database. Many optimization efforts focused on eliminating the
number of database passes. They differed, however, in how the number of passes is reduced.

This is the focus of this section.

2.4.2.1 Database partitioning

This technique was exploited in the Partition algorithm, proposed by Savasere et al. in

1995 [40]. The algorithm reduces the database activity by computing all frequent sets in two

passes over the database. The algorithm works also in a level-wise manner, but the idea is to
partition the database into sections small enough to be handled in main memory. That is, a
part is read once from the disk, and level-wise generation and evaluation of candidates for
that part are performed in main memory without further database activity. The first database
pass consists of identifying the collection of all locally frequent sets in each database part.
For the second pass, the union of the collections of locally frequent sets is used as the
candidate set. The first pass is guaranteed to locate a superset of the collection of frequent
itemsets; the second pass is needed to merely compute the frequencies of the sets to extract
the global frequent sets.

The main achievement of Partition is the reduction of the database activity. It was shown that
this reduction was not obtained at the expense of more CPU utilization, which is another
achievement. It was shown, however, that the number of partitions greatly affects the
performance of the algorithm by affecting the number of locally frequent itemsets that turn to
be globally infrequent. The algorithm was also shown to be vulnerable to data skew.

However, a remedy was proposed for this problem in the same publication.

2.4.2.2 Dynamic itemset counting

Another algorithm called DIC (Dynamic Itemset Counting) was proposed by Brin et al. in
1997 [18]. It tries to reduce the database activity by counting candidate itemsets earlier than
Apriori does. In Apriori, candidate k+1-itemsets are not counted until the k+1% pass on the

database (although an optimization called pass bundling [8, 33] permits counting candidates

" The term frequent pattern has been used freely in the literature to mean firequent itemset. Both refer to a subset

of the universal set of items.

22

of different sizes in the same pass if memory is available). In DIC, on the other hand,
candidate k+1-itemsets are counted as soon as the algorithm discovers that all its subsets of
size k have exceeded the support threshold and will be frequent. This is done by stopping at
various points in the database to examine the possibility of including other itemsets in the
counting procedure. It has been found that such technique, with reasonable setting of the
number of transactions passed before stopping for recalculation, can reduce the number of
database passes dramatically while maintaining the number of candidate sets that need to be
counted relatively low compared to other proposed techniques.

The algorithm, though more efficient than Apriori, was found to be vulnerable to data
characteristics. A remedy was suggested for this problem with experimental success. It was
also shown that by changing the logical order of items according to certain criteria, the
performance of the algorithm increases dramatically. However, this item reordering strategy

incurs a lot of overhead.

2.4.2.3 Using sampling techniques

In 1996, H. Toivonnen [45] proposed an algorithm that uses sampling to produce association
rules. The algorithm can produce exact association rules in one full pass and two passes in the
worst case. The idea of the algorithm is to pick a random sample of the data, find all the
frequent itemsets in the sample and then verify the result on the database. The choice of the
size of the sample and the support threshold is done by statistical methods. The support is
slacken such that the frequent itemsets found in the sample are guaranteed to be a superset of
the true frequent itemsets. The algorithm uses the concept of the negative border (see section

3.3.2) to ascertain that the itemsets found are truly the whole set of frequent itemsets. If a

miss is reported in the first pass, a second pass is needed to gather information on the missed
itemsets. A miss means an itemset in the negative border of the discovered set of itemsets in
the sample which was found to be frequent, this indicates that it may have a superset that is
also frequent. Such supersets are the ones that need to be tested in the second pass. However,
this happens rarely if the sample size is well chosen according to the required support
threshold.

The algorithm was shown to perform well compared to other level-wise algorithms and to the
Partition algorithm. The database activity is reduced effectively to one pass. The only
drawback of the algorithm, however, is that it has to test many spurious candidates due to the

reduced support threshold and to guarantee a superset of the actual frequent itemsets.

23

2.4.3 Handling the problem of long frequent itemsets

The previous algorithms, were proved to scale almost linearly with the size of the database.
This was supported theoretically in [49]. However, all such algorithms deteriorate
exponentially with the length of the longest frequent itemset [13, 31, 7, 13]. Thisis an
inherent problem due to the closure property of frequent itemsets with respect to set
inclusion. Thus, if a long frequent pattern exists, it is accompanied by an exponential number
of other frequent patterns which represent its powerset. This triggered research aiming at
improving the performance of the classical algorithms both in terms of the execution speed
and the size of the data structures needed to hold the required candidates to be counted when
the database includes very long frequent itemsets. These efforts are the subject of the next

two subsections.

2.4.3.1 Finding maximal frequent-sets

This new approach to the problem observes that we need not produce the whole set of
frequent itemsets, instead we can produce the set of maximal frequent sets. A maximal
frequent set is the one that has no proper frequent superset. Thus, the set of maximal frequent
sets describes concisely the whole set of frequent itemsets and hence it is enough to produce
them as an output. The search for the maximal frequent itemsets does not proceed in the
ordinary bottom-up fashion of the level-wise algorithms and their variants. Rather, it may
start searching for maximal frequent sets either by traversing up the lattice of subsets in
earlier stages looking ahead for candidates (this approach is presented in the algorithm
MaxMiner by Bayardo [13]) or by starting a top-down search of the lattice together with the
normal bottom-up search (as presented in many algorithms, e.g. Pincer-Search by Lin et al.
[31] and MaxEclat and MaxClique by Zaki et al. [7, 13]).

The above algorithms perform an order of magnitude faster than the best implementations of

ordinary level-wise algorithms that produce the whole set of frequent itemsets.

2.4.3.2 FP-growth and TreeProjection

Two very recent studies [27, 2] tackled the problem of long frequent patterns. In [27], a novel
data structure called the FP-tree (Frequent Pattern tree), which is an extended prefix tree
structure [33], to compactly store the set of frequent patterns. The benefit of this data
structure is that it can be efficiently constructed from the database and then mining can be
done on it without further reference to the original database. Furthermore, the ratio of the

size of the FP-tree to the size of the database it represents can be up to 1:150 [27]. This is a

24

tremendous gain since the structure holds all the necessary information needed to perform the
mining process. The reason this data structure can achieve such very high reduction in
database size is that it benefits from the fact that long frequent patterns share long prefixes,
this structure stores the shared prefix only once. An efficient algorithm FP-growth was
presented to find all the frequent itemsets from such data structure in a recursive manner and
was shown to be an order of magnitude better than the classical Apriori. It also has the
desired property of linear growth in terms of memory requirement with the length of the
longest frequent pattern and database size. The previous data structure and technique are the
subject of further investigations to be adapted for the different variations of the problem,
including the generation of the maximal frequent itemsets discussed above. The vairarions
will be discussed in the next section.

A similar recent work [2] presented another algorithm called TreeProjection that uses another
compact tree structure and performs mining recursively on smaller portions of the database to

achieve better performance gain over the classical methods.

2.5. Extensions and variations of the problem of mining

association rules

Since the introduction of the basic problem of mining association rules, several extensions
and variations of the problem were presented. In this section we skim on these extensions and
variations for the sake of completeness in surveying the research work related to the problem.
Two natural variations or extensions to the problem are the problems of mining constrained
association rules and incremental mining of association rules. Since proposing a solution to
both is the subject of this thesis, they will be surveyed in more detail in the next two sections
and will be formally defined in the next chapter.

Another natural extension to the problem is parallel mining of association rules. Several
algorithms were proposed, virtually all of them are parallel versions of the existing sequential
algorithms. A very good survey and a classification of all parallel and distributed algorithms
for mining association rules exist in [48].

In many applications, interesting associations among data items often occur at a relatively
high concept level. For example, the purchase patterns in a transaction database may not
show any substantial regularities at the primitive data level, such as at the bar code level, but

may show some interesting regularities at some high concept level(s), such as milk and bread.

25

Therefore, it is important to study mining association rules at a generalized abstraction level.
This initiated the study of mining generalized association rules [25, 42]

Interactive mining has always been a hot subject, and efforts to adapt the problem to be more
on-line existed. Among the efforts is the work in [22] which presented an algorithm for
discovering association rules in two phases where the user can interactively monitor the
discovered frequent patterns in the first phase and change the support threshold accordingly
until the first full pass on the database, then a second pass outputs the frequent patterns and
association rules according to the last setting by the user. In [34], the authors suggested using
a knowledge cache for the discovered patterns to speed up the response time of the algorithm.
Another inherent problem in the classical definition of association rules is that sometimes
items that rarely exist in the database are of interest to the user. However, for such items to
participate in the discovered rules, the support threshold should be set at a relatively low
value. Such a setting results in many other non-interesting rules. On the other hand, raising
the support threshold blocks any knowledge about the interesting item. This problem, called
the rare item problem, was presented in [32] and an algorithm that enables the user to
specify several minimum supports to reflect the nature of the items and their varied
frequencies in the database was proposed. In rule mining, different rules might need to satisfy
different minimum supports depending on what items are in the rules.

Mining inter-transaction association rules [47] and mining sequential patterns [9] add a
temporal component to the problem in different manners. In these problems, the object of the
mining process is to discover frequent patterns that occur ordered within some specified
period of time.

Another variation of the original problem is mining for negative association rules. The
intuition behind this is that sometimes it is informative to know which items do not occur
together. The direct approach to the problem suggests considering the disappearance of an
item from a transaction another virtual item and apply the same classical techniques. This is
clearly inefficient and produces a horrendous amount of unnecessary and uninteresting rules.

Efficient solutions to the problem are present in [41].
2.6. Constrained association rule mining

After the first introduction of the problem of mining associations in the context of market
basket analysis, it has been tested on other types of data [15]. Domains other than market-

basket data tend to be dense. Properties of dense data sets are found in [15]. Mining dense

26

data cause an exponential blow up in the size of the generated rules if we only use support
and confidence constraints [15]. Paradoxically, data mining produces such great amounts of
data that there is a new knowledge management problem [28, 46].

Another observation that follows immediately from the previous observation is that despite
the huge volume of produced rules, a small fraction of which may be useful or of practical
interest to the user. This is because the user may be interested in only a subset of items, or in
the presence or absence of a certain item in either the rule antecedent or consequent or both.
In an interactive mining environment, it becomes a necessity to enable the user to express his
interests through constraints on the discovered rules, and to change these interests
interactively.

The previous reasons motivated the emerging of the problem of discovering constrained

association rules which will be discussed in the next subsections.
2.6.1 Types of rule constraints

The most famous rule constraints are item constraints, which are those that impose
restrictions on the presence or absence of items in a rule. These constraints can be in the form
of a conjunction or a disjunction. Such constraints have been introduced first in [43] where a
new method, for incorporating the constraints into the candidate generation phase of the
Apriori algorithm, was proposed. In this way, candidates are assured to obey the item
constraints besides the original support and confidence constraints. The definition given

in [43] also extends to constraints for items with a defined is-a hierarchy. In [28], a

framework of mining such constraints using user-defined templates, that can be acquired
through an appropriate interface, is investigated together with a tool for rule visualisation.
Other famous types of item constraints are rules with fixed consequent or with one item in the

consequent [15].
2.6.2 Constrained frequent-set queries

Item constraints are not the only possible type of rule constraints. Ng et al. [35] presented a
wide range of constraints on rules that extends from relational operators on values of the
items to constraints on the value of some aggregate functions calculated on the rule items.
They defined what is called Constrained Association Queries (CAQs) (latter renamed to the
more appropriate name Constrained Frequent-set Queries (CFQs) in [29]) and presented an
excellent classification of constraint constructs that can be exploited in them by introducing

the notions of succinct and anti-monotone constraints. The CAP (Constrained APriori)

27

algorithm was presented for efficient discovery of constrained association rules. See section

3.1 for a detailed formal discussion of the problem and presentation of the CAP algorithm.

2.7. Incremental mining of association rules

As mentioned in chapter 1 and in section 2.5, incremental mining of association rules is a

natural extension to the classical problem. Its importance stems from its practicality and from
the nature of real data which tend to accumulate incrementally. Several proposals to solve the
problem were introduced. It is the aim of this section to briefly survey such work before

formally introducing the problem in section 3.3.

2.7.1 FUP and FUP,

The work in [20] is credited for being the first to draw attention to the problem of incremental
mining of association rules. In their paper, in which they presented an incremental algorithm
for maintaining association rules called FUP (Fast UPdate), Cheung et al. [20] stated that
maintenance of association rules involve searching for two things:

a- Losers, frequent itemsets that became infrequent after adding the increment data to the

database.
b- Winners, infrequent itemsets that became frequent after adding the increment data to the
database.

The second problem is harder to solve. FUP tries to benefit from the previously discovered
rules to generate a relatively small candidate set to be checked against the original database
by eliminating earlier itemsets that are either known to be still frequent or are deemed
infrequent just by checking the increment. This way, FUP improves performance drastically
compared to using the straightforward manner of rerunning the mining algorithm against the
whole updated database from scratch.

FUP deals with the situation in which the change in the database is in the form of inserting
new transactions. However, a database can be changed by either inserting, deleting or
modifying transactions. FUP, [21], was introduced to handle the general case of database
update by handling both insertions and deletions (note that a modification can be viewed as a
deletion followed by an insertion). The algorithm degenerates to FUP in case of only
insertions. In case of only deletions the algorithm shows excellent performance especially for
small deleted sets with respect to the original one (which is normally the case since the

original database tends to be huge in size). In the general case, the algorithm performs better

28

than rerunning traditional algorithms from scratch. However, the performance of FUP, was
found to degrade with the increase in the difference between the old and new sets of
transactions (which is quite intuitive and understandable). It was found that when the size of
the difference reaches around 40% of the original database, the incremental update algorithm

looses its edge.
2.7.2 Using sampling techniques to trigger update

A certain drawback of an incremental algorithm is that it incurs a large overhead if applied
too frequently (the extreme case is with every new update) with no practical benefit. On the
other hand, if it is applied at long intervals, either we may miss several important new rules
or, if the interval is too long or the updates are too frequent, the size of the update makes it a
bad choice compared to running a traditional algorithm to get the new rules from scratch. The
question is when it is efficient to use an incremental algorithm? DELI (Difference Estimation
of Large Itemsets) [30] is an algorithm that uses sampling to estimate the difference between
the old and the new sets of rules. If the difference is large enough to justify the overhead, an
incremental algorithm is used. If not, the old set of rules can be used as a good approximation
of the current situation. Clearly, we need a measure to tell when it is necessary to update.
DELI uses the set symmetric difference between the old set of large itemsets L and the new
one L’ , denoted by LOL', to measure the difference between them. Its size can vary from
|LOL|
2] +[2

an update. However, since we need |L'| to calculate the measure, and our aim is to estimate it,

\LeL'
[

measure through sampling.

zero to |L| + |L'| . So the ratio is intuitively a good candidate to indicate the need for

the ratio

is used instead and the aim of the algorithm is to get a good estimate of this

2.7.3 Using early pruning

A recent study [12] proposed an efficient algorithm, UWEP (Update With Early Pruning), for
solving the incremental mining problem. The algorithm benefits from the anti-monotone
property of support [35] to prune early candidates that need to be checked against the
database. It was proved that the number of candidates generated by UWEP is the minimum
possible. However, in spite of what was stated in the paper that the algorithm needs only one
scan on the updated database, UWEP actually passes on the updated database several times,

but instead of actually reading the database transactions it uses 7/DLists as in [40]. However,

29

we can argue that creating and maintaining such lists in the way presented in [12] may incur a
comparable overhead with actual passing on the database especially in the first couple of

passes.
2.7.4 Using the negative border

The major drawback of FUP and all its modifications is that they build on the Apriori
algorithm and its modifications. This means requiring as many passes on the database as the
length of the largest frequent itemset in the updated database. To remedy this problem, the
two research papers [23, 44] simultaneously proposed a marvelous algorithm for incremental
mining that uses the concept of the negative border introduced by Toivonen [45] to indicate
the need for an update of rules. It was proved that for an itemset to become a winner it should
have a subset in the negative border that is also a winner. Hence, if no winners appeared in
the negative border, there is no need for checking for more in the original database (see

section 3.3.2 for a proof of this result). The proposed algorithm managed to get the required

update in only one scan of the original database (which is typically an order of magnitude
more than the increment database). A similar study [39] uses also the concept of negative
borders to signal the need for updating the database. The main power of these algorithms rely
in that no scanning of the original database is done unless it is absolutely necessary. The
proposed algorithm in [39] requires re-computation of the negative border whenever a change
is detected.

The algorithms in [23, 44] (the BORDERS algorithm) are considered the best incremental
algorithms for mining classical association rules [24]. In fact, the proposed algorithm of this
thesis applies exactly the same concept but on the problem of mining constrained association

rules.
2.7.5 ECUT and ECUT"

The very recent work in [24] argues that, typically, data evolves dynamically with time
through additions and deletions of blocks of data. It introduces a new dimension called the
data span dimension, which allows user-defined selections of a temporal subset of the
database. As a result of the extra degree of freedom, efficient model-maintenance algorithms
for frequent itemsets and clusters are presented.

ECUT and ECUT" (Efficient Counting Using TIDLists) are the proposed algorithms for
maintaining frequent patterns. They proceed exactly like the BORDERS algorithm in [23, 44]

in the detection phase of new candidates for counting against the updated database. The

30

improvement is in the method used for counting these candidates. The ECUT and ECUT"
algorithms cleverly selects the relevant portions of the database which are needed to count the
support of the new candidates (much like an index structure efficiently selects the relevant
portions of data from the database). This is achieved through maintaining the database in a
TIDList format [40]. The difference between the two algorithms rely in the method of
constructing the TIDLists.

31

Chapter 3

FOUNDATIONS OF THE PROPOSED ALGORITHM ICAP

This chapter presents the theoretical foundations upon which the proposed algorithm, /CAP
(Incremental Constrained APriori), is built. These foundations include the theoretical bases of
incremental and constrained mining of association rules and the CAP (Constrained APriori)
algorithm on which the proposed algorithm is based.

The chapter is organized as follows: section 3.1 informally discusses the problem and the
several challenges that is faced when trying to tackle it. section 3.2 discusses constrained

mining of association rules. It begins by presenting the framework of constrained frequent-set
queries and then it presents the constrained association rule mining algorithm CAP in details.

Section 3.3 is devoted to incremental mining of association rules. The formal definition of

this problem is given. Since the negative border has an important role in solving the problem,

the formal definition of the negative border is also given. Section 3.4 formally presents the

new problem of incremental mining of constrained association rules. The constrained
negative border is proposed and proved to have the same importance as the original negative
border; namely being an indicator for triggering the scan of the original database after an

update.

3.1. The problem

This thesis proposes an algorithm to efficiently solve the problem of incremental mining of
constrained association rules. This problem, as described in the previous chapters, has two
separate foundations; namely the problems of incremental and constrained mining of
association rules. In the previous chapter, the general motivation of these problems were
discussed and previous work was surveyed. It would be appropriate, however, before
proceeding with the theoretical foundations upon which the proposed algorithm is based to
informally discuss the technical challenges faced when trying to tackle these problems.

The main technical challenges that faced researchers seeking a solution for incremental

mining of association rules were:

32

a- How to efficiently use the information previously collected about the original database.
This information was used both to reduce the number of candidates that needed counting
[12, 20, 21, 36] and to minimize the number of database passes.

b- How to wuse this information to effectively discover the necessity for updating the
discovered association rules [44, 23, 39, 30]. Latter on, the concept of the negative border
proved useful to reduce the number of passes to a single pass and only when itis
absolutely necessary [44, 23, 39].

On the other hand, constrained mining of association rules is faced with several other

challenges, for example:

a- How to provide the user with a rich tool to explore and exploit the semantics of data more
effectively?

b- The main challenge is how to integrate the constraints earlier in the mining procedure
(push the constraints deeply into the rule generation process) rather than using the naive
approach of running a traditional algorithm then using a post-processing pass to filter the
generated rules [26, 35].

Upon examination of the above challenges and seeing the proposed solutions, it would seem
natural then, to try to further increase the performance gain achieved in constrained mining of
association rules by applying the techniques of incremental mining. The motivations in this
case are similar to the original motivations of the problem of incremental mining of
association rules. This, however, is not at all trivial [12, 26, 25]. Several questions still need
answers:

a- How can we benefit from the properties of the constraints (either succinctness or
anti-monotonicity or both) in reducing the number of candidates that need to be tested
against the original database? It is to be noted that this is the primary challenge for an
incremental mining algorithm.

b- What is the effect of the succinctness or anti-monotonicity properties of constraints on the
notion of the negative border? It is to be noted that negative borders were extremely
useful in signaling the need for scanning the original database.

c- What data about the discovered frequent itemsets should be kept besides the support
count?

d- What happens if a database update introduced changes in the characteristics of the items
(e.g. a change in the items’ price or a change in the items’ is-a hierarchy)?

Answers to some of the above questions are the concern of this thesis. The next sections

present the theoretical basis on which the proposed work is based.

33

3.2. Constrained mining of association rules

As discussed in the previous chapter, association rule mining can produce a huge amount of
patterns that are most of the time not useful to the user. This lack-of-focus problem [35]
necessitates new means of expressing the user needs using convenient methods. The
framework of Constrained Frequent-set Queries, CFQs, was introduced in [35] to give a
solution to the problem. The queries were used as a means of specifying the constraints to be
satisfied by the antecedent and consequent of a mined association. In this section, this
framework is formally presented, focus is then moved to defining the notion of anti-
monotonicity and succinctness. The section concludes with a detailed description of the CAP
[35] algorithm which makes use of anti-monotonicity and succinctness to speed up the

process of discovering the constrained frequent-sets.
3.2.1 The framework of constrained frequent-set queries

In [35], an architecture for exploratory mining of association rules was presented. This
architecture was divided into two phases. Phase I concerned specifying the relevant part of
the transactional database (minable view) and then iteratively constraining the required
frequent-sets through a series of user decisions. Phase II was devoted to letting the user
choose the required metric to measure rule interestingness and specify the required metric
threshold among several metrics (e.g. interest, correlation and confidence).

The corner stone of Phase I of this architecture was the CFQs, which represent the tool by

which the user expresses his interest and narrows the focus of the search for interesting rules.

3.2.1.1 Definition of Constrained Frequent-set Queries

Definition 3.1: Constrained Frequent-set Queries (CFQs)

Following the definition in [35], a CFQ is defined to be a query of the form: {(SH,SC) C},

where C is a set of constraints on S, and S, (rule antecedent and rule consequent

respectively). The syntax of constraint constructs is as described in Figure 3.1. A set variable

is either an identifier of the form S or an expression of the form S.4, where 4 is an attribute in
the minable view. Added to the these constructs is the frequency constraint of the form

freq(S), saying that the support of S should exceed a certain threshold. Q

34

1. Single Variable Constraints: A single variable (/-var) constraint is of one of the following
forms.

(a) Class Constraint: It is of the form § < A, where S is a set variable and A is an
attribute. It says S is a set of values from the domain of attribute A.

() Domain Constraint: It is one of the following forms.

i. S @ v, where Sis a set variable, v is a constant from the domain that S comes
from, and & is one of the boolean operators =, #, <, <, >, > It says every
element of S stands in relationship 6§ with the constant value v.

ii. v @S, where S, v are as above, and #is one of the boolean operators €, .
This simply says the element v belongs (or not) to the set S.

. V @S, or S 8V, where S is a set variable, V is a set of constants from the
domain S ranges over, and 4 is one of ¢, C, &, =, #.

(c) Aggregate Constraint: It is of the form agg(S) 6v, where agg is one of the
aggregate functions min, max, sum, count, avg and @1is one of the boolean operators
= #, <, <, >, 2 It says the aggregate of the set of numeric valuesin S stands in
relationship 6to v.

2. Two Variable Constraints:A two variable constraint (2-var) is of one of the following forms.

(a) S; 85, where S; is a set variable and &is one of ¢, , .

(b) (S; ¢ S,) 8V, where S; and S, are set variables, V is a set of constants or ¢, ¢ is one
of U, N, and fis one of C, , ¢, =, #.

(© aggi(S) 0 agg(S,), where agg; agg, are aggregate functions and @1is one of the

boolean operators =, #, <, <, >, >,

Figure 3.1: Syntax of Constraint Constructs [35]

Assuming that the minable view consists of the relations trans (TID, Itemset) and

itemInfo(Item, Type, Price),some examples of CFQs are as follows: The query
{(S1 .S,)|SI c Item & S, Item & count(S,) = 1& count(S,) =1& freq(S,) & freq(S,)}asks

for all pairs of single items satisfying frequency constraints. The query
{(S1 9,) | S,.Type o {snacks,sodas}& S,.price > 30} asks for itemsets in the antecedent of the

rule, which contain at least one snack item and one soda item, that are associated with

itemsets that contain items with a price of at least $30. Finally, the query
{(S1 S,)|SI dype {snacks}& S, Type C {bevemges}& max(51 .price) < min(SZ .price)} finds

pairs of sets of cheaper snack items and sets of more expensive beverage items. In the last

35

two examples, the domain and frequency constraints (those stating that itemsets should
belong to the universal set /tem and that they should be frequent) are omitted for brevity.

As shown in Figure 3.1, constraints in [35] were divided into 1-variable constraints (those

constraints concerning only one set variable, as in the first and second examples) and 2-
variable constraints (those relating two set variables, as in the third example). In this thesis,
however, focus is only on 1-variable constraints.

The constraints in [35] were classified according to two orthogonal properties; anti-
monotonicity and succinctness. Informally, an anti-monotone constraint is a frequency-like
constraint, meaning that it satisfies the same closure property of the support constraint, which
states that if an itemset satisfies the constraint, then all its subsets will do. A succinct
constraint, on the other hand, is a constraint having the property that all itemsets following it
can be generated, using some member generating function (MGF), once and for all before
any iterations take place. The importance of this classification relies in that one can exploit
both properties while trying to discover frequent sets that follow the constraints. This gives a
great advantage over the naive approach of counting the frequent sets first and then filtering
out those which do not follow the constraints. The next subsection includes the formal
definitions of both properties. The CAP algorithm [35], which uses both properties to
optimize the process of discovering constrained frequent-sets, will be discussed in the next

section.

3.2.1.2 Anti-monotonicity and succinctness

Before proceeding with the presentation of the meaning of anti-monotonicity and
succinctness, it would be convenient to list the notations used henceforth in the thesis. Table

3.1 summarizes these notations.

36

DB The original database

Db The increment database
DB+ The updated database
|A] Number of transactions in database A
Minsup Minimum support threshold
C A constraint on association rules
Ct The candidate set of size k. The superscript ¢ (if present) represents a constraint C

Cieqr Cam» Csucer Csam | The frequency, anti-monotone, succinct and succinct-anti-monotone components

of the constraint C respectively

C-C, The components of the constraint C excluding the component x, where x stands

for succ, am or freq.

14 The set of frequent itemsets in database A. The subscript ¢ (if present) represents

a constraint C

t, (s) Support count of itemset s in database 4

Table 3.1: List of used notations

Definition 3.2: anti-monotonicity

A 1-variable constraint C is anti-monotone iff for any set S: § does not satisfy C =

VS ' ©8,S" does not satisfy C. Q

An example of an anti-monotone constraint is the constraint S.price >30 in the second
example of subsection 3.2.1.1. This constraint enforces every item in the resulting itemset S
to have its price greater than or equal to $30. This is clearly anti-monotone, since a single
item in S that has a price lower than $30 will be included in all supersets S~ of S and hence
violating the constraint. Referring to the example database of Figure 3.2, the itemset S; - CD”
satisfies the constraint, while S; = CDE and all its supersets will violate the constraint
because of the inclusion of £ which has a price of $25 < $30. Another example is the
constraint S.7ype < {snacks,soda} which is also obviously anti-monotone by a similar

argument. As mentioned before, these types of constraints are frequency like, which may lead

" From now on, itemsets will be written as a series of continuous item identifiers for simplicity. For example the

itemset {C, D} will be written as CD and the itemset {A, B, C} will be written as ABC.

37

to the belief that techniques similar to those used to prune non-frequent itemsets might be

used.
trans
TID Itemset
itemInfo 1 A B
Item Type Price 2 A B C
A Dairy 10 3 B C E
B Soda 20 DBy C D F
C Snack 50 5 B E
D Juice 30 6 A
E Candy 25 7 B
F Snack 45 8 A B C F
dbl"9 A E
10 A B C D E

Figure 3.2: A database example

Definition 3.3: Succinctness

1. I c Item is a succinct set if it can be expressed as o,(/tem) for some selection predicate p.

2. SP < 2™ is a succinct powerset if there is a fixed number of succinct sets

Item,, ,... Item; < Item such that SP can be expressed in terms of the strict powerset of
Item, ,... Item; using union and minus.
3. A l-variable constraint C is succinct provided SAT(Item) is a succinct powerset. d

Where SAT(Item) is the set consisting of all the subsets of Item that satisfy C, and 2" is the
strict powerset of Item, i.e. the set of all subsets of Item except the empty set.

For example, the constraint min(S.Price) <500 is succinct because we can precisely generate
all the set of items satisfying the constraint without recourse to a generate-everything-and-test
approach. In contrast, the constraint avg(S.Price) <500 is not succinct because the average
is inherently dependant on all the items in an itemset and this cannot be reduced to a simple
selection on individual items of the entire set.

An important property of a succinct constraint is that its solution space can be expressed
using what was called member generating function in [35]. Using the member generating

function, one can avoid the generate-and-test environment of other types of constraints. This

38

property was used for optimizing CAP [35]. The definition of member generating functions

from [35] is included for the sake of completeness.

Definition 3.4: Member Generating Functions (MGFs)

1. We say that SP < 2" has a member generating function (MGF) provided there is a

function that can enumerate all and only elements of SP, and that can be expressed in the
form {Xl u...an|Xl. gcpi(ltem),ISiSn&ElkSn:Xj =< Sk}, for somen > 1

and some selection predicates p;, ..., p,.

2. A 1-variable constraint C is pre-counting prunable provided SAT(Item) has an MGF. U

It was proved in [35] that any succinct constraint C is pre-counting prunable, meaning that it
has an MGF associated with it.

An example of a succinct constraint is the constraint S.7ype D {snack} which enforces all
itemsets to have at least one snack item. The corresponding MGF of this constraint is
{X L UX, |X , C Grype:.snack,(ltem), X, c Gwﬁ.snack,(ltem), X, # d)} To see the intuition behind
this, one should notice that all itemsets following the constraint should have an item from the
set of items which are of type ‘smack’. This is expressed using the member generating
function by stating that the required itemsets can be generated by combining items from X;
(snack items) and items from X, (non-snack items). The last condition, X, # ¢, ensures that at
least one snack item is selected.

Applying the constraint on our example database of Figure 3.2, it can be seen that X; < CF,
X> < ABDE such that the itemsets C, AC, and CDF for example satisfy the constraint since

their intersection with CF is not the empty set. While the itemsets A, BD, and DE for example
do not satisfy the constraint for the opposite reason.

The previous definitions open the door for the generate-only optimization strategy for
succinct constraints used by CAP in which all generated itemsets for counting are guaranteed

to satisfy the constraint without the need of further testing.
3.2.2 The Constrained APriori (CAP) algorithm

In this section the CAP algorithm [35] is presented in detail. The optimization strategies for
every type of constraint are presented and then a high level description of the algorithm is

given in Figure 3.3.

39

CAP is based on classifying the constraints according to the anti-monotonicity and
succinctness properties. Since they are orthogonal, there are 4 distinct cases:

L. Constraints that are both anti-monotone and succinct.

IL Constraints that are succinct but not anti-monotone.

II. Constraints that are anti-monotone but not succinct.

IV. Constraints that are neither succinct nor anti-monotone.

The CAP algorithm deals with each case with a different strategy for optimization. Each
strategy will be discussed briefly before describing the algorithm itself. Since the CAP
algorithm is based on the Apriori algorithm, the strategies are presented as optimizations to

the Apriori algorithm (see section 2.3.2 for the discussion of Apriori).

Case I: Succinct and anti-monotone constraints

It is proved in [35] that the MGFs of such constraints are in the form of
{X |X co p(ltem)&X ;tcl)}. Thus, the set C; of candidates of size 1 is replaced by the set
C/ = {e|e €eC &eeo, (Item)} in the Apriori algorithm. Since this type of constraints is also

anti-monotone, no items other than those in the modified candidate set need to be considered.

This leads to the following strategy:

Strategy I:

Replace C; in the Apriori algorithm by C; as defined above. Q
The intuition behind this strategy is that, since the member generating function of such

constraints restricts the items in the itemsets to only those coming from o p(ltem), this set

simply replaces the universal Item set.

Case 1I: Succinct but non-anti-monotone constraints

CAP uses the structure given by the MGF for such constraints. Following [35], the strategy is

described assuming the succinct constraint has an MGF defined as follows:

M = {Sl uSz|S1 co, (Item)&S1 #0&S,co, (Item)}.
Strategy I1:

1. Define Ci =¢, (Item) and C“ = ’, (Item). Define corresponding sets of frequent sets

of size 1: L} = {e|e eCy &freq(e)}, and L© = {e|e eC/ &freq(e)}.

40

2. Define C, = {{e, f }|e el &fe (Lf UL*)}, and L, as the set of frequent sets in C».

3. In general, Cy4; can be obtained from L; in exactly the same way as in Apriori — with one
modification. In the classical case, a set S is in Cy, if all its subsets of size k are frequent.
In this case, since a subset of size k may contain items from only L;“; i.e. not satisfying
the constraint, and since such subsets are not generated, hence there is no idea about their
support, they are given the merit of doubt. This means that the condition of Apriori is
restricted to include only those subsets of size k that are themselves satisfying the succinct
constraint. Formally, a set S is in Cy4; if:
vS':S'cSand|S'|=kand S'NL; #p=S'eL,
Q
Extensions to the above strategy for member generating functions of the general form is
straightforward [35].
From the definition of member generating functions, it can be noticed that for succinct
constraints, there is a minimum cardinality for itemsets following the constraint (this property

will be formally proved in subsection 3.4.2). The above strategy guarantees that every step of
candidate generation, before reaching this minimum cardinality, will consist of only frequent
sets. It is to be noted that, in the above strategy, it was possible to start from the beginning by
C, =C{ xC, and proceed with counting to get L,. However, such technique will generate

unneeded candidates that are known to be not frequent. Thus, the above strategy minimizes

the number of generated candidates.

Case Ill: Anti-monotone but not succinct constraints

Such constraints are frequency-like constraints having the same closure property of the
frequency constraint. This suggests using the same technique as in the Apriori algorithm.
Itemsets are generated and tested for satisfaction of the anti-monotone constraint before being

counted.
Strategy III:

Define Cj as in the classical Apriori algorithm. Drop a set S € Cy from counting if S fails to

satisfy the constraint C. Q

41

Case 1V: Non-succinct and non-anti-monotone constraints

Such constraints do not have a strategy of optimization. However, what can be done is to
induce a weaker constraint such that all itemsets satisfying the original constraint will also
satisfy the weaker constraint. Using the weaker constraint will restrict the itemsetstoa
smaller superset of those satisfying the original constraint. Then, the generated itemsets are

checked in a final round for satisfaction of the original constraint.
Strategy IV:

1. Induce any weaker constraint C’ from the original constraint C. Depending on the type
of C’, use one of the previous optimization strategies for optimization of the generation of
frequent sets.

2. Test the generated frequent itemsets for the satisfaction of C. u

Algorithm CAP

1 it C,, UC, .UC, is non-empty then

succ none

2 Prepare C; as indicated in strategies I, II and IV; k=1

w

1f C_ is non-empty then

succ
Conduct a database scan to form L; as indicated in strategy II
Form C, as indicated in strategy 2; k=2
While C; not empty

Conduct a database scan to form Ly from Cy.

o J o U b

Form Cy;; from Ly based on strategy II if C is non-empty, and

succ
strategy III for constraints in Cuy

9 If Cione 1s empty then
10 _
Ans=U, L,

11 Else an itemset S is in Ans iff S satisfies Chope-

Figure 3.3: High level description of the CAP algorithm

As an example for such a strategy, consider the constraint avg(S.price) < v which is neither
succinct nor anti-monotone. However, it can be easily seen that every itemset satisfying this
constraint will also satisfy the succinct non anti-monotone constraint min(S.price) < v. The
above strategy suggests using the second constraint to try to restrict the size of the generated
set by strategy II and then test the generated itemsets for satisfaction of the first constraint.

Figure 3.3 gives a high-level description of the C4AP algorithm.

42

3.3. Incremental mining of association rules

This section is devoted to the second corner point of the proposed algorithm, namely
incremental mining of association rules. First the problem is formally defined and the
important theoretical results are presented. Next, the negative border introduced in [45] by
Toivonen is formally presented with the proof that it is an indicator for the necessity to check

the original database after a database update.
3.3.1 Problem definition

In its first introduction [20], the problem of incremental mining was defined as follows: let

L”% be a set of frequent itemsets in a transactional database DB. After some update of the

database, another set of transactions db is added to DB (the general problem also includes

deletion) to get the updated database DB+. With respect to the same minsup threshold, it is

required to discover L??" ; the new set of frequent itemsets for the updated database.

In [20], Cheung et al. also stated that maintenance of frequent itemsets involves searching for

two kinds of itemsets:

a- Losers: frequent itemsets that became infrequent after adding the increment data to the
database.

b- Winners: infrequent itemsets that became frequent after adding the increment data to the
database.

Searching for winners is the most difficult of the two problems since it requires rescanning

the original database (which is typically orders of magnitude larger than the increment

database) to count the support of winners. Several results were presented in the same work

that became the ground upon which virtually all approaches to the problem rely. These results

serve to limit the search space for the winners to the minimum possible. In the next

paragraphs these results are presented without proof.

Lemma 1

An infrequent itemset S in DB can become a winner in the updated database (DB+) only if it

is frequent in the increment database db (i.e. only if S € L%).

Lemma 2

Let S be an itemset. If S € L and S € L% then S € LP5".

43

The first lemma is the most important one since it greatly restricts the number of the
candidates that need to be checked against the original database, which is the most

demanding task of the whole process with respect to time and resources.
3.3.2 Definition of the negative border

The concept of the negative border, as mentioned earlier, was introduced by Toivonen [45]
for the purpose of using sampling to generate the frequent itemsets. The same concept was
used effectively in the context of incremental mining in [44, 23] to greatly speed-up the
process of maintaining frequent sets after a database update. The main contribution in [44,
23] was the proof that the negative border has the property of being an indicator for the
necessity of checking the original database for winners. Next, the negative border is formally

defined and the proof of its property is given.

Definition 3.5: Negative border (NBd(L)) of a set of frequent itemsets L

Given a collection L < P(R) of sets (where P(R) is the powerset of some universal set of
items R), closed with respect to the set inclusion relation, the negative border NBd(L) of L

consists of the set of minimal itemsets X = R not in L. Q

Informally, the negative border of a set of frequent itemsets L consists of all the itemsets that
are not in L but have all their subsets in L. The intuition behind the concept is that the

itemsets in the negative border are the closest itemsets that could be frequent, too [45].

ABC

Figure 3.4: The set of frequent itemsets with their negative border (shaded)

With respect to the example database of Figure 3.2, and considering a minimum support
threshold of 0.3 (3 transactions in this case), Figure 3.4 illustrates the set of frequent itemsets

and their negative border according to the previous definition.

44

Lemma 3

All 1-itemsets should be present in L U NBd(L).

Proof

Since the empty set is frequent by definition, then if a l-itemset is not in L, all its proper
subsets (only the empty set in this case) are frequent, hence it should be in NBd(L) by

definition of the negative border. Q

Theorem 1

Let S beanitemset, S € L”*" &S ¢ L”® U NBd (LD 5), then there exists an itemset ¢ such that

tcS,te NBd(LDB)&t e L”%* . That is some itemset has moved from NBd(L"?) to L”%",

Proof

Since § € L”%*, all possible subsets of S should also bein L°2". But all the subsets of S
cannot be in L”® because if that was the case, then S should be present in at least NBd(L”?).
By assumption, S ¢ L U NBd(L"?). Therefore, there exists an itemset ¢ such that f = S and

t¢ L2, Now, there are two cases:

Case i: t € NBA(LP®). Thus t € L”?" and is the required subset which moved from NBd(L"?)

to L”?" and the theorem is proved.

Case ii: t ¢ NBA(L"®) which means ¢ ¢ L”® U NBd(L"®) and t € L”®". Thus the theorem can
be recursively applied on ¢. Note that the size of ¢ is less than that of S. Eventually, either

case i will be reached or ¢ will be a 1-itemset. By Lemma 3, all such itemsets are in NBd(L"®)

if not in L. Thus the theorem is proved. Q

The importance of the previous theorem is that it shows that it is necessary for a winner
itemset to have one of its subsets in NBd(L”?) moving to L?*" (i.e. some border itemset will
also become a winner). Taking the contrapositive of the theorem, one can deduce that if no
itemsets in NBd(L”®) move to L”?" then there exist no winners. Hence, it suffices to check for
the itemsets in the negative border to see if a scan of the original database is really needed to

find any new winners.

45

3.4. Incremental mining of constrained association rules

In this section, the required formal description of the tackled problem is set. Section 3.4.1

defines the problem of incremental mining of constrained association rules in the context of

CFQs. Next, section 3.4.2 defines the proposed constrained negative border to be used in this

context. Then the proof that the new constrained border is a valid indicator for the necessity

of checking the original database after adding transactions is given.
3.4.1 Formal problem definition

In the context of constrained frequent-set queries, the problem of incremental mining of

association rules can be restated as follows: let L”” be a set of frequent itemsets in a database

DB that satisfies a certain constraint C defined through some CFQ {(S LS)|c } After some

update of the database, another set of transactions db is added to DB to get the updated

database DB+. It is required to discover the new set L”** of frequent itemsets that satisfies

the same constraint C in the updated database.

As mentioned before, the concept of the negative border proved useful in the problem of
incremental mining of association rules. The challenge is to try to adapt the concept of
negative border for CFQs. It can be noticed that the negative border as defined before
represents the candidate itemsets counted by the Apriori algorithm that turned to be not
frequent. This may give an insight to use the same sets counted by the CAP algorithm but
found small, as the new negative border. This leads to the following definition of the new

negative border which is named the constrained negative border.

3.4.2 The constrained negative border

Definition 3.6: Constrained Negative Border CNBd(L.) of a set of constrained frequent

itemsets L.

The constrained negative border of a set of frequent itemsets L., satisfying a constraint C,

henceforth referred to as CNBd(L.) is defined as follows:
CNBd (LC) = {S | S'is an itemset satisfying only C - C
&S'c S=S"e L, orS doesnotsatisfy C,,, }

46

Informally, the constrained negative border consists of all the itemsets that are not frequent
but have all their subsets (of which their frequencies are known) frequent. The reason for our
uncertainty is the generate-only paradigm of succinct constraints which leaves us with no
knowledge of the frequency of itemsets which do not satisfy the constraint since they are not
generated from the first place. Just like strategy II of the CAP algorithm, if an itemset in the
border has such a subset, it is given the merit of doubt by assuming it to be frequent.

Given that the normal negative border was an indicator for the necessity of checking the
original database for winners, it would seem natural if the constrained negative border would
play the same role. The original negative border possessed the property of having all its
members minimally small, meaning that all their proper subsets are large. In the context of
CFQs, the same concept can be generalized to include all anti-monotone constraints. But
since succinct constraints do not posses the same closure property, it is not guaranteed that all
proper subsets satisfy the constraint. The following lemmas help in better understanding of
the succinct constraints. They clear the way for the proof of the next theorem which states
that the constrained negative border is still indeed an indicator for checking the original

database.

Lemma 4

Let C be a succinct constraint with an MGF M defined as follows:
M = {Xl u...an|Xl. c Gpl_(ltem),l <isn&Ik<n:X; #¢l1<j< k}. It is assumed,
without loss of generality, that the satisfying sets of the selection predicates (o, 's) of M are
all disjoint for 1 <j < k.

Let S be an itemset satisfying C. It follows that |S | > k where k is as defined in M.

Proof
Since § satisfies C, S is generated by M, then Smcpj (Item) =X, #¢,1< j <k.Since all

X;’s are non-empty and disjoint, then |t|2 k&t S, where t=X,U...uX,. This implies

our result and completes the proof. u
In other words, k£ is the lower bound of the size of any itemset that satisfies the succinct
constraint. If the X;’s were not disjoint, this means that there might be an item included in the
satisfying set of two or more selection predicates. We then have a lower bound than £ for the
size of an itemset satisfying a succinct constraint. This lower bound, m, is between 1 and £.

This will not affect the result of the lemma.

47

To see the result of this lemma, consider the following simple example. Referring to the

example database of Figure 3.2, let C be the succinct constraint S.7ype D {snack,soda}. The

MGF of this constraint is:

M = {Xl VX,VUX;[X co, (Item), X, G, (Item), X, G, (Item), X, # ¢, X, # (1)}
where p, = (Type :'soda'), P, = (Type =' snack') , and p, = (Type #'soda' AType #' snack').
The value of £ here is 2. The lemma simply states that any itemset satisfying the constraint
should have at least 2 items. This is clear since a satisfying itemset must contain both a
‘snack’ and a ‘soda’ item (this is of course assuming no single item is both a ‘snack’ and a

‘soda’ item at the same time). For the example database, those minimum sized itemsets

satisfying the constraint are the itemsets BC and BF.

Lemma 5

Assuming £k is as defined in the MGF of Lemma 4, all itemsets of size k satistying C-Cj., are
in L, U CNBd(L.). Furthermore, all itemsets of size k+/ having all their k-sized subsets
which satisfy Cy,.. in L. are in L. U CNBd(L,).

Proof

Assume S is an itemset of size k satisfying C-Cp.,. If § satisfies Cj, then S € L., else S ¢ L.
and by Lemma 4 no proper subset of § satisty Cj,. which implies that S € CNBd(L.) by
definition.

Similarly, assuming § is an itemset of size k+/ satisfying C-Cj., and all its k-sized subsets
which satisty Cg,.. are in L. (notice that by Lemma 4, all other proper subsets of S do not
satisfy Cyuee). If S satisfies Cpe, then S € L, else S ¢ L. and for all S” <= § & S’ satisfies Cyyec,
S’ € L. which implies that S € CNBd(L.) by definition. This completes the proof. d
To see this by example, consider the same constraint S.7ype o {snack,soda}. As discussed
after Lemma 4 the set of itemsets of size 2 satisfying the constraint is {BC, BF}. It is clear
that both itemsets should be in L. U CNBd(L.). Now, consider the itemset ABC. It sure
satisfies the constraint, however, all its proper subsets except BC do not satisfy the constraint.
Hence, if BCisin L. and ABC is not frequent, then the definition of the constrained negative
border will apply to it. Hence, ABC is in L. U CNBd(L,).

The previous lemma sets a lower bound on the size of itemsets in the constrained negative

border, much as Lemma 3 sets a lower bound for the size of itemsets in the negative border.

48

Lemma 6

Let C be a succinct constraint with an MGF M similar to that defined in Lemma 4, and let S
be an itemset satisfying C. If |[S] > k, where k is as defined in M, then 3 ¢ — S such that ¢

satisfies C.
Proof

Keeping the same assumption, that the satisfying sets of the selection predicates (o, 's) of M
are all disjoint for 1 <j<klet X, =Sno, (Item),l < j <k . From the above assumption

and since S satisfies C, it follows that all the X;’s are non-empty and disjoint. Now, there are
two cases:
1. VX, |X| = 1 (ie. S contains only one item from every mandatory set). Let

t=X;U...UX,. We have |f| = k and ¢t < S. Clearly, ¢ is generated by M and hence

satisfies the constraint C and since |S|> kthen ¢ < S. This gives the stated result in the
lemma.

2. 3X,, such that |X,| > 1,1 <m <k Now, let X,," be a proper subset of X, such that X,,’ is

non-empty, clearly such a proper subset exists. Let - X; U ... U X,,’U ... U X;. We have
tno, (Item) =X, #¢,1<j<kand j=mitnoc, (Item) =X,'#¢ then ¢ is generated

by M and ¢ satisfies C. Also, since t " S =tand X,, c Sand X,, ¢ t then t §S.

This completes the proof. Q
Informally, the previous lemma states that any itemset satisfying the succinct constraint with
a greater cardinality than the minimum cardinality set by Lemma 4 will have a proper subset
of it that also satisfies the constraint.

To see this by example, consider the same constraint and example database. We know that
the minimum sized itemsets satisfying C are {BC, BF}. Consider the itemset ABC, it has
exactly one soda item, ‘B’, and one snack item, ‘C’. Then, it has the itemset set BC as the
required proper subset satisfying the constraint. Furthermore, consider the itemset BCF which
also satisfies the constraint. Here, there are more than one item of type ‘snack’, namely ‘C’
and ‘F”. This makes both BC and BF qualify as the required proper subsets.

The previous results clear the road for proving the next theorem.

49

Theorem 2

Let S be an itemset, S € L?*" and S ¢ L”" U CNBd (Lf i), then there exists an itemset ¢ such

that ¢ = S and t € CNBd(L™*).

Proof

Let the MGF of C,,. be asdefined in Lemma 4. Let ¢ be an itemset such that t = S . Since
S e L””* we know that ¢ must satisfy Ce, and C,, of C in the updated database (by definition

of anti-monotonicity). By Lemma 5 and Lemma 6 we know that there exists at least one

subset ¢ of S that satisfies Cy,. of C (since S satisfies Cy,.c and S ¢ L”® U CNBd (LfB) it
follows that its cardinality is greater than the minimum cardinality). Let # be such a subset,
then ¢ satisfies C and hence te L”°*. By assuming that S ¢ L”” U CNBd (LfB), then there
exists a proper subset ¢ of S such that ¢ satisfies Cy,.. and ¢ ¢ Lf % otherwise, if all subsets of S
satisfying Cy,.. were in L””, then S should have been in CNBd (LfB) by definition. We

choose ¢ also to be such a subset. Now we have t = S, t € L”* ,and t ¢ L”” . There are two

cases:

Casei: t € CNBd (Lf i), which means that our theorem is proved.

Case ii: t ¢ CNBd (Lf ?) Therefore, we have ¢ € L?”* and ¢ ¢ L” U CNBd (LfB) and we can
recursively apply the theorem. Eventually we will either encounter case i or we will have

|t|= k. In the later case, by Lemma 5, all such itemsets are in the constrained border if they

are not frequent. This completes the proof. d

The previous theorem proved that the constrained negative border is playing the same role
played by the normal negative border in [44]. This result will be employed in the proposed
algorithm ICAP. ICAP uses the CAP algorithm to discover the initial set of constrained
frequent itemsets along with its constrained negative border and assumes that the support
count of each itemset in both sets is kept in the database. The next chapter is devoted for the

detailed presentation of ICAP.

50

Chapter 4

THE PROPOSED ALGORITHM ICAP

This chapter is devoted for the presentation of the proposed algorithm /CAP. ICAP is built
upon the foundations and results discussed in the previous chapter. It uses the constrained
negative border to decide when to check the original database after a database update. As a
result, /CAP performs at most one scan of the original database only if it is absolutely
necessary.

The rest of the chapter is organized as follows: section 4.1 gives a high level description of

the algorithm. Computing the constrained negative border turns out to be not as

straightforward as it was in the case of the original negative border, thus, section 4.2
discusses how to compute it. Section 4.3 formally proves the correctness of the algorithm.
Next, a descriptive example is given to demonstrate the relative merits of the proposed

algorithm against the naive alternative of rerunning the algorithm CAP on the updated

database from scratch. Section 4.4 discusses the question of when to use /CAP. Finally,

section 4.5 touches upon some of the important implementation details.

4.1. Algorithm description

Before proceeding with the description of the algorithm it should be noted that only updates
of the transactional database is taken into consideration (i.e. no changes occur in the data
describing the items). Therefore, it should be clear that adding and removing transactions can
only affect the support of an itemset and has no effect on the satisfiability of C-Cpe,.
Formally, if an itemset S satisfied C-Cj,,, before the database update, S will satisfy C-Cpeq

after the database update. The algorithm uses as input the set of constrained frequent sets L>”

of the original database DB and the constrained negative border CNBd (Lf i) discovered using

the algorithm CAP along with the frequencies of the itemsets in both sets.
The proposed algorithm can be summarized in the following steps:
1. Use algorithm CAP to discover all frequent itemsets following the constraint in the

increment database db (see section 3.2.2 for a description of the CAP algorithm).

51

2. Count the frequencies of the itemsets in the previously discovered set L”” along with the

constrained negative border CNBd (LfB) in the increment database db to discover the

losers and those itemsets which will remain frequent.

3. If no new itemsets qualify as candidate frequent itemsets (i.e., no new frequent itemsets
are discovered in the increment database db and candidates in the negative border remain
infrequent), then there is no need to rescan the original database. The new negative border
can be recomputed as in [44] (only if losers exist).

4. If there are new qualifying candidates, generate the negative border closure in the same

manner as in [44] and count the candidates in this closure against the original database.

It is clear from the description of ICAP that it requires at most one scan of the original
database (done in step 4) only if the database insertions cause the constrained negative border
to expand. Expansion of the border means that there are potential itemsets that can become
winners other than those in L. CNBd(L.). This happens if there exist winners that can be
joined with other frequent itemsets or that can allow other itemsets to be candidates for
testing. To see this, consider the following example. Assuming the set of items is {A, B, C,
D}. After initial investigation of DB, itemsets 4B, AC, BC were found frequent and ABC was
found infrequent and hence was in the constrained border. After adding db, assume that ABC
became a winner. Although such a movement might seem to necessitate a check for the
original database DB, another look will reveal that this is not important. This is because
moving ABC from the negative border to the set of frequent itemsets cannot induce any more
itemsets since it would be the only frequent itemset of size 3 (the border does not expand).
On the other hand, if BC was not frequent and became frequent after adding db, this might
indicate that ABC is also a winner (the border expands).

The fact that /CAP can exploit and use the constrained negative border makes it superior
compared to the classical level-wise algorithms. A high-level description of the proposed

algorithm /CAP is shown in Figure 4.1.

The operations of computing and maintaining the constrained negative border are not as
straightforward as those for the negative border in [44]. The next section describes the
problems faced when trying to compute the constrained negative border and explains how it

can be generated.

52

Function 1caP(L”®, CNBd (LfB) db)

1 Compute L?Hjsing CAP
. DB DB .

2 Count support of all items of LC and (ﬁVBd(LC) in db.
3 L% =@

. : DB db . .
4 For each itemset s in L, ML do //itemsets still frequent
5 Qw+(s)=tDB(S)+tﬂiS) //calculate new support count
6 L2 =17 U s}
7 For each itemset s in CNBd(L?B)ﬂLihdo //cand. of the border
8 tos+ (S) =tpp(S) +tay(S) //calculate new support count
9 If tps:(sS) =2 minsup * |DB+| then
10 L =1 Uls)

11 For each itemset s in (LfB —Lfb)do

12 If tg(s) + tps(s) > minsup * |DB+| then

13 L% = 1P U s}

14 1£ L #I” then

15 CNBd (Lf B) =constrained — negativeborder — gen(Lf e)
16 Else CNBA(L"*")=CNBd(L*)

17 1£ L UCNBd(L?B);t L?BJrUCNBd(L?m) then //is a scan of DB necessary?

18 S=L""

19 Repeat

20 S = S Uconstrained — negativeborder — gen(S ,C)

21 Until S does not grow

22 For each itemset s in ‘SV—LfB+

23 //count candidate itemsets against the updated database
24 If tps:(S) = minsup * |DB+| then

25 L% = 1P U s)

26 CNBd (Lf B) =constrained — negativeborder — gen(LfB+ ,C)

27 Return L”** UCNBd(L™)

Figure 4.1: A high level description of the algorithm /CAP

53

4.2. Computing the constrained negative border

The original border in [44] was easily produced and maintained as a by product of the Apriori
algorithm since it represents all candidate itemsets that did not pass the counting test, which
means that those itemsets are counted by the algorithm anyway.

The constrained negative border, on the other hand, does not posses the same property.
According to Lemma 5, all itemsets of minimum size that satisfy C-Cj.,, should be in the
constrained border. CAP, however, does not produce, and hence does not count, all those
itemsets since it guarantees that all generated itemsets satistfying C-Cj., of minimum size,

will have all their subsets satisfying C-C,.. (strategy I, section 3.2.2). It can also be noticed
that, assuming the minimum size of itemsets satisfying C-Cj., 1s £, all itemsets of size k+1,

having all their k-size subsets satisfying C,.., in L. should also be in the constrained border.

CAP, on the other hand, only counts a subset of such itemsets (strategy II, section 3.2.2).
To see this, consider the example database of Figure 3.2 and the succinct constraint

S.Type D {snack,soda}. From the previous discussions it is known that any generated itemset

should contain at least one item from the set {B} and at least one item from the set {C, F}
and optionally one or more other items from the whole universal set of items. Assume that
the set of frequent items was {A, B, C}. According to strategy II of CAP, only the itemsets
BC and ABC will be generated and counted. However, BF, BCD, BCE and BCF should also
be counted, since they are by definition in the constrained border (Lemma 5).

To work around this problem, CAP should be modified to generate and count all the
candidates belonging to the constrained negative border. This can be done as follows:

Assuming Cj,.. 1s as defined in strategy II of CAP (section 3.2.2) and observing that such

definition makes the minimum size of an itemset, satisfying C-Cj.y, €qual one (i.e. k=1),

strategy II should be as follows:

a- Define Cf =o, (Item) and C“ =0, (Item). Define corresponding sets of frequent sets
of size 1: L] = {e|e eCy &freq(e)}, and L“ = {e|e eC/” &freq(e)}.

b- Add Cf — L to CNBd(L,).

c- Define C, = L; x L] UC,“, and L, the set of frequent itemsets in C..

d- Add C, —L,to CNBd(L,).

e- Do step 3 of strategy II with no modification.

54

The process of re-computing the constrained negative border, given a set of constrained

frequent-sets L. and a constraint C, is done by the function constrained-negativeborder-

gen(L., C). Figure 4.2 gives a high-level description of this function.

Function Constrained-negativeborder-gen (L., C)

1

Split L. into L,, Ly+1, . , L, where Ly is the set of constrained
frequent itemsets in L of size k, n and m are the size of the
smallest and the largest sets of frequent itemsets in L.
respectively.

Use the modified strategy II in section 4.2 to generate all
candidates of size m, C, (using step a) and all candidates of size
m+1, Cus; (using step c), according to the constraint C.
CNBd (Lc) = (Ly = Co) Y (Lnrz — Chuer)
For k = mtl to n-1 do

Use CAP to generate Cy:; from Ly

CNBd(L:;) = CNBd(Lc)V(Crs1 = Lgsi)
Return CNBd(L.)

Figure 4.2: A high level description of the function constrained-negativeborder-gen

4.3. Correctness proof

Figure 4.3: A Venn diagram of the possible intersections of L”°, CNBd (Lf i) ,and L%

In this section, we will prove that ICAP is sound and complete; it discovers all and only those

itemsets that are frequent in DB+ and satisfying the CFQ. We rely on the correctness of CAP

proved in [35].

55

Theorem 3

Algorithm ICAP is sound and complete with respect to counting all constrained frequent

itemsets in the updated database DB+.

Proof
In Figure 4.3 - which represents all the possible intersections of L”*, CNBd (Lf ?) ,and L -

we have four shaded regions, representing all the possible candidates for inclusion in L2%*

(Lemma 1, section 3.3.1). Regarding the steps of algorithm /CAP shown in Figure 4.1, step 1

computes L using CAP and should be correct by the correctness of CAP. Steps 4-6 add

itemsets in region I of Figure 4.3 to L"* after updating their support count. By Lemma 2 we

know that all those itemsets are in L”°*. Steps 7-10 check candidates in region 2, those are

candidates of the negative border. If an itemset is found to be frequent in DB+, it is directly
considered frequent. Steps 11-13 check the candidates in region 3 by scanning the increment
database. Now we have only region 4 remaining to check. By Theorem 2 we know that there

is no need to do that if the constrained border does not expand. Steps 14-17 check for the
negative border expansion by observing the changein L”® U CNBd (LfB) If an expansion
occurs, then we need to scan DB for candidates in region 4. Steps 18-21 generate the
constrained negative border closure of items in L”** discovered so far. Steps 22-25 count the
candidates against DB to discover winners. Finally, step 26 generates the constrained
negative border of the complete L”** . Since the candidates counted by the steps of ICAP are

all and only those candidates that need counting, it follows that /CAP is sound and complete.

Q

Example:
Consider a transactional database as depicted in Figure 3.2. Let the first 7 transactions be the

original database DB and the last 3 transactions be the increment database db. Consider the

following CFQ:
{X|X.Type > {soda, snack} & min(X.price) > 20 & minsup = 0.2}

The algorithm /CAP is now applied on the database to find the updated constrained frequent
sets. It is assumed that the CAP algorithm has been applied on the original database DB. Thus

56

the set of constrained large frequent set L2 = {BC}and the constrained negative border

CNBd(LfB):{BF ,BCD,BCE}. Initially, CAP is run on db to get the set
L" ={BC,BF,BCF,BCD,BCE,BCDE}. Referring to Figure 4.3, the sets of itemsets {BC},

{BF,BCD,BCE} , and {BCF,BCDE} correspond to those in regions 1, 2, and 4. Region 3 is

empty since the only frequent itemset in DB is also frequent in db. Now, BC is frequent in the
updated database. Checking items in the negative border, we have BCE only moving from the
negative border to the updated set of frequent itemsets. Before checking for the itemsets in
region 4, we check the constrained negative border expansion. Since, moving BCE into the
frequent sets does not expand the negative border, we conclude that there is no need to count

the candidates in region 4 in DB. Thus, the final updated constrained frequent itemsets
L = {BC ,BCE } and the new constrained negative border CNBd (Lf Bt) = {BF , BCD}. a

As can be seen from the previous example, /CAP did not need a scanning of the original
database. This is a great improvement over rerunning the CAP algorithm on the original
database in terms of the number of transactions read. It would be natural to assume that a
more drastic improvement gain will be obtained for typical sizes of databases and database

increments or updates.
4.4. When to use ICAP?

At this point, it is useful to stop to answer the question of whether it is always useful to run
the incremental algorithm. This has been the subject of some previous research, e.g. [30], and
it is still valid in the context of this work to ask the same question.

Using the negative border can be considered itself as a measure of the necessity to update the
set of frequent itemsets. However, a couple of winner itemsets will trigger the expansion of
the border. In practical cases, such couple of winners may not represent a great significance
to the user that warrant the time spent in the algorithm. More methods are needed to measure
such significance. Another aspect of this issue is that sometimes the incremental algorithm
may do an unnecessary effort as when it does when many itemsets are large in the increment
but there are no winners. This is best demonstrated if we assume that the incremental
algorithm is used with every transaction update and the next added transaction has 20 items
in it. For any support threshold whatsoever, all subsets of the set of itemsets in this
transaction will be frequent in the increment which results in the tremendous 2% frequent

itemsets in the increment!! Since adding only one transaction to the original database is not

57

likely to modify the frequent itemsets and hence expand the border, the effort done by the

algorithm will be unnecessarily wasted.

Some alternatives exist to measure the significance of the change in the frequent itemsets (if

one exists) and when to use the incremental algorithm:

a- Use the sampling technique reported in [30] to approximately measure the difference
between the new and the old set of frequent itemsets. If the difference exceeds a user
defined threshold, it would warrant using the incremental algorithm. The disadvantage of
using this technique is that drawing the sample would require a pass on the original
database and this pass is the maximum price that the incremental algorithm pays to get
the exact set of new frequent itemsets. Although one could argue that the computational
effort in the passto compute the exact set is far more than that needed to draw a random
sample.

b- It might be more useful to get some insight about the difference in frequent itemsets by
looking more closely at the number of winners among the border itemsets and the relation
of those winners with the number of frequent itemsets in the increment. A great number
of winning border itemsets might indicate a great change in the number of new frequent
itemsets. Also, a border itemset that has many supersets among the frequent itemsets in
the increment might also indicate a great change in the number of new frequent itemsets.

c- As for avoiding the unnecessary effort done by the incremental algorithm, it might be
useful to start incrementally mining when the size of the increment exceeds a certain
percentage of the original database (or if the dimension of data span [24] is used, when a
new block of data is added). This, however, has the disadvantage that if the data in the
increment has the same characteristics as the data in the original database, the discovered

patterns will remain almost unchanged regardless of the size of the increment.
4.5. Implementation details

This section discusses some of the implementation details that are worth noting. In subsection

4.5.1, the choice of the main data structures used in the implementation of /CAP is justified
and in subsection 4.5.2, some of the important notes on the implementation of the CAP

algorithm is mentioned.

58

4.5.1 Choice of data structures

An important decision in implementing /CAP was the choice of the data structure used to
represent the set of itemsets. It should be well noted that tremendous performance gains are
achieved by a well choice of this data structure [8, 18, 33,27, 2]. Two different classical
structures are suggested in the literature to represent the set of itemsets; the hash tree [8] and
the prefix tree [18, 33] that are suitable for the level-wise method of the Apriori and CAP
algorithms. The later (prefix tree) was chosen. The prefix tree is a trie that holds the itemsets
in an implicit form. An itemset is merely a traversal along the edges of the tree. The node of
the tree that is reached after this traversal itemset holds the needed auxiliary information

about the itemset (e.g. the frequency count). Figure 4.4 Represents a prefix tree for the

powerset of the set of itemsets {A, B, C, D}. The prefix tree has the same advantage of the
hash tree data structure in counting the candidate itemsets found in a transaction. The prefix
tree has, however, the advantage of being able to hold both the candidate and frequent
itemsets in one structure without the need to resort to other data structures. Moreover, it has
an obvious performance gain when performing the candidate generation phase (prefix join

[8, 33]) of the level-wise method which is one of the most demanding operations in the whole

mining process.

Figure 4.4: A prefix tree

59

The implementation used for the prefix tree structure is following the one reported in

[33].
Figure 4.5 represents this implementation. A hash table is used to facilitate access to the

edges emanating from a node in the tree.

¥
LT3 |
E 11 |3 | =] |
/o R
Joint sibling
representation
item | count
of an edge
and a node: children
Hash table hashtable
far fast edge { | | | |
selection:

Figure 4.5: The implementation of prefix tree [33]

4.5.2 Notes on the implementation of CAP

In the course of implementing /CAP, it was mandatory to implement the CAP algorithm in its

original form reported in [35] and with the modified strategy to generate the negative border
(see section 4.2).

An important note was found during the implementation of CAP that is worthy of
mentioning;:

Following strategy II of CAP (section 3.2.2) will destroy the natural ordering of the itemsets
that is based on the item identifier. This ordering is very important with regard to both the

construction of the tree structure holding the itemsets and the subset counting function. This

is best illustrated by the following example:

Example:

60

Assume the succinct constraint in [35], S.7Type o {soda, snack}, which is the same constraint
described after Lemma 4. Then the sets X;, X5, and X; will be as defined in the example.

Assume the set items are {A, B, C, D, E, F} and assume:
C," ={A, C,E} (soda), C,"* = {B, F} (snack) and C,"* = {D} (not snack or soda)
Furthermore, assume all items are frequent, meaning that:
LY =c™, L =cCc" and L =C™
Now, C, = LIX‘ x Lle = {AB, AF, CB, CF, EB, EF}. Assume all of them are also frequent
for the sake of demonstration, meaning that L, = C,.
Now, generating C; = L, x (L, U L™ U L™) as reported in [35] will yield several

spurious itemsets as follows:
C; = {ABC, ABD, ABE, ABF, AFB, AFC, AFD, AFE, CBA, CBE, CBF, CFA, CFB, CFD,
CFE, EBA, EBC, EBD, EBF, EFA, EFB, EFC, EFD}

As can be seen, all the double underlined itemsets are merely repetitions, so there must be a
method to check for them (besides checking for repeating an item in an itemset). This
mandates using a separate structure for storing the candidate itemsets upon generation in their
natural order (according to their IDs) or in any other fixed ordering that is used as a reference
for pruning these spurious itemsets.

Furthermore, when checking to see if the itemset ABE for example is frequent in the regular
method, it can be seen that its 2-sized subset BE satisfies the constraint but cannot be found in
L, since it is stored as EB.

If it is assumed that order will be preserved, another severe problem rises. Such assumption
will conflict with the candidate generation phase of the Apriori algorithm which is the
proposed method for candidate generation in the CAP algorithm for later steps. To see that,
suppose that the two itemsets in C;, {EBF, EBD} turned out to be frequent. In generating C,
both itemsets should be joined to get the itemset EBFD since they both have the same prefix;
EB. Storing itemsets ordered will prevent this since the two generating itemsets will become
{BEF, BDE} and they do not have the same 2-prefix, so the candidate generation phase will
not generate them. Q
To avoid this problem in the proposed algorithm, itemsets were generated non-ordered (as
implied by the strategies of CAP) and a separate structure of ordered itemsets was used to

prune the spurious candidates.

61

Chapter 5

PERFORMANCE STUDY

This chapter is devoted for the discussion of the different experiments conducted to measure
the relative performance of the proposed incremental algorithm /CAP for mining constrained
association rules compared to the single alternative approach available so far, which is
rerunning the CAP algorithm from scratch on the updated database.

Section 5.1 starts by describing the environment in which the performance experiments were

conducted including the testing machine and the data set. It also discusses the performance

measures and parameters and justifies their usage. Section 5.2 describes the basic set of

experiments which measure the performance of proposed the algorithm relative to CAP for

different increment sizes and for different types of queries. Section 5.3 presents the results of

the experiments measuring the sensitivity of the algorithm to the change in the database size.

Finally, section 5.4 comments on the experiments measuring the sensitivity of the algorithm

upon changing the item selectivity.
5.1. The experimental environment and performance parameters

The algorithm was implemented and tested on an IBM compatible PC with a Pentium I1®
300 processor and 96 MB of main memory running the Microsoft Windows 95® operating
system. The program was the only major job running on the machine throughout all the
experiments to achieve a fair environment for comparison.

As for the test data, the program developed in IBM Almaden research center was used to
generate the test data. This is available from the IBM QUEST web site
(http://www.almaden.ibm.com/cs/quest). The program generates a synthetic transactional
database using several parameters (see [8] for an explanation of every parameter and the
rationale behind the method of generating the database). Since its introduction, this source

has been used in virtually every publication on mining association rules.

62

Number of Transactions in the updated database 400,000 (in the basic set of
experiments)
Number of Items 1000
Average Transaction Size 10
Average size of maximal potentially large itemsets 6

Table 5.1: Parameter Settings

The parameter settings used for the experimental database are listed in Table 5.1. Such

parameters are assumed to mimic a reasonable retailing environment. They also give the
chance to explore the relative merits of the incremental algorithm. The standard encoding
used to name a certain database that is used in [8] is also used here. In this encoding, the
name Tx.Iy.DzK is used to name a transactional database for which its average transaction
size is X, its average size of frequent itemset in a transaction is y, and the database size is z
thousands of transactions. As for the descriptive data about the items (the /temInfo table), an
integer identifier ranging from 0 to 999 is used to represent the items. The item Type was
chosen among four different types (soda, snack, juice, dairy) by tossing a weighted 4-sided
coin. Each side represents an item type and the weight associated with each side represents
the percentage of items having this type. The item price was uniformly chosen between 10
and 100. When generating the increment database, the method in [20, 39, 44] was used. In
this method, the increment database is taken as a contiguous block from a generated set
representing the whole updated database DB+. The increment size x% means that
(IDB+|-x%) of the database is considered as DB and the remaining x% is considered as db.
The increment database was taken from the first x% transactions of the database.

The performance measure that is used throughout all the experiments is the speedup. Speedup
is measured as the ratio between the running time of the CAP algorithm to that of the /CAP
algorithm for the same setting of parameters. The use of this measure has been the standard in
the literature of incremental mining algorithms [20, 21, 39, 44]. Speedup is more significant
than reporting the running time of the algorithms since such times are dependent on the
different implementations and test beds.

For the system parameters, the main observed parameters are the different query types, the
increment size as a ratio of the original database size and the support threshold. The first set
of experiments measure the relative performance of the algorithm for different increment
sizes and its scalability when decreasing the support threshold. Such measurement is done for

every type of constraint. The experiments also test the scalability of the algorithm with the

63

size of the updated database. Finally, it is expected that the generation of the negative border
incurs an overhead when succinct constraints exist, especially when the selectivity of the
succinct constraint increases. Therefore, another set of experiments is performed to test the

sensitivity of /CAP to the increase in item selectivity when a succinct constraint is used.

5.2. Measuring performance for different increment sizes and

different query types

As discussed in [35], there are four different categories of constraints; namely succinct only,
anti-monotone only, succinct anti-monotone and non-succinct non-anti-monotone constraints.
Representative queries of each of the four categories were used in the first set of experiments.

The following set of figures (Figure 5.1 to Figure 5.4) represent the speedup of /CAP for

these different types of constraints, the speedup is measured for different increment sizes

(measured as a percentage from the size of the original database). Figure 5.1 shows the
results when using the succinct only constraint S.Type D {soda}. Figure 5.2 shows the results
when using the succinct anti-monotone constraint min(S.Price) > 60. Figure 5.3 uses the anti-

monotone constraint sum(S.Price) < 50. To test the non-succinct non-anti-monotone category

of constraints, the constraint avg(S.Price) < 15 was used. Finally, Figure 5.4 tests the speedup

when using a hybrid constraint combining both the succinct constraint S.7ype D {soda,
snack} and the succinct anti-monotone constraint min(S.Price) > 20. The selectivity of the
soda items and snack items were 5% each throughout all experiments. The previous
constraints mimic those reported in [35] for which the CAP algorithm performed well.

The range of minimum support used is from 1% to 0.2%, which is the standard significant
range for this type of database. Below this range, the number of frequent itemsets is very
small to give any meaningful comparison and above this range the number of frequent

itemsets increases rapidly.

64

Succinct only CFQ, T10.16.D400K

50.0
45.0
40.0
35.0
E10% Inc.
£ 300 E7% Inc.
® 25.0 05% Inc.
[]
o 20.0 03% Inc.
' M 1% Inc.
15.0
10.0
5.0
0.0

1.0% 0.8% 0.6% 0.4% 0.2%
Minimum Support

Figure 5.1: Speed up for succinct only and non-succinct non-anti-monotone constraints

Succinct Anti-monotone only CFQ, T10.16.D400K

@ 10% Inc.

W 7% Inc.
05% Inc.

03% Inc.

W 1% Inc.

1.0% 0.8% 0.6% 0.4% 0.2%
Minimum Support

Figure 5.2: Speedup for succinct anti-monotone constraint

65

Several observations apply generally to all the results of this set of experiments. These
observations are:

a- The speedup exhibits a global maximum around the support value of 0.6%. This is
similar to the results reported in [44] for the performance gain of the BORDERS
algorithms over to the Apriori algorithm. A justification for this, similar to that in [44],
is applicable here, when the support threshold increases, the number of frequent
itemsets decrease together with its size. This reduces the time taken by the non-
incremental algorithm CAP. When decreasing the support threshold the time taken by
CAP increases with a faster rate than /CAP for which the execution time increases with
a much slower rate. Hence the speedup increases until we reach the maximum value.
Beyond this, the number of frequent itemsets increases rapidly which increases the
burden of /ICAP trying to maintain them and the probability of the border expansion
increases. CAP, however, sustains its rate of increase in time. This lowers the speedup
again. The exact value of minsup for which this maximum occurs is for sure dependent
on the characteristics of the database. This means we should expect a trend similar to
the one in the figures but shifted either to the left or to the right on the x-axis according

to the data characteristics.

Anti-monotone only CFQ, T10.16.D400K
35.0
30.0
25.0
E10% Inc.
£ 20.0 ®7% Inc.
§ 05% Inc.
& 15.0 03% Inc.
M 1% Inc.
10.0
5.0
0.0 -
1.0% 0.8% 0.6% 0.4% 0.2%
Minimum Support

Figure 5.3: Speedup for anti-monotone constraint

66

b-

The second observation, which is very much expected, is that, generally, the speedup
increases with the decrease in the increment size to reach its maximum for 1%
increment size. This is easily justified by noticing that the main problem of ICAP is to
discover the set of constrained frequent itemsets in the increment. Decreasing the
increment size would relief it of some of its burdens (keeping in mind that CAP takes
the same time to produce the set of constrained frequent itemsets for the whole
database).

Several glitches appear in the figures that seem to disobey the general trend discussed

above (e.g. the case of 0.8% minsup in Figure 5.1). The reason for these abnormalities

can be explained knowing that the border expanded in all these cases. Such
abnormalities are due to the local characteristics of the transactions in the increment.
This means that if the increment database was taken from another part of the whole
database, the border might not expand. To eliminate such glitches, it is essential to run
the same experiment several times for the same increment sizes and support values but
this time changing the place from which the increment database is taken and then taken
the mean speedup for all the cases. This would smooth the curves and give a much
better trend. It is worthy to mention, however, that the speedup is always over 1 (its
minimum value is 1.3 in the case of 10% increment size and 1% minimum support

threshold in Figure 5.3) indicating a performance gain in all cases, even those cases

when performance drops due to border expansion. It can be seen also that, assuming
the border expands for all the cases, the performance gain rises with the decrease in

minimum support. This is illustrated in Figure 5.1 for the case of 0.8% and 0.2%

minimum support. In both these cases, the border expanded for all increment sizes,
however, speedup reached up to 5-9 in the latter case (0.2% minsup) although it was
confined around 2 for the former case (0.8% minsup).

To eliminate the effect of the local characteristics of the data in the increment
database, the experiment for the hybrid constraint was repeated for 10% and 5%
increment sizes. This time, the increment database was taken as a contiguous block
from 10 different places not just from the beginning block. The speedup is tested for
each case and then its average is taken. This has the effect of smoothing the glitches.

The results are shown in Figure 5.5. From the figure, it can be noticed that speedup

still obeys the same general trend.

67

Hybrid CFQ, T10.16.D400K

1.0%

0.8%

0.6%
Minimum Support

0.4%

0.2%

E10% Inc.
W 7% Inc.
05% Inc.
03% Inc.
W 1% Inc.

Figure 5.4: Speedup for a hybrid constraint

Average Speedup

Hybrid CFQ, T1016D400K

18.0

16.0

®
o
|

14
o

by
o

N
o

©
o

1.0%

0.8%

0.6%
Minimum Support

0.4%

0.2%

d10% Inc.
W 5% Inc.

Figure 5.5: Average Speedup for the hybrid constraint

68

Some particular observations can be deduced for every case:

a_

5.3.

For the hybrid constraint, we can comment that the performance gain is more drastic

than in the other cases (Figure 5.4). This is attributed to two things, first, combining

both the succinct and succinct anti-monotone constraints increased the selective power
of the hybrid constraint and therefore lowered the number of frequent itemsets
satisfying it. This increases the performance of /CAP since the number of frequent
patterns it has to generate in the increment database is lowered and the probability of
border expansion is also lowered. The second reason is that the succinct constraint
component included in the constraint is more selective than that of the succinct only

constraint of Figure 5.1 for example. This is a good sign for /CAP since it indicates

better performance gains when constraints tend to be more constraining. This will
normally be the case in a practical environment.

For the anti-monotone constraint and the succinct-anti-monotone constraint, it should
be noted that in the later case, CAP degenerates to Apriori but on a smaller or a
restricted subset of the items. Similarly, for the former case, the only difference
between CAP and Apriori is that CAP prunes some itemsets (those not satisfying the
anti-monotone constraint) early before counting them. It should be expected then to
have similar results of trends of speedup between CAP and ICAP as those between
BORDERS and Apriori reported in [44].

For the non-succinct non-anti-monotone constraint, it should be noted that the
constraint used will induce the weaker constraint min(S.Price) <15 which has exactly

the same constraining capability as the succinct only constraint of Figure 5.1 since both

constraints have the same selectivity. The extra pass required to filter out the extra
itemsets not satisfying the original constraint accounted for a negligible amount of time

with respect to the other tasks. This made the results of Figure 5.1 apply also to this

case.

Measuring scalability with database size

The second experiment intended to test how /CAP scales-up when changing the database

size.

The database size was changed in 100,000 transactions increments starting from

100,000 transactions until 400,000 transactions. The experiment was conducted for the 10%

increment database size. The reason for this choice is to try to be harsh on the incremental

69

algorithm, by testing it in its worst cases. The results of the experiment can be seen in Figure

5.6. It was expected that the performance gain should increase drastically with the increase in

database size since this increases more the I/O cost of the non-incremental algorithm. The
results of the experiment, as seen from the figure, was not quite what was expected. In spite
of the increase in the performance gain with the database size, the recorded increase was not
that significant. The reason for this is that the size of the database file is small (18 MB in the
case of 400,000 transactions) compared to the size of the main memory. This enables the
operating system to cache the whole database file into main memory after the first pass. The
increase in the database size in this case did not impose a drastic difference on performance.
An interesting question arises here which is, if the whole database can be cached in memory,
from where does the incremental algorithm obtain its edge? The answer is that even if the
database is fully accommodated in main memory, the non-incremental algorithm wastes too
much time sequentially passing on it. This gives the incremental algorithm its performance
gain. More drastic increase in performance should be noted then if the database size exceeded

the size of the main memory.

Hybrid CFQ, T10.16.DXK, 10% increment size

10.0

9.0

8.0

7.0

6.0

5.0

Speedup

4.0

3.0
20

1.0

0.0

1.0% 0.6%
Minimum Support

Figure 5.6: Measuring performance for different database sizes

70

Another observation on Figure 5.6 is that the performance gain increases (though slowly)

with decreasing support threshold. This is expected since the non-incremental algorithm

passes more on the database in case more itemsets are frequent.
5.4. Measuring sensitivity to item selectivity

In case of succinct constraints, and from Lemma 5, the constrained negative border requires
the generation and counting of several itemsets that are known beforehand to be not frequent.

From section 4.2, to generate the minimum sized itemsets satisfying he succinct constraint, it

is required to generate the cross product of the mandatory sets in the MGF of the constraint.
The number of itemsets in the border can be very large, especially if the cardinality of the sets
involved in the cross product is high. This places a burden on /CAP that is not existing for
CAP and raises a natural question, does the performance gain disappear for higher number of

border items?

Succinct only CFQ, T10.16.D400K, 10% increment size

6.0

5.0 =

4.0 1 @ 5% sel.
=) B m10% sel.
§ 3.0 H 015% sel.
& 0120% sel.

2.0 + W 25% sel.

1.0

0.0 L

1.0% 0.8% 0.6% 0.4% 0.2%
Minimum Support

Figure 5.7: Measuring performance with item selectivity

The following experiment was designed to answer this question. The algorithms are

compared for the same succinct constraint of Figure 5.1 and for 10% increment size (again to

be harsh on ICAP) and the different support settings. The item selectivity was increased from

71

5% to 25% (i.e. the number of soda items in this case was changed from 5% of the whole set
of items to 25%). This increased the number of border itemsets.

The results of the experiment can be seen in Figure 5.7. The interesting discovery is that

ICAP still has its performance edge. This is due to the fact that, as reported in [35], the
performance of CAP itself also drops with item selectivity because it has to count more
itemsets that satisfy the constraint, and more importantly the probability that the length of the
frequent itemsets increases is highly costing it extra precious passes over the database. This
balances the deterioration in time in /CAP needed to maintain the large number of border

itemsets.

72

Chapter 6

CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

6.1. Conclusion

In this thesis, a new algorithm (Incremental Constrained APriori ICAP) for incremental
mining of constrained association rules is proposed. The algorithm applies the techniques of
incremental mining on the constrained mining algorithm CAP (Constrained APriori) to
produce the new set of updated constrained frequent-sets after the update of the original
transactional database by adding new transactions. The proposed algorithm fills the existing
gap between the two separate paradigms of incremental and constrained mining of
association rules.

In the course of developing the proposed algorithm, the concept of the constrained negative
border 1s introduced as the counterpart of the classical concept of the negative border. The
constrained border is proved to have the same property as the normal border, namely being
an indicator for the necessity of checking the original database, which is the most costly
operation in incremental mining.

The proposed algorithm ICAP utilizes the constrained border efficiently to maintain the set
of constrained frequent-sets. As a direct consequence of this usage, /CAP performs at most
one pass on the original database and only when it is absolutely necessary.

Several experiments are conducted to measure the relative performance of the new algorithm
compared to rerunning the CAP algorithm from scratch on the whole updated database. The
test results show that /CAP exhibits a speedup gain in virtually all situations. The sensitivity

of the algorithm is tested for several increment sizes and support thresholds.

6.2. Suggestions for future work

Several questions remain unanswered and are appropriate directions for future research work:
e In terms of "market basket analysis" when transactional databases represent retail data, it
is convenient to expect the data to be of the add only type. This justifies that this work
deals only with updates in the form of database insertions. However, the general problem

of updating the transaction database includes also the deletion of transactions. Thus, an

73

immediate extension is to study the general problem. Handling deletion of transactions
should present no problem using the same techniques in this work. However, several
parameters should be studied, the most important of which is when it becomes costly to
use the incremental technique. This is because deleting transaction reduces the size of the
updated database, which might introduce situations in which using an incremental
technique is not worthwhile.

e As mentioned in section 4.4, several alternatives exist to measure the appropriate time to

run the incremental algorithm. This thesis does not go beyond suggesting such methods.
Every alternative should be more investigated to discover the circumstances in which the
use of one alternative will be more appropriate than the other. It might be the case that a
combination of such alternatives is more appropriate.

e There is an expected surge in the research efforts trying to adapt the new techniques for
mining frequent patterns in general to the classical problems of mining association rules.
Also a very recent publication formally restated the problem of mining constrained
frequent-sets [38] and introduced other properties of constraints (monotone and
convertible constraints). This publication is a starting step in the efforts trying to use the
new very efficient techniques to mine constrained frequent sets. Similar efforts should be
done to try to combine the benefits of these techniques with that of incremental mining,
and needless to say, with incremental mining of constrained rules [27].

e Another question is still open. What will be the case if the database update modified not
only the transactional part but also the characteristic data of the items (e.g. changing the
price of some items or changing the item type)? It is to be noted that this thesis assumed
only modifications in the transactional part. This assumption eases the situation since it
guarantees that satisfaction of constraints other than the support constraint will not be
affected. However, a modification in the characteristic part of the database would
invalidate this fact. Actually, the above question is a tough question to answer. The
reason for this relies in that the concept of winners and losers will not be as simple as it
was. The difficulty of this problem is on par with another interesting question in the
classical problem of incremental mining of associations, which is what if we need to
discover the new set of frequent itemsets after changing the support threshold? The
literature has no answer to this question, lest the work in [34] which tried to solve an

interestingly similar problem.

74

REFERENCES

[1] Agrawal, C. C.; and Yu, P. H. A New Framework For Itemset Generation. In Proceedings
of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, June 1-3, 1998, Seattle, Washington. ACM Press 1998.

[2] Agarwal, R.; Aggarwal, C.; and Prasad, V. V. V. A Tree Projection Algorithm for
Generation of Frequent Itemsets. In Journal of Parallel and Distributed Computing
(Special Issue on High Performance Data Mining), (to appear), 2000.

[3] Agrawal, R.; Arning, A.;Bollinger, T.; Mehta, M.; Shafer, J. and Srikant, R. The Quest
Data Mining System. Proc. of the 2nd Int'l Conference on Knowledge Discovery in
Databases and Data Mining, Portland, Oregon, August 1996.

[4] Agrawal, R.; Imielinski, T.; and Swami, A. Database Mining: A Performance Perspective.
IEEE Transactions on Knowledge and Data Engineering, Special issue on Learning
and Discovery in Knowledge-Based Databases, 5(6): 914-925, December 1993.

[5] Agrawal, R.; Imielinski, T.; and Swami, A. Mining Associations between Sets of Items in
Massive Databases. Proc. of the ACM SIGMOD Int'l Conference on Management of
Data, pp. 207-216, Washington D.C., May 1993.

[6] Agrawal, R. and Psaila, G. Active Data Mining. Proc. ofthe Ist Int'l Conference on
Knowledge Discovery and Data Mining, Montreal, August 1995.

[7] Agrawal, R.; Shafer, J.C. Parallel Mining of Association Rules. I[EEE Transactions on
Knowledge and Data Engineering, Vol. 8, No. 6, December 1996.

[8] Agrawal, R.; and Srikant, R. Fast Algorithms for Mining Association Rules. Proc. of the
20" Int'l Conference on Very Large Databases, Santiago, Chile, Sept. 1994.

[9] Agrawal, R.; and Srikant, R. Mining sequential patterns. In Proc. 1995 Int. Conf. Data
Engineering, Taipei, Taiwan, March 1995.

[10] Ahmed, Khalil M.; EI-Makki, Nagwa M.; and Taha, Yousry. A note on "Beyond Market
Baskets, Generalizing association rules to correlations". In SIGKDD explorations:
Newsletter of The Special Interest Group (SIG) on Knowledge Discovery & Data
Mining, Vol. 1 Issue 2, January 2000.

[11] Ali, K.; Manganaris, S.; and Srikant, R. Partial Classification using Association Rules. In
Proc. of the 3rd Int'l Conference on Knowledge Discovery in Databases and Data

Mining, August 1997.

75

[12] Ayan, N. F.; Tansel, A. U.; and Arkun, E. An efficient algorithm to update large itemsets
with early pruning. Proceedings of the fifth ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD’99) August 1999, San Diego, CA USA.

[13] Bayardo, R. J. Efficiently Mining Long Patterns from Databases. In Proc. of the 1998
ACM-SIGMOD Int’l Conf. on Management of Data, pp. 85-93.

[14] Bayardo, R. J. and Agrawal, R. Mining the Most Interesting Rules. Proceedings of the
fifth ACM SIGKDD international conference on Knowledge discovery and data mining
(KDD’99) August 1999, San Diego, CA USA.

[15] Bayardo, R. J.; Agrawal, R.; and Gunopulos, D. Constraint-Based Rule Mining in Large,
Dense Databases. In Proc. ofthe 15th Int’l Conf. on Data Engineering , pp. 188-197,
1999.

[16] Bradley, P.; Fayyad, U.; and Mangasarian, O. Data Mining: Overview and Optimization
Opportunities. Microsoft Research Report MSR-TR-98-04, January 1998

[17] Brin, S.; Motwani, R.; and Silverstein, C. Beyond Market Baskets: Generalizing
Association Rules to Correlations. In Proc. of the 1997 SIGMOD Conf. on the
Management of Data, pp. 265-276.

[18] Brin, S.; Motwani, R.; Ullman, J.; and Tsur, S. Dynamic Itemset Counting and
Implication Rules for Market Basket Data. In Proc. of the 1997 SIGMOD Conf. on the
Management of Data, pp. 255-264.

[19] Chen, M. S.; Han, J.; and Yu, P.S. Data Mining: An Overview from a Database
Perspective. IEEE Transactions on Knowledge and Data Engineering, 8(6): 866-883,
1996.

[20] Cheung, D.; Han, J.; Ng, V.; and Wong, C.Y. Maintenance of Discovered Association
Rules in Large Databases: An Incremental Updating Technique. Proc. of 1996 Int'l
Conf. on Data Engineering (ICDE'96), New Orleans, Louisiana, USA, Feb. 1996.

[21] Cheung, D. W. L.; Lee, S.D.; and Kao, B. A general incremental technique for
maintaining discovered association rules. /n Proceedings of the Fifth International
Conference On Database Systems For Advanced Applications, pp. 185-194,
Melbourne, Australia, March 1997.

[22] Christian, H. Online Association Rule Mining. Proc. 1999 ACM-SIGMOD Conf- on
Management of Data (SIGMOD'99), Philadelphia, PA, June 1999.

[23] Feldman, R.; Aumann, Y.; Amir, A.; and Mannila, H. Efficient Algorithms for
Discovering Frequent Sets in Incremental Databases. In Proceedings of the 1997

SIGMOD Workshop on DMKD, Tucson, Arizona, May 1997.

76

[24]

[25]

Ganti, V.; Gehrke, J. E.; and Rmakrishanan, R. DEMON: Mining and monitoring
evolving data. In Proceedings of the 16th International Conference on Data
Engineering, San Diego, 2000.
Han, J.; and Fu, Y. Discovery of Multiple-Level Association Rules from Large
Databases. Proc. of 1995 Int'l Conf. on Very Large Data Bases (VLDB'95), Ziirich,
Switzerland, September 1995.

[26] Han, J.; Lakshmanan, L. V. S.; and Ng, R. Constraint-based, Multidimensional data

mining. [EEE Computer, Special issue on data mining, August 1999.

[27] Han, J.; Pei, J.; and Yin, Y. Mining Frequent Patterns without Candidate Generation.

Proc. 2000 ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD'00), Dallas,
TX, May 2000.

[28] Klemettinen, M.; Mannila, P.; Ronkainen, P.;and Verkamo, A. I. Finding Interesting

Rules from Large Sets of Discovered Association Rules. In Proc. of the Third Int’l
Conf. on Information and Knowledge Management, pp. 401-407, 1994.

[29] Lakshmanan, L. V. S.; Ng, R.; Han, J.; and Pang, A. Optimization of Constrained

Frequent Set Queries with 2-Variable Constraints. Proc. 1999 ACM-SIGMOD Conf. on
Management of Data (SIGMOD'99), Philadelphia, PA, June 1999, pp. 157-168.

[30] Lee, S.D.; and Cheung, D. W. L. Maintenance of Discovered Association Rules: When

to update?. In Proceedings of the 1997 ACM-SIGMOD Workshop on Data Mining and
Knowledge Discovery (DMKD-97), Tucson, Arizona, May 1997.

[31] Lin, D.; and Kedem, Z. M. Pincer-Search: A New Algorithm for Discovering the

[32]

[33]

Maximum Frequent Set. In Proc. of the Sixth European Conf. on Extending Database
Technology.

Liu, B.; Hsu, W.; and Ma, Y. Mining Association Rules with Multiple Minimum
Supports. Proceedings of the fifth ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD 99), San Diego, CA USA, August 1999.
Mueller, A. Fast sequential and parallel algorithms for association rule mining: A
comparison. Technical Report CS-TR-3515, University of Maryland, College Park,
August 1995.

[34] Nag, B.; Deshpande, P. M.; and DeWitt, D. J. Using a Knowledge Cache for Interactive

Discovery of Association Rules. Proceedings of the fifth ACM SIGKDD international
conference on Knowledge discovery and data mining (KDD 99), San Diego, CA USA,
August 1999.

77

[35] Ng, R. T.; Lakshmanan, V.S.;Han, J.; and Pang, A. Exploratory Mining and Pruning
Optimizations of Constrained Association Rules. In Proc of the 1998 ACM-SIG-MOD
Int’l Conf. on the Management of Data, pp. 13-24, 1998.

[36] Omiecinski, E.;and Savasere, A. Efficient mining of association rules in large dynamic
databases. In Proc. BNCOD 98, pages 49-63, 1998.

[37] Park, J-S.; Chen, M-S.; and Yu, P. S. An Effective Hash Based Algorithm for Mining
Association Rules. Proceedings of ACM SIGMOD, pp. 175-186, May 1995.

[38] Pei, J. and Han, J. Can We Push More Constraints into Frequent Pattern Mining? To
appear in Proc. 2000 Int. Conf. on Knowledge Discovery and Data Mining (KDD'00),
Boston, MA, August 2000.

[39] Sarda, N. L.; and Srinivas, N. V. An adaptive algorithm for incremental mining of
association rules. In Proceedings of DEXA Workshop 98, pp. 240-245, 1998.

[40] Savasere, A.; Omiecinski, E.; and Navathe, S. An Efficient Algorithm for Mining
Association Rules in Large Data-bases. In Proc. of the 21 Conf. on Very Large
Databases, Zurich, Switzerland, September 1995.

[41] Savasere, A.; Omiecinski, E.; and Navathe, S. B. Mining for Strong Negative
Associations in a Large Database of Customer Transactions. Proceedings of the
International Conference on Data Engineering, Orlando, Florida, February 1998.

[42] Srikant, R.; and Agrawal, R. Mining Generalized Association Rules. Proc. of the 21"
Int'l Conference on Very Large Databases, Zurich, Switzerland, September 1995.

[43] Srikant, R.; Vu, Q.; and Agrawal, R. Mining Association Rules with Item Constraints. In
Proc. ofthe Third Int’l Conf. on Knowledge Discovery in Databases and Data Mining,
August 1997 pp. 67-73.

[44] Thomas, S.; Bodagala, S.; Alsabti, K.; and Ranka, S. An efficient algorithm for the
incremental updation of association rules in large databases. In Proceedings of the 3"
International conference on Knowledge Discovery and Data Mining (KDD 97), New
Port Beach, California, August 1997.

[45] Toivonen, H. Sampling large databases for association rules. In 22" International
Conference on Very Large Databases (VLDB'96),pp. 134-145, Mumbay, India,
September 1996.

[46] Toivonen, H.; Klemettinen, M.; Ronkainen, P.; Hatonen, K.; and Mannila H. Pruning
and grouping discovered association rules. In MLnet Workshop on Statistics, Machine
Learning, and Discovery in Databases, pp. 47-52, Heraklion, Crete, Greece, April
1995.

78

[47] Tung, A. K. H.; Lu, H.; Han, J.; and Feng, L. Breaking the Barrier of Transactions:
Mining Inter-Transaction Association Rules. Proc. 1999 Int. Conf. on Knowledge
Discovery and Data Mining (KDD'99) , San Diego, CA, Aug. 1999.

[48] Zaki M. J. Parallel and Distributed Association Mining: A Survey, in [EEE
Concurrency, special issue on Parallel Mechanisms for Data Mining, Vol. 7, No. 4,
ppl14-25, December, 1999

[49] Zaki, M. J. and Ogihara, M. Theoretical Foundations of Association Rules. 3rd
SIGMOD'98 Workshop on Research Issues in Data Mining and Knowledge Discovery
(DMKD), pp 7:1-7:8, Seattle, WA, June 1998.

[50] Zaki, M. J.; Parthasarathy, S.; Ogihara, M.; and Li, W. New Algorithms for Fast
Discovery of Association Rules. In Proc. of the Third Int’l Conf. on Knowledge
Discovery in Databases and Data Mining, pp. 283-286, 1997.

79

ZJL‘»JJ\U@#;L&

28 55 AT B el el ol 1S cuda 8 Ll Y1 sl e adnl AlSha ¢
il Al Jeud) (o Gl 436 el e a2) e L dali Y1 el 8 LY callad sae < jels
Jsta oy o 385 38 el sl i 315,V ael 8 oo aiall agnll))
il 3aan 3ok alag w5 1A (Gulal) 58 maann i sl liel s Sl ol G ey
LBy eoa) il o dnll o a0) si 2080 AL D ol 3ol b V) 2ol 8 e) i)
e gl

Ailpal adladind = 58 5 "3l Il aa ' Tane Al) 08 capad) o5 a0l skt 3k e
ALY clleall iy 52 LY saas clilead iy dila) 5 Lexie 58l Bli Y1 ae) 68
V) A la) il sacld e s pall 4alial axe sa & sl o) Al Al (al a0 o]
O (L e Ll sl oo Y sl clileall 4dla) (0% Ladie jssiz\t;;sh\}zf
el ol L gy A A5 el pe Lgmad i) il Aoy

bl (g de sama ALl 2385 LS calinaa L) 5 aaall o Al A 5o L Al)l oda b
el bl sacl 8 e o Fie pad) el anll Lal) o) a0 alasin) Jlie 8 434 du
e Qi e (B S pead Sipta) w50l sanall Glaleall 48] aay Al
cuaall a5 sal aasi

e e 50 gl palls (alal) o al ey 5 J g B o Al) (5 gias

Agdhaal aal o Lgl) wdlall et Al yl i (e 5 ke 1Y) Jucadl)

O il daleiall Gl aaY (e sed Canall Ao D) AR e (g giag 1 S Jadl
Sl a) aal G ashy LS L AIEAD Aahisal) Cilay ol Y AdliaYU dale Adiay Lol V) ael @
c el asall i) a6 deaid)

8 2y Jeail e) oA agle b oA (g taill () (e 1 Jeadl
sacl 8 o gl 50 o AdlaS adasin 30 il 5 aiall bl aall o 7 5
L) bl

s ok G pal iy Liaf il 138 (3 ndl o) AN 2 8 5 oy o sy sl 5l
I et e Llee Ve Jeadl an 5 i Cillid) aal

) e) ol el) sad) elol A3 A e 3 ol il ahy tguelad) Juadl)
) =58 g olaal ol e Galail) 2y Joadll 13a b

o3 Algiaal Aia) laladVl Gmey 5 clalimnay) aal 4 5 Al s szl Juail

Jadl 13

Bl Bl ¥t uel B e)) Gl Wl)) 5

) aSal dpidall YY) sl dadie Al

Aadal CNYI 3 ieala) da o e Jpemall 5 5a (illiieS

IO Aadia

sle Ciade daal [

2000 iy €Y dasls

