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Abstract 
We study the problem of static optimization of conjunctive 
queries with sliding window joins over unbounded 
streaming information sources. While previous work has 
suggested focusing on maximizing the output rate of 
queries over streaming information sources, we show that 
in steady-state, for conjunctive queries with sliding 
windows over unbounded streams, all feasible plans have 
the same output rate. For this reason, we suggest that the 
goal of optimization for such queries should be to 
minimize resource utilization in steady state. We 
formulate a cost model for the problem and introduce a 
framework for optimization based on feasibility and 
resource management. We then use the model to study 
where to optimally place random drop boxes and how 
much to drop in each box in case no feasible plan exists 
and approximation is necessary. The goal of the 
approximation is to achieve the maximum throughput of 
the resulting tuples given the resource constraints. We 
find that, given a plan to approximate, the optimum 
placement and values are easily obtained. However, 
finding the best plan to approximate is not necessarily an 
obvious task. 

1. Introduction 
The focus of research on data and information 

processing has recently shifted towards an emerging type 
of applications in which the data is streaming from its 
sources. Such applications include monitoring network 
traffic, intrusion detection, telecommunications, sensor 
networks, financial services, and e-business applications. 

 Some major assumptions made by traditional data 
management systems do not hold in the context of 
streaming applications. In these applications, the system 
has no control over the arrival time of the data. Hence, the 
adoption of a push model of computation is mandatory. 
Also, in such applications, monitoring queries can run for 
a long time (e.g., on the order of days or months) that they 

can be assumed for all practical purposes to be running 
continuously, hence the name continuous queries. 

An important goal in systems designed for such 
applications is to provide an easy framework for users to 
express their queries. A good approach is to provide users 
with a declarative method to do so, leaving the decision 
on arranging how the query is executed to the system. 
Such approach is taken by the STREAM [33] team which 
extended the SQL query language with constructs to pose 
queries on any combination of relations and continuous 
streaming sources [2]. This approach reopens the problem 
of query optimization for continuous queries.  

The goal of query optimization has always matched the 
framework in which the queries are executed. Query 
completion time was the goal in early efforts of query 
optimization for traditional relational database systems 
[28]. Then it became the fastest response [34], or an 
approximate response with statistical guarantees [18]. In 
the case of streaming sources, the goal differs depending 
on the type of application and the query posed. In terms of 
the data sources, it can either be: a) finite streaming 
sources (e.g., documents flowing over the internet) or b) 
infinite streaming sources (e.g., call logs, network traffic 
logs, sensor readings.) In terms of the posed query, it can 
either be: a) short running (i.e., the user is interested in 
asking about the current state of the system over a short 
period of time, or is interested in a small prefix of the 
answer,) or b) continuous, meaning the user would like to 
monitor the system’s behavior for a considerable length of 
time. Using the previous classification, Figure 1 
highlights the different combinations and the goal of 
optimization in each. 

One combination does not make sense, since if the 
streaming source is finite, a continuous query degenerates 
into a short running one. In case a query is short running, 
the best plan for the query is the one giving the fastest 
response of the whole answer (or a specific prefix of it,) 
or the one giving the most answers in the specified 
lifetime of the query. The work in [35] presented a 
framework for optimization of such queries. 
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The fourth quadrant, in which the sources are infinite 
and the query is continuous, is the one called continuous 
queries. Since the execution engine has no control over 
data availability, it has no choice but to keep up. From 
basic queuing theory [23], if the system capacity exceeds 
the requirements for the input rate (utilization < 100%,) 
the system is stable. Otherwise, the system is said to be 
saturated or unstable. In the context of continuous queries, 
an execution plan for the query is feasible if the system it 
will execute on will be stable. A feasible query is one for 
which at least one feasible plan exists. 

With this setting in mind, three scenarios are possible 
for any given query:  
1. Resources are abundant, which means that all plans 

will be feasible. However, a poor choice can still tie-
up unnecessary resources.  

2. Resources are tight, meaning the choice of a good 
execution plan can prove to be essential for feasibility.  

3. Resources are insufficient, meaning that the query is 
infeasible and an approximate result is inevitable. The 
choice of plan that carefully uses available resources 
can improve the quality of such an approximation. 

To arrive at the best decision at each situation, we 
present a framework for static optimization of continuous 
queries based on feasibility and resource management. In 
particular, our main contributions are: 
•  We develop a model for estimating the resource 

utilization of an execution plan of a continuous query. 
•  We use the model to show that for all feasible plans, 

the output rate will always be the same, making output 
rate or throughput a non-distinguishing factor. This is 
why the goal of optimization in such case should 
rather be feasibility and resource management.  

•  We then introduce our framework for optimization 
based on the above goal. The optimizer in this 
framework should decide on the best plan for 
situations (1) and (2) above, or state that no feasible 
plan exists. 

•  In case no feasible plan exists, situation (3), we use the 
model to examine the problem of finding an 
approximate answer by randomly dropping tuples 
from the query plan. The goal of the approximation is 
to achieve the least amount of lost tuples from the final 
answer of the query. 

Table 1. Variables used in estimating resource 
requirements. 

Cσ Cost of performing a selection on a single tuple 
CP Cost to probe an active window for a matching 

tuple just arriving 
CI Cost to insert an arriving tuple into the sliding 

window 
CV Cost to invalidate an expired tuple from the sliding 

window 
σ Selectivity factor of a selection predicate 
f Join selectivity factor 
λi Rate of arrival of tuples from source i 
W Size of a tuple-based window 
T Size of a time-base window 
M Least amount of memory needed for an 

operator/query 
•  We show that interestingly, when approximation is 

necessary, the best plan to choose for approximation is 
not necessarily the best feasible plan. 

Much of the recent work on systems for streaming 
information sources is built on being able to dynamically 
adapt to the changing characteristics of the data as it flows 
by. The paradigm is: start with a plan, and then 
continuously change it as you know more about the data. 
Examples are the work in [3][19][32]. This is built on the 
earlier idea of mid-query re-optimization [21]. It is 
important to note that, by introducing a static optimization 
framework, we are not effectively stating that it is a better 
way to approach the problem. Static optimizations can be 
useful in cases where the rates of the input streams are 
slow changing, and the pattern of change is predictable 
(e.g., network/transportation traffic loads, building 
sensors.) It suffers from its rigidity and inadaptability to 
rapid changes of basic assumptions about the data 
characteristics. The adaptive approach solves these 
problems, but it is not without its overhead. The question 
of which is better depends upon several things, including 
the exact amount of overhead, and how volatile the 
environment is. At one extreme, very static environment, 
static optimization will be best. At the other extreme, very 
dynamic environment, adaptive may be superior. In 
between the two are a number of tradeoffs (e.g., optimize 
and monitor then re-optimize when necessary, or optimize 
every k number of seconds.) Our goal is not to answer the 
question of which is better or when to use which. To be 
able to answer such questions, we need first to know what 
it means to do static optimization for continuous queries, 
which is the goal of this paper. 

The rest of the paper is organized as follows: Section 2 
discusses related work in the literature. Section 3 
describes the cost model used in the optimization 
problem. Section 4 defines the problem and discusses 
related issues. Section 5 tackles the problem of how to 
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Figure 1. Goal of query optimization for 
streaming information sources 
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arrive at a good approximation of a query if no feasible 
plan exists. Section 6 concludes the paper.  

2. Related Work 
The existence of applications built on streaming 

information motivated building specialized systems to 
manage streaming data. Among the recent examples are: 
Niagara [11], which queries streaming XML sources over 
the internet; STREAM [33], which has as its goal 
extending traditional DBMS technology to also manage 
streaming sources; Aurora [8], which is specifically 
designed to accommodate a large number of continuous 
queries; Telegraph [32], which is a highly adaptive 
dataflow management system. The survey in [4] contains 
a good documentation of earlier models and systems that 
are also targeted at such applications, together with a 
number of issues related to building a data stream 
management system. Another closely related type of 
system is sensor networks and databases, examples of 
which are TinyDB [24][25] and the Cougar [38] projects. 

The problem of query optimization is almost as old as 
relational databases. The seminal work of [28] introduced 
a framework for optimization of relational queries aimed 
at minimizing query completion time. In the context of 
continuous queries, such a goal is inappropriate. 
NiagaraCQ [10][11] aims at addressing the scalability of a 
system supporting a large number of continuous queries 
by grouping predicates and queries together. The work in 
[9][12][26] uses similar techniques by extending the 
earlier work on eddies [3] to support multiple concurrent 
continuous queries. The difference between this body of 
work and ours is that they are all dynamic optimization 
methods that adapt at run time to changing data and query 
characteristics; they do not deal with static optimization. 

The Aurora system [8] treats multiple streaming 
sources and multiple output queries as data flows between 
operators (boxes) that are input by the user. The queries in 
Aurora are composed by the user through an interface, 
then the system manages them without modification. This 
is the equivalent of adapting to an already given static 
plan of multiple queries with shared resources. Similarly, 
the work on scheduling operators in [5][17] deals with 
scheduling operators of a static plan to minimize resource 
usage or response time. Different problems related to 
scheduling and static resource allocation are reported in 
[27] together with a brief discussion of solutions. The 
assumption in such work is that a query optimizer has 
already arrived at a “best” plan. 

Close to our work is that presented in [35] and [36]. 
The former advocates moving from cardinality-based 
optimization to rate-based optimization and provides a 
model for a rate-based optimizer. Such work is geared 
towards queries in the first and second quadrants of 
Figure 1. It does not model the effect of sliding windows 
for continuous queries over infinite sources. The later 

provides a symmetric multi-join operator for multiple 
joined streams to minimize memory usage as opposed to 
using multiple binary join operators. Although it does not 
model sliding windows, it can be easily adapted and 
incorporated as an option for the optimization framework 
provided here. Also close is [30] in which the authors 
provide a queuing model for distributed eddies. One 
interesting result provided is that sometimes no single 
plan is the best if the goal is to achieve the maximum 
input rate before the system saturates. A combination of 
plans running concurrently, each with some share of the 
input load is proven to be better. The subtle difference 
between this work and ours is that this work assumes the 
operators are running on different processors, hence each 
has its fixed resources. Our work assumes all operators 
share a pool of resources. In this case, one plan is always 
better, the one our framework optimizes for. An 
interesting direction would be to look at how an optimum 
plan can be distributed over multiple processors. 

A lot of work dealt with providing approximate 
answers to continuous queries. In [27], the authors survey 
a number of methods to arrive at an approximate answer, 
among which is random sampling (i.e. random dropping 
of tuples) discussed here. In the context of Aurora, the 
authors in [29] provide algorithms for placing drop filters 
to reduce resource usage. They explore both random and 
semantic filtering. The difference between this work and 
ours is that they don not explore the effect of modifying 
the query plan to achieve better approximation. Plus, they 
deal with multiple queries, while we only consider single 
query optimization. Extending our work to multi-query 
optimization is an interesting direction. The work in [22] 
discusses single join approximation using random drops 
in case of either memory or computational resource 
shortages or both. This work extends that by studying the 
problem of insufficient computational resources for 
multiple joins. Also close to our work is [15], in which 
the authors study the problem of maximizing the result 
size of a single sliding window join in case of memory 
constraints by smartly selecting tuples to drop (semantic 
load shedding [8].) There is a brief discussion about 
extending the work to multiple joins and to deal with 
resource constraints. In this work, we deal with 
computational resource constraints, and multiple window 
joins. A comparison between our technique extended to 
handle smart load shedding and theirs after extension to 
multiple joins and resource constraints is another 
interesting direction. 

Another related area is developing compact statistical 
structures or synopsis for estimating different 
characteristics about the input streams (e.g., selectivities, 
running aggregates, … etc.) Examples of such work are 
[6][7][13][14][16]. Such techniques are essential for the 
success of an optimizer built on the framework presented 
here. 
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Finally, theoretical work examining different aspects 
of data stream systems exist. In [1], the authors examine 
the memory requirements for different types of 
conjunctive continuous queries with arithmetic 
comparison, and without window semantics. They find 
some instances of such queries to require only bounded 
memory. It is worth noting that conjunctive queries with 
only equality joins require unbounded memory and that is 
why window semantics are essential. The work in [2] is a 
first attempt at developing a SQL like streaming query 
language. 

3.  The Cost Model 
In this section, we provide the necessary calculations 

to estimate the expected processing and memory 
constraints for providing an answer for continuous 
queries. First, we derive the necessary equations to 
estimate the output rate and active window sizes for 
different operators assuming there are no constraints (i.e., 
assuming the plan is feasible.) Then, we move on to 
estimate processing and memory requirements for these 
operators together with the constraints on such 
requirements. 

We assume steady state conditions and use the average 
rate to characterize the rate of arrivals of incoming tuples 
from external sources. This implicitly assumes a stable 
arrival rate. Table 1 defines the notation used throughout 
the paper. All costs are in time units. 

3.1 Window Predicates 
Before delving into the derivations of the cost model, a 

brief discussion on window predicates is warranted. 
Besides their semantic usages, window predicates are a 
means to restrict an infinite stream for operations like 
stream joins to become feasible. Many types of window 
semantics exist, each has its own modeling requirements. 
A discussion of the different types can be found in [2][8] 
[9]. For the purpose of this paper, we will only consider 
tuple-based and time-based sliding windows as described 
in [2]. We will develop the cost model for the tuple-based 
type. However, since we are concerned with steady state 
conditions and are using average rate, it is easy to adapt 
the model for time-based windows using the following 
argument. On average, the number of active tuples in a 
window i of size T is λi·T. So, by replacing the size Wi of a 
tuple-based window with λi·T, the equations will be 
applicable to time-based windows as well. 

3.2 Rate and Window Calculations 
3.2.1 Selections and Projections 

We will consider projections as a special case of 
selections in which the selectivity factor is equal to 1. The 
number of tuples a selection/projection operator handles 
in a unit time is λi. Of those, only f·λi qualify for the 
selection. Hence, the output rate is 

λo= f·λi (1) 
Since selections and projections are treated as filters on 

incoming streams, there are no buffer requirements above 
what is necessary to store and inspect the current tuple. 

If the input stream to the selection or projection 
operator has a window predicate defined on it and then 
the output of the selection operator is fed into a join 
operator, we need to estimate the output window size 
resulting from the selection. To see the reason for this, 
consider a continuous query on two streams A and B. The 
query is composed of a selection on A followed by a 
sliding window join on the two streams with WA and WB 
being the values of the sliding windows defined on the 
two streams respectively. Two plans for the query are 
possible (Figure 2.) The window size on the left side of 
the join in the two plans cannot be equal, otherwise, for 
the left plan, we would be joining tuples from B with the 
last WA tuples that have passed the selection on A, instead 
of the last WA tuples that arrived (as done in the right 
plan), and the two plans will not produce the same results. 
To resolve this, the input window size should be reduced 
by a factor matching the selective capability of the 
selection operator.  

Hence, for a selection operator with a window Wi 
defined on its input, the size of the output window is 

Wo= f·Wi (2) 

3.2.2 Joins and Cartesian Products 
Similar to the previous section, a Cartesian product can 

be viewed as a special case of a join with the selectivity 
factor equal to 1. We assume a deterministic timestamp 
ordering (e.g., arrival time) on the tuples from external 
sources. 

Consider sliding windows of sizes WL and WR tuples 
placed on the left and right inputs of the join respectively. 
The number of tuples arriving from the left-hand side of 
the operator in a unit time is equal to λL, each of which is 
expected to join with f·WR tuples from the right-hand side 
window. Hence, the number of tuples produced as a result 
of tuples arriving from the left-hand side is f·WR·λL per 
unit time. Similarly, the number of tuples resulting from 
right-hand side arrivals is f·WL·λR. So, the total output rate 
for a window join is  

λo= f (WR·λL + WL·λR) (3) 

⋈

A 

B
σ ⋈ 

A B

σ 

Figure 2. Two plans for the same query. 
The window size on the left side of the 

join is less in the left plan. 

WBWA 

WB

WA 
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Similar to the filter-only case above, if the output of 
the join is fed into another join operator, we need to 
calculate the size of the resulting window Wo to use it as 
an input value for the other join. Any joined tuple is 
considered valid (not expired) only if all the original 
tuples it is comprised from are still valid. Consider 
arrivals on the left side of the join. Each arriving tuple 
that is inserted into the window on the left side causes the 
earliest tuple in the window to expire. The arriving tuple 
produces an average of f·WL tuples, while the same 
number of tuples resulting from the expired tuple 
becomes invalidated. The same scenario occurs for 
arrivals on the right hand side. So, on average, the number 
of resulting active tuples stays the same, which is the 
expected size of joining the active tuples on the left hand 
side with the ones on the right hand side. So 

Wo=f·WL·WR (4) 

3.2.3 The general case 
The above equations are all derived for binary joins. 

Using these derivations, it is possible to generalize them 
for the case of n-ary joins. In doing so, we arrive at the 
following observation.  

Observation 1 

The output rate of an n-ary join of n streams is constant 
and is estimated by 

∑ ∏∏
=

≠
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n
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where λk is the arrival rate of stream k, and Wi is the size 
of the tuple-based window predicate on stream i.  

The size of the resulting active window for an n-ary 
join can also be estimated by 

∏∏
=

⋅=
n

i
i

iesselectivit
all

n
o WfW

1

 (6) 

Proof 
The proof is simply by induction on the number of 
streams involved in the join and using equations (3) and 
(4) for the base case.  

It is clear from the above that the final output rate and 
active window size resulting from joining n streams are 
independent of how the join operation is performed. This 
is intuitively equivalent to the fact that, for a traditional 
relational query, the size of the final result is independent 
of the execution plan.  

The previous observation, coupled with the equations 
in Section 3.2.1, suggest that the output rate of a 
conjunctive continuous query is independent of the 

execution plan and that it should not be the goal of query 
optimization. 

3.3 Processing and Memory Constraints 
The problem of optimizing a conjunctive continuous 

query is similar to the traditional problem of optimizing 
conjunctive queries in relational databases. In both 
problems, we need to search the space of query plans to 
find the minimum cost tree. The current problem differs, 
however, in that it is a constrained one. In traditional 
query optimization, even the worst plan is supposed to be 
feasible given enough time. When dealing with 
continuous queries, if the system cannot handle the load, 
the plan is simply infeasible and resorting to 
approximations is inevitable. To correctly qualify the 
feasibility of a plan, we need to derive the necessary 
requirements for the different types of operators, which 
we do in the current section. 

3.3.1 Selections and Projections 
The cost of handling a tuple for a selection or a 

projection operator, Cσ, includes reading, inspecting the 
condition, and writing out the result, if necessary. For a 
selection or a projection operator to be able to correctly 
handle an arriving tuple, Cσ must be, on average, less than 
the average time until the next arrival. Hence, the 
following constraint 

Cσ·λi < 1 (7) 
There are no memory constraints on selection and 

projection operators since no buffers are required. 

3.3.2 Joins and Cartesian Products 
In the case of joining infinite streams, only non-

blocking algorithms can be used, like the symmetric hash 
join [37]. Kang et al. made the observation in [22] that the 
join cost can be divided into the cost of performing the 
left and the right parts of the join, and that the method of 
performing the two parts are completely independent. 
They derived a general cost model for the sliding window 
join which we will use here. The cost of the join per unit 
time is 

CL = λR·CP(L) + λL· (CI(R) + CV(R)) 
CR = λL·CP(R) + λR· (CI(L) + CV(L)) 

CL⋈R = CL + CR 

(8) 

The previous calculations are necessary if asymmetric 
operators will be used on the left and right side of the 
join. If, on the other hand, the traditional symmetric 
operator is used, the cost functions can be simplified to 

CL⋈R = (λR + λL)·(CI + CV + CP) (9) 
In both cases, the constraint is  

CL⋈R < 1  (10) 
In the later case, the operator can be seen as having an 

arrival rate of (λR + λL) and a service rate of (CL + CR + 
CP), analogous to equation (7). 
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It is worth mentioning that the cost of the join is 
dependent on the join algorithm used. The model 
presented in [22] can be used to choose the best possible 
algorithm for each join. 

In terms of memory requirements, the join operator 
needs at least enough memory to hold the active tuples on 
both sides of the join1, so the minimum memory 
requirement is 

M = WL + WR (11) 

3.3.3 Notes on Processing and Memory Constraints 
The constraints derived in this section have the subtle 

assumption that the operator will be the only running 
process in the system. In case a host of operators are 
sharing processing resources, the previous bounds are not 
tight. For the constraints to become tight in this case, the 
cost values of each operator should be dilated by the 
inverse of the fraction of time the operator is scheduled to 
run on the system. For example, if it takes 1 millisecond 
to process a tuple for selection, but the operator is sharing 
the processor fairly with 9 other operators, then the cost 
should increase ten fold to 10 milliseconds. 

Another note on the memory constraints is that the 
ones developed here do not take into account the queuing 
requirements for each operator. The estimation of such 
constraints requires a queuing model of the execution 
plan, which is part of our future work. 

Example 1 

To motivate the classification we had in the 
introduction and the cost model computations, consider 
the following simple SQL-like query (the window 
constraint syntax is modeled after [27]): 

                                                           
1 The amount of memory needed depends on the join algorithm. In case 
of a symmetric hash join, for example, the size of the hash table may 
slightly exceed the size of the window. 

SELECT A.a, B.b, C.c 
FROM    A [ROWS 10] 

B [ROWS 10] 
C [ROWS 10] 

WHERE  A.a = B.a  
AND  B.b = C.b 

This is a simple three-way tuple-based window join 
between the streams A, B, and C with the window being 
the latest 10 rows in each stream. Assume 0.5 is the 
selectivity of A⋈B and 0.2 is the selectivity of B⋈C. 
Also assume that 10, 20, and 70 are the rates of arrival of 
streams A, B, and C respectively in tuples/second. Further 
assume, for ease of exposition, that any join operator 
takes a constant amount of time to handle an incoming 
tuple from either side of the join, and that memory is 
measured in tuples. Figure 3 shows the possible plans to 
evaluate the query.  

First, assume that a join operator takes 0.5 
milliseconds to join an incoming tuple, which means that 
the system can handle at most 2000 tuples/second. In this 
case, it is obvious that any of the plans is feasible. In 
terms of memory consumption, all three plans require 
three queues capable of holding 10 tuples each for every 
stream. The plans differ dramatically, however, in terms 
of the active window size for the intermediate result that 
is input to the second join. Buffering requirements for 
plans (a), (b), and (c) are 80, 50, and 130 tuples 
respectively. A poor choice (plan (c) in this case) can 
result is in an expected 160% increase in memory 
consumption. The plans also differ dramatically it terms 
of their resource utilization. While plan (c) keeps the 
system 50% utilized, plan (b) has only 14% utilization, 
and plan (a) has 12.5% utilization. Choosing plan (c) 
results in a 400% increase in the necessary resources to 
answer the query. 

Now, assume that a join requires 4 milliseconds to 
handle an incoming tuple, meaning that the system 
capacity is 250 tuples/second. In this case, the tuple 

⋈ 

⋈ 

A B 

C 

λ=10 λ=20 

λ=70 
f =0.5 

f =0.2 ⋈

C 
λ=70

⋈A 

B 

λ=10

λ=20

f =0.2 

f =0.5 ⋈ 

λ=10

x 

A 

B 

C 

λ=20

λ=70 

f =1 

f =0.1 

Plan (a) Plan (b) Plan (c) 

λA⋈B= 0.5*10*(10+20) = 150 λB⋈C= 0.2*10*(20+70) = 180 λA⋈C= 1*10*(10+70) = 800 
WA⋈B= 0.5*10*10 = 50 WB⋈C= 0.2*10*10 = 20 WA⋈C= 1*10*10 = 100 

Figure 3. Possible plans to evaluate the join. 
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arrival rate should be taken into consideration. A join 
operator should be able to handle an arrival rate at least 
equal to the sum of the arrival rates of its input streams. 
Since all operators are run on the same system, the sum of 
the service rates of all operators cannot exceed the total 
system capacity. To test whether a plan is feasible, we 
need to sum the minimum service rates required for all 
joins and compare this to the system capacity. For plan 
(a), the first join must handle at least 30 tup/sec., and the 
second join 220 tup/sec resulting in total system 
requirement of 250 tup/sec. Similarly, plan (b) requires 
280 tup/sec, and plan (c) requires 900 tup/sec. This means 
that plan (a) is the only feasible solution and choosing 
either (b) or (c) requires the system to resort to 
approximation unnecessarily. 

If a join requires 5 milliseconds per incoming tuple 
(i.e., maximum system capacity of 200 tuples/second,) all 
plans become infeasible and some sort of approximation 
must take place. One way to approximate the result of a 
query is to randomly drop tuples from the input queues of 
the different operators. A heuristic measure of the quality 
of approximation can be the final plan throughput; the 
plan that drops the least number of tuples might be the 
best choice (the MAX-subset measure in [15]). We later 
discuss (in Section 5) some of the issues related to how to 
arrive at such a plan. 

3.4 Discussion 
In the previous sections we have proved that all 

feasible plans of a continuous query have the same output 
rate. This does not mean that all feasible plans produce 
the same result at the same time. To understand this, it 
may be helpful to regard a query execution plan as being 
analogous to an open queuing system, with the input 
being the data streams and output being the query answer. 
From queuing theory, the throughput of any two stable 
systems seeing the same input is fixed and is equal to the 
input throughput (for separable networks [23],) while the 
utilization and response times may vary between the two 
depending on the characteristics of each. In our context, 
the response time of a result tuple is the time difference 
between the production time of the tuple and the arrival 
time of the latest input tuple involved in generating it. The 
response time of a plan is the average response time of all 
resulting tuples. Feasible plans differ in their response 
times, meaning that they produce the same result tuples 
with each shifted in time by an average amount equal to 
the average response time. The response time of a plan 
can increase arbitrarily which is not desirable for 
streaming applications with real-time requirements. 

In the next section, we formalize the optimization 
problem to use the model above for obtaining the plan 
with the least resource usage (i.e., utilization.) Although 
the model does not directly model the response time of 
the plan, it can be easily argued that the plan produced 

will be the one with the least response time. From 
queuing theory, to use the analogy again, utilization is 
directly proportional to response time (i.e., the system 
with the least utilization has the least response time.) 

4. The Optimization Problem Definition 

Definition 1: Execution Plans. Given a certain 
conjunctive query Q on streaming sources, an execution 
plan p is a tree, whose leaves represent streaming sources, 
and internal nodes represent query operators each of 
which is a selection; a projection; or a join. The plan p 
represents a possible execution order of the operations 
in Q.  

We are now ready to formulate the optimization 
problem of conjunctive queries over infinite streams. 
Depending on the situation, we may choose to optimize 
for processing or memory resources. Two cost functions, 
C(p) and M(p), can be associated with each execution 
plan, defined as follows  

( ) ( )∑=
pinioperatorsall

icpC  (12) 

( ) ( )∑=
pinioperatorsall

impM  (13) 

where c(i) and m(i) are the processing per unit time and 
memory cost, respectively, of operator i. The objective of 
optimization is to 

Min {C(p)| p is an execution plan for Q} (14) 
subject to 

C(p) < 1 (15) 
when optimizing for processing resources, or  

Min {M(p)| p is an execution plan for Q} (16) 
subject to 
M(p) < M, where M is the available memory 

budget 
(17) 

when optimizing for memory resources. 
Equation (15) needs some further explanation. Since 

the cost function of each operator in the execution plan is 
defined in terms of the cost required per unit time, and 
since the assumption is that all the operators will be 
competing for the same computational resources, the 
whole plan is feasible only if the total cost of all operators 
per unit time is less than one unit time (i.e., utilization < 
100%.) Figure 4 shows an example of a simple plan with 
two selections. Assuming the time unit is a second, the 
first selection takes half a millisecond to process a tuple, 
the second takes a millisecond. In the first alternative 
(plan A,) it takes 500 milliseconds – on average – for 
selection σ1 to take care of arrivals in one second, and 250 
milliseconds for σ2. This means that there is enough time 
for both operators to handle the load coming their way in 
a unit time. Hence, both operators can share the same 
processing resources and the plan is feasible. Plan B, on 
the other hands, dictates that σ1 needs 250 milliseconds, 
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and σ2 needs one second to handle the arrivals in a unit 
time. Hence, it is infeasible and should be discarded. 

We end the section with a discussion on several related 
issues: 

The Single Processor Assumption. The above 
assumption, that the whole plan will be executed on one 
machine, is not necessary for the correctness of the 
model. Sometimes it is desirable to allow for some head 
room for the operators to avoid congestion in case of burst 
arrivals [29], other times, the plan can be distributed on 
more than one processor. The model can easily 
accommodate both cases. In the first case, if it is desired 
to leave 20% of the resources as head room, the bound of 
equation (15) should be 0.8 instead of 1. In the later case, 
if n processors are available, the bound should be n. 

Querying Relational Tables. A continuous query can 
combine relational tables with continuous streams [2]. 
Our model can easily integrate this scenario. Two cases 
arise. The first is when an operator, or a sequence of 
operators in a plan operate only on relational tables. In 
such case, the optimizer will treat this sub-query in a 
traditional way coming up with the best possible 
arrangement of the operators and estimating the result 
size. The option of materializing the result in memory or 
on disk should then be taken into account. The 
computational cost of the sub-query, however, is zero 
since it should be only a one-time computation that can be 
done before registering the query (notwithstanding 
updates to the relational tables while the query is 
running.) The second is when a relational table is joined 
with a stream. In this case, we can consider the join to be 
a filter on the stream with a variable cost-per-tuple that is 
dependent on the join selectivity, the different access 
paths available for the relation, and the placement of the 
relation (i.e., in memory, partially/completely on disk.) 
The optimizer should consider all possibilities and choose 
the one with the least cost. The estimated size of the 
resulting window is calculated in the same way as 

streaming joins if we consider the relational table to have 
a window size equal to its cardinality. 

The Relation to Scheduling. The best plan, or any 
feasible plan, found using the previous model does not 
dictate the best method by which its operators should be 
scheduled for execution. In developing the model, we 
have assumed a steady state in which the arrivals are 
stable and can be represented using the average rate. In 
reality, arrival rates can exhibit bursts of high loads that 
require adapting. Such adaptations are the function of the 
scheduling strategies used [5]. The static plan, however, 
can guide the scheduler by dictating that the scheduling 
strategy allows execution time to each operator 
proportional to its cost per unit time. For example, plan A 
of Figure 4 suggests that a good scheduling strategy 
would, on average, allot selection σ1 twice the time 
allotted for selection σ2. 

Complexity of Optimization. It can be proven, in a 
manner similar to [20], that the problem of finding the 
best join order for a deep tree of a conjunctive continuous 
query is NP-complete. An optimizer would have to resort 
to heuristics to reach a good plan. A dynamic 
programming approach, combined with heuristics similar 
to the ones used for traditional relational query 
optimization, would be applicable here too. 

5. Approximation Methods 
We now turn to the case when all the plans are 

infeasible and approximation is inevitable. Load shedding 
[8] is one form of approximation which reduces load by 
dropping tuples from the incoming streams. Load 
shedding can be done by several methods (e.g., random or 
semantic dropping of tuples) and can have several 
objectives (e.g., maximize throughput,) see [8][27] for a 
discussion. In this section, we consider random dropping 
of tuples as the method of approximation and the goal is 
to maximize the output rate of the approximated query. 
We consider the best way to place random filters2, and the 
optimal setting of the amount that each filter should drop. 
We also attempt to answer another interesting question. If 
approximation is inevitable, does the goal of optimization 
change? In other words, is it better to approximate the 
best plan, or can we achieve the same, or higher, 
throughput working on a suboptimal one. 

We start by handling the case of only selection 
operators and then extend the problem to include joins. 

5.1 Selection Only Queries 
Consider a query consisting of n consecutive filters, 

and an execution plan for it that orders the filters in 
ascending order by their designated numbers. The cost per 
tuple for filter i is ci time units, and its selectivity is σi. 
                                                           
2 We use random filter and drop box interchangeably. 

σ1 

σ2 

C1= 5*10-4 

f = 0.25 

C2= 10-3 

f = 0.5 

λ = 1000 

λ = 250 

c(1) = 0.5 
c(2) = 0.25 

c(1) = 0.25
c(2) = 1 

Plan A - Feasible Plan B - Infeasible

σ2 

σ1 

C2= 10-3 

f = 0.5 

C1= 5*10-4 

f = 0.25 

λ = 1000

λ = 500

Figure 4. Feasible and infeasible alternatives. 
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Now, assume that the plan is infeasible and drop boxes 
should be used to approximate the result. There are n+1 
possible places to put drop boxes (see Figure 5.) We will 
assume that the selectivity of drop box i is xi (i.e., the filter 
randomly drops 100-xi percent of the tuples it sees.) 
Notice that the filter becomes unnecessary if its parameter 
is equal to 1. The problem is to determine the optimum 
values of the xi’s such that the output rate is maximized. 
Using the model, the output rate of the approximated plan 
will be 

∏
+

=

⋅=
1

1

n

i
ioapprox xλλ  (18) 

and the total cost of the approximated plan will be 

( ) ( )∑ ∏
= =














⋅=

n

i

i

j
jxicpC

1 1

 (19) 

where λo is the output rate of un-approximated plan, 
calculated as  

∏
=

⋅=
n

j
jo

1

λσλ  (20) 

and c(i) is the cost per unit time of filter i, i=1..n, 
calculated as 

( ) ∏
−

=

⋅⋅=
1

1

i

j
jicic σλ  (21) 

Using the previous equations, and noticing that we will 
only need to drop tuples in case the plan is infeasible (i.e., 
C(p) > 1,) we can formulate the problem as a constrained 
optimization one as follows 

Max λapprox 
Subject to 

( ) 1=pC  
1...1,10 +=≤≤ nixi  

(22) 

The above formulation leads to the following 
observation. 

Observation 2 

To approximate a plan for a filtering-only continuous 
query, we only need to drop tuples directly from the 
streaming source before they are processed by any of the 
filters. Furthermore, the approximation should be 
performed on the plan with the least cost in order to 
maximize the output rate given certain computational 
resources. 

Proof Sketch 
The proof is by inspecting the solution of equation (22). 
The optimum solution is: 

( )

1..2,1

1

*
1

*
1

+==

=

∑
=

njx

ic
x

j

n

i
 (23) 

The optimum value of the objective function is 

oapprox x λλ ⋅= *
1

*  (24) 
From the solution, only the first drop filter is necessary 
with all the others having 100% selectivity. This proves 
that we only need to drop tuples directly from the 
streaming source before being processed by any filter. 
To prove that the approximation should be performed on 
the plan with the least cost, two observations are 
necessary. First, the solution is applicable for any given 
plan for the query. Second, given a certain plan, c(i) is the 
cost per unit time for filter i, making the summation in the 
denominator of *

1x  the cost of running the plan without 
approximation. Combining these two, the lower the cost 
of the plan, the higher *

1x  is (i.e., the less the number of 
tuples dropped.) Since the optimum approximate rate is 
directly proportional to *

1x , we can see that the plan with 
the lowest cost yields the highest approximated rate.  

 The first part of this observation provides a rigorous 
validation of a rule of thumb reported in [29]. 

5.2 Join Queries  
We now turn to the case where the query contains 

window joins. For ease of analysis, we will only consider 
tuple-based windows in this section. If the query is 
infeasible, the goal is again to find the optimum places to 
put drop boxes and the values of each drop box so that the 
throughput of the final plan is maximized. We would like 
to also confirm the intuition that the best approximate 
plan results from approximating the plan with the least 
cost as was shown in the filter-only case. 

We first look at the where to put the drop boxes. For a 
query joining n streams, a drop box can be put before 
each of the two inputs to the n-1 join operators, plus a box 
right after the last join is performed, resulting in 2n+1 
possible places. We can show, however, that similar to the 
filter-only case, we need to drop tuples only from the 
input streams before they are processed by any join 
operator. 

Observation 3 

To approximate a plan for a continuous query joining n 
streams, it is sufficient to drop tuples only from the input 
sources before they are processed by any join operator. 

σ1 x1 … σn xn+1 λ λoxn 

Figure 5. A plan with n filtering operators 
with drop boxes in all possible places. 
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Proof 

Figure 6 shows an arbitrary join operator in an 
approximated plan for the n-ary join with drop boxes in 
all possible locations. Assume that WA and WB are the 
sizes of the left and right windows of the join. We will 
show that, given certain values of the parameters x1; x2; 
and x3 of the drop boxes, we can always arbitrarily 
increase x3 without affecting the rest of the plan while 
decreasing the cost of the join. Note that the operator’s 
effect on the rest of the plan is through its output rate, and 
the resulting active window size.  

In the case of tuple based windows, the active window 
size is obtained from equation (4). To prove that it is 
independent of the values of the drop boxes consider two 
cases: a) the two inputs to the join are directly coming 
from the input streams, and b) at least one input is a result 
of joining i streams, where 2 ≤ i ≤ n-1. In case (a), the 
output window size obtained from equation (4) is 
independent of the input rates and hence the drop boxes. 
In case (b), let WA be the window resulting from previous 
join(s), the value of WA obtained from equation (6) is only 
dependent on the sizes of the windows on its i input 
streams, which are also independent of the input rates and 
the drop boxes. From the previous two cases we can see 
that the resulting window size is independent of the 
values of the drop boxes. This leaves the resulting output 
rate of the join. 

To prove the observation for the output rate, consider 
its value. From the model, the output rate is 

( )213 xWxWfx ABBAo ⋅⋅+⋅⋅⋅⋅= λλλ  (25) 
Now, assume that x3 is increased by ∆x3 to 1 (its 
maximum value.) In order for λo to remain constant, we 
need to decrease x1 and x2 by ∆x1 and ∆x2 respectively. 
After simplification, the relation between the increments 
is 

2313

21

xxWxxW
xWxW

ABBA

ABBA

⋅∆⋅⋅+⋅∆⋅⋅
=∆⋅⋅+∆⋅⋅

λλ
λλ

 (26) 

From the above, there are many values to set ∆x1 and ∆x2 
to compensate for the increase in x3

3. The cost of the join, 
however, is directly proportional only to the input rates to 
the join, dropping tuples after the join has no effect on the 
cost. This means that decreasing the values of x1 and x2 
will decrease the join cost. From the previous we can 
conclude that, for an arbitrary join operator and for any 
output rate, it is always preferable to drop tuples only 
from the inputs to the join. 

Now, assume the arbitrary join in Figure 6 is the top 
most join in the query plan. Recursively applying the 
previous observation to the joins feeding its inputs until 
reaching the original input streams will complete the 
proof.  

 
We now turn to determining the amount of tuples 

dropped by each box. As in the previous section, we can 
formulate the problem as an optimization one. Placing 
drop boxes only at the leaves of a query plan decreases 
the complexity of the problem significantly. For every 
input stream i to the query with rate λi, there exists an 
associated drop box with the parameter xi. Using equation 
(5), we can estimate the approximate output rate for a 
query with n input streams to be 

∑ ∏∏
=

≠
= 


















⋅⋅⋅=
n

k
kk

n

ki
i

i

iesselectivit
all

approx xWf
1 1

λλ  (27) 

Contrary to the filtering only case, there is no closed 
form for the total cost of the approximated plan since the 
cost depends on its shape. However, it can be easily 
verified that the cost function is linear in the values of the 
xi’s. We can therefore express it as 

( ) ∑
=

⋅=
n

i
ii xapC

1

 (28) 

where the ai’s are constants. The problem can then be 
formulated as 

Max λapprox 
Subject to 

( ) 1=pC  
nixi ...1,10 =≤≤  

(29) 

The solution of the problem is easily calculated by 
noticing that it is an instance of the continuous knapsack 
problem. The solution is obtained by sorting the drop 
boxes parameters in descending order by the ratio of their 
coefficients in the objective function to their coefficients 
in the constraint equation (28). Then, we assign as much 
as possible to the parameter with the highest ratio, then if 

                                                           
3 Note that the increments ∆x1 and ∆x2 are also bound by 0 and x1 and x2 
respectively. Setting ∆x1 to ∆x3. x1 and ∆x1 to ∆x3. x2 still satisfies such 
bounds. 

⋈ 

λA λB 

x3 

Figure 6. A join operator with drop boxes 
placed at all three possible locations.

λo 

x1 x2 

f 
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there is still room left to the next one, and so on until the 
constraint cannot be satisfied. 

Interestingly, the intuition confirmed in the previous 
section about the best approximate plan does not carry 
over in the current case. The approximation of the plan 
with the least cost is not guaranteed to result in the best 
throughput. Figure 7 shows the optimum throughput for 
the three plans of example 1 as the cost per tuple is 
increased (i.e., system resources decrease.) All three plans 
start at the maximum throughput of 1000 tuples/sec. Up 
until the cost reaches 0.004 sec/tuple (i.e., system capacity 
of 250 tuples/sec,) plan (a) can sustain the maximum 
throughput without any approximation. Afterwards, all 
plans are infeasible and they start dropping tuples, which 
brings down the optimum throughput value. Plan (a), the 
one with least cost, remains the best choice until the cost 
is about 0.05 sec/tuple (system capacity of 20 tuples/sec,) 
at which time plan (c) (the worst feasible plan) catches up 
and the throughputs of the two become identical. If the 
cost increases to 0.097 sec/tuple (system capacity of about 
10 tuples/sec,) the throughputs of all plans become 
identical, and the choice between all three becomes 
irrelevant. We can also see that when the cost is in the 
interval of 0.022 to 0.095 sec/tuple (system capacity of 45 
to 10 tuples/sec,) the throughput of plan (b) is worse than 
that of plan (c) even though plan (b) has a lower cost if 
both are feasible. This shows that having a lower cost 
with no approximation does not guarantee that the plan 
will have a better throughput if approximated. This 
suggests that in case approximation is necessary, we need 
some different types of heuristics to guide the search than 
the ones used to find the optimum feasible plan. Such 
methods are still an open problem. 

There are a number of issues regarding the solution 
presented above. In the following we will discuss these 
issues and suggest methods to deal with them. 

1. The solution of the optimization problem may dictate 
that certain streams be completely shut off to produce 
the maximum throughput. This is similar to the result 
obtained in [22] for the single join case. This 
represents an undesirable semantic problem since for 
these streams, only the first window’s worth of tuples 
will be represented in the join result. The problem is 
inherent in the objective of the approximation; to 
maximize throughput. The solution suggested in [22] 
is still applicable. A minimum rate can be required 
for each stream so that the answer is not completely 
biased. This can be done by raising the lower bounds 
on the parameters of the drop boxes from 0 to the 
required lower percentage for each  stream. Such 
restriction may render a problem completely 
infeasible. However, if there is a feasible solution, it 
can still be obtained by the above algorithm, except 
for an additional initialization step that assigns to 
each parameter its minimum possible value. 

2. The solution favors streams with higher value per 
cost ratio which may be different from the relative 
importance of the streams from the application’s 
point of view (e.g., in a road monitoring situation, the 
system may prefer to get as much as possible from 
the road sensor readings than accurately tracking 
continuous polling from cars requesting update on 
their toll for the day in a system like the one 
simulated in [31].) This can be solved by assigning 
numeric weights to each input stream. These weights 
can be multiplied by the coefficient of each stream in 
the objective function to increase the solution’s bias 
toward more important streams. 

3. The solution views the selectivity of a join as 
symmetric for both of its inputs, which lead to them 
being considered as equals. In reality this may not be 
true. In a one-to-many join, for example, dropping a 
tuple from the one side can drop more than one tuple 
from the result while dropping a tuple from the many 
side will drop at most one tuple from the result. This 
can be solved by modeling the selectivity of the join 
by two numbers representing the join selectivities of 
incoming tuples on each side of the join into the 
windows of the other. 

6. Conclusion and Future Work 
In this paper, we developed a cost model for 

optimizing conjunctive continuous queries with sliding 
window joins. Using the cost model, we proved that all 
feasible plans of a continuous query produce the same 
rate, hence we introduced a framework for static 
optimization based on feasibility and resource 
management as opposed to rate-based optimization.  

We used the cost model to study the problem of 
approximating a continuous query with tuple-based 
sliding windows using random filters. Our results show 
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that given a plan, finding the optimum places for the 
random filters and their values is an easy task. However, 
finding a plan to approximate, is not that obvious. 
Furthermore, we found that the best feasible plan and the 
best approximate plan are not necessarily the same. 

There are a number of possible extensions to this work, 
we discuss them in the following paragraphs. 

The model can be extended in two directions; to 
handle multi-query optimizations, and to model 
disjunctions, partitions, and aggregations. 

To answer the question of when to use static or 
dynamic optimization, models for both the overhead of 
adaptability and the change in data characteristics are 
needed to determine which situations each technique is 
more beneficial at, and when it would be better to use a 
hybrid scheme of the two. 

From the discussion in Section 3.4, a feasible plan can 
still have a large response time. For applications with 
real-time requirements, a feasible plan may still be 
unacceptable. The problem can be solved by guiding the 
optimizer using our model to leave more head-room for 
the system to avoid approaching saturation. A better 
approach would be to use a queuing model to optimize 
directly for response time. Such a model would also be 
useful for modeling the average memory requirements of 
a plan. 
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