
 1

Static Optimization of Conjunctive Queries with Sliding Windows over
Unbounded Streaming Information Sources

Ahmed M. Ayad Jeffrey F. Naughton
University of Wisconsin-Madison
Computer Sciences Department
{ahmed, naughton}@cs.wisc.edu

Abstract
We study the problem of static optimization of conjunctive
queries with sliding window joins over unbounded
streaming information sources. While previous work has
suggested focusing on maximizing the output rate of
queries over streaming information sources, we show that
in steady-state, for conjunctive queries with sliding
windows over unbounded streams, all feasible plans have
the same output rate. For this reason, we suggest that the
goal of optimization for such queries should be to
minimize resource utilization in steady state. We
formulate a cost model for the problem and introduce a
framework for optimization based on feasibility and
resource management. We then use the model to study
where to optimally place random drop boxes and how
much to drop in each box in case no feasible plan exists
and approximation is necessary. The goal of the
approximation is to achieve the maximum throughput of
the resulting tuples given the resource constraints. We
find that, given a plan to approximate, the optimum
placement and values are easily obtained. However,
finding the best plan to approximate is not necessarily an
obvious task.

1. Introduction
The focus of research on data and information

processing has recently shifted towards an emerging type
of applications in which the data is streaming from its
sources. Such applications include monitoring network
traffic, intrusion detection, telecommunications, sensor
networks, financial services, and e-business applications.

 Some major assumptions made by traditional data
management systems do not hold in the context of
streaming applications. In these applications, the system
has no control over the arrival time of the data. Hence, the
adoption of a push model of computation is mandatory.
Also, in such applications, monitoring queries can run for
a long time (e.g., on the order of days or months) that they

can be assumed for all practical purposes to be running
continuously, hence the name continuous queries.

An important goal in systems designed for such
applications is to provide an easy framework for users to
express their queries. A good approach is to provide users
with a declarative method to do so, leaving the decision
on arranging how the query is executed to the system.
Such approach is taken by the STREAM [33] team which
extended the SQL query language with constructs to pose
queries on any combination of relations and continuous
streaming sources [2]. This approach reopens the problem
of query optimization for continuous queries.

The goal of query optimization has always matched the
framework in which the queries are executed. Query
completion time was the goal in early efforts of query
optimization for traditional relational database systems
[28]. Then it became the fastest response [34], or an
approximate response with statistical guarantees [18]. In
the case of streaming sources, the goal differs depending
on the type of application and the query posed. In terms of
the data sources, it can either be: a) finite streaming
sources (e.g., documents flowing over the internet) or b)
infinite streaming sources (e.g., call logs, network traffic
logs, sensor readings.) In terms of the posed query, it can
either be: a) short running (i.e., the user is interested in
asking about the current state of the system over a short
period of time, or is interested in a small prefix of the
answer,) or b) continuous, meaning the user would like to
monitor the system’s behavior for a considerable length of
time. Using the previous classification, Figure 1
highlights the different combinations and the goal of
optimization in each.

One combination does not make sense, since if the
streaming source is finite, a continuous query degenerates
into a short running one. In case a query is short running,
the best plan for the query is the one giving the fastest
response of the whole answer (or a specific prefix of it,)
or the one giving the most answers in the specified
lifetime of the query. The work in [35] presented a
framework for optimization of such queries.

 2

The fourth quadrant, in which the sources are infinite
and the query is continuous, is the one called continuous
queries. Since the execution engine has no control over
data availability, it has no choice but to keep up. From
basic queuing theory [23], if the system capacity exceeds
the requirements for the input rate (utilization < 100%,)
the system is stable. Otherwise, the system is said to be
saturated or unstable. In the context of continuous queries,
an execution plan for the query is feasible if the system it
will execute on will be stable. A feasible query is one for
which at least one feasible plan exists.

With this setting in mind, three scenarios are possible
for any given query:
1. Resources are abundant, which means that all plans

will be feasible. However, a poor choice can still tie-
up unnecessary resources.

2. Resources are tight, meaning the choice of a good
execution plan can prove to be essential for feasibility.

3. Resources are insufficient, meaning that the query is
infeasible and an approximate result is inevitable. The
choice of plan that carefully uses available resources
can improve the quality of such an approximation.

To arrive at the best decision at each situation, we
present a framework for static optimization of continuous
queries based on feasibility and resource management. In
particular, our main contributions are:
• We develop a model for estimating the resource

utilization of an execution plan of a continuous query.
• We use the model to show that for all feasible plans,

the output rate will always be the same, making output
rate or throughput a non-distinguishing factor. This is
why the goal of optimization in such case should
rather be feasibility and resource management.

• We then introduce our framework for optimization
based on the above goal. The optimizer in this
framework should decide on the best plan for
situations (1) and (2) above, or state that no feasible
plan exists.

• In case no feasible plan exists, situation (3), we use the
model to examine the problem of finding an
approximate answer by randomly dropping tuples
from the query plan. The goal of the approximation is
to achieve the least amount of lost tuples from the final
answer of the query.

Table 1. Variables used in estimating resource
requirements.

Cσ Cost of performing a selection on a single tuple
CP Cost to probe an active window for a matching

tuple just arriving
CI Cost to insert an arriving tuple into the sliding

window
CV Cost to invalidate an expired tuple from the sliding

window
σ Selectivity factor of a selection predicate
f Join selectivity factor
λi Rate of arrival of tuples from source i
W Size of a tuple-based window
T Size of a time-base window
M Least amount of memory needed for an

operator/query
• We show that interestingly, when approximation is

necessary, the best plan to choose for approximation is
not necessarily the best feasible plan.

Much of the recent work on systems for streaming
information sources is built on being able to dynamically
adapt to the changing characteristics of the data as it flows
by. The paradigm is: start with a plan, and then
continuously change it as you know more about the data.
Examples are the work in [3][19][32]. This is built on the
earlier idea of mid-query re-optimization [21]. It is
important to note that, by introducing a static optimization
framework, we are not effectively stating that it is a better
way to approach the problem. Static optimizations can be
useful in cases where the rates of the input streams are
slow changing, and the pattern of change is predictable
(e.g., network/transportation traffic loads, building
sensors.) It suffers from its rigidity and inadaptability to
rapid changes of basic assumptions about the data
characteristics. The adaptive approach solves these
problems, but it is not without its overhead. The question
of which is better depends upon several things, including
the exact amount of overhead, and how volatile the
environment is. At one extreme, very static environment,
static optimization will be best. At the other extreme, very
dynamic environment, adaptive may be superior. In
between the two are a number of tradeoffs (e.g., optimize
and monitor then re-optimize when necessary, or optimize
every k number of seconds.) Our goal is not to answer the
question of which is better or when to use which. To be
able to answer such questions, we need first to know what
it means to do static optimization for continuous queries,
which is the goal of this paper.

The rest of the paper is organized as follows: Section 2
discusses related work in the literature. Section 3
describes the cost model used in the optimization
problem. Section 4 defines the problem and discusses
related issues. Section 5 tackles the problem of how to

 Stream
Query Finite Infinite
Short

running
Throughput /

Response time
Throughput /

Response time
Continuous Feasibility /

Resource Management

Figure 1. Goal of query optimization for
streaming information sources

 3

arrive at a good approximation of a query if no feasible
plan exists. Section 6 concludes the paper.

2. Related Work
The existence of applications built on streaming

information motivated building specialized systems to
manage streaming data. Among the recent examples are:
Niagara [11], which queries streaming XML sources over
the internet; STREAM [33], which has as its goal
extending traditional DBMS technology to also manage
streaming sources; Aurora [8], which is specifically
designed to accommodate a large number of continuous
queries; Telegraph [32], which is a highly adaptive
dataflow management system. The survey in [4] contains
a good documentation of earlier models and systems that
are also targeted at such applications, together with a
number of issues related to building a data stream
management system. Another closely related type of
system is sensor networks and databases, examples of
which are TinyDB [24][25] and the Cougar [38] projects.

The problem of query optimization is almost as old as
relational databases. The seminal work of [28] introduced
a framework for optimization of relational queries aimed
at minimizing query completion time. In the context of
continuous queries, such a goal is inappropriate.
NiagaraCQ [10][11] aims at addressing the scalability of a
system supporting a large number of continuous queries
by grouping predicates and queries together. The work in
[9][12][26] uses similar techniques by extending the
earlier work on eddies [3] to support multiple concurrent
continuous queries. The difference between this body of
work and ours is that they are all dynamic optimization
methods that adapt at run time to changing data and query
characteristics; they do not deal with static optimization.

The Aurora system [8] treats multiple streaming
sources and multiple output queries as data flows between
operators (boxes) that are input by the user. The queries in
Aurora are composed by the user through an interface,
then the system manages them without modification. This
is the equivalent of adapting to an already given static
plan of multiple queries with shared resources. Similarly,
the work on scheduling operators in [5][17] deals with
scheduling operators of a static plan to minimize resource
usage or response time. Different problems related to
scheduling and static resource allocation are reported in
[27] together with a brief discussion of solutions. The
assumption in such work is that a query optimizer has
already arrived at a “best” plan.

Close to our work is that presented in [35] and [36].
The former advocates moving from cardinality-based
optimization to rate-based optimization and provides a
model for a rate-based optimizer. Such work is geared
towards queries in the first and second quadrants of
Figure 1. It does not model the effect of sliding windows
for continuous queries over infinite sources. The later

provides a symmetric multi-join operator for multiple
joined streams to minimize memory usage as opposed to
using multiple binary join operators. Although it does not
model sliding windows, it can be easily adapted and
incorporated as an option for the optimization framework
provided here. Also close is [30] in which the authors
provide a queuing model for distributed eddies. One
interesting result provided is that sometimes no single
plan is the best if the goal is to achieve the maximum
input rate before the system saturates. A combination of
plans running concurrently, each with some share of the
input load is proven to be better. The subtle difference
between this work and ours is that this work assumes the
operators are running on different processors, hence each
has its fixed resources. Our work assumes all operators
share a pool of resources. In this case, one plan is always
better, the one our framework optimizes for. An
interesting direction would be to look at how an optimum
plan can be distributed over multiple processors.

A lot of work dealt with providing approximate
answers to continuous queries. In [27], the authors survey
a number of methods to arrive at an approximate answer,
among which is random sampling (i.e. random dropping
of tuples) discussed here. In the context of Aurora, the
authors in [29] provide algorithms for placing drop filters
to reduce resource usage. They explore both random and
semantic filtering. The difference between this work and
ours is that they don not explore the effect of modifying
the query plan to achieve better approximation. Plus, they
deal with multiple queries, while we only consider single
query optimization. Extending our work to multi-query
optimization is an interesting direction. The work in [22]
discusses single join approximation using random drops
in case of either memory or computational resource
shortages or both. This work extends that by studying the
problem of insufficient computational resources for
multiple joins. Also close to our work is [15], in which
the authors study the problem of maximizing the result
size of a single sliding window join in case of memory
constraints by smartly selecting tuples to drop (semantic
load shedding [8].) There is a brief discussion about
extending the work to multiple joins and to deal with
resource constraints. In this work, we deal with
computational resource constraints, and multiple window
joins. A comparison between our technique extended to
handle smart load shedding and theirs after extension to
multiple joins and resource constraints is another
interesting direction.

Another related area is developing compact statistical
structures or synopsis for estimating different
characteristics about the input streams (e.g., selectivities,
running aggregates, … etc.) Examples of such work are
[6][7][13][14][16]. Such techniques are essential for the
success of an optimizer built on the framework presented
here.

 4

Finally, theoretical work examining different aspects
of data stream systems exist. In [1], the authors examine
the memory requirements for different types of
conjunctive continuous queries with arithmetic
comparison, and without window semantics. They find
some instances of such queries to require only bounded
memory. It is worth noting that conjunctive queries with
only equality joins require unbounded memory and that is
why window semantics are essential. The work in [2] is a
first attempt at developing a SQL like streaming query
language.

3. The Cost Model
In this section, we provide the necessary calculations

to estimate the expected processing and memory
constraints for providing an answer for continuous
queries. First, we derive the necessary equations to
estimate the output rate and active window sizes for
different operators assuming there are no constraints (i.e.,
assuming the plan is feasible.) Then, we move on to
estimate processing and memory requirements for these
operators together with the constraints on such
requirements.

We assume steady state conditions and use the average
rate to characterize the rate of arrivals of incoming tuples
from external sources. This implicitly assumes a stable
arrival rate. Table 1 defines the notation used throughout
the paper. All costs are in time units.

3.1 Window Predicates
Before delving into the derivations of the cost model, a

brief discussion on window predicates is warranted.
Besides their semantic usages, window predicates are a
means to restrict an infinite stream for operations like
stream joins to become feasible. Many types of window
semantics exist, each has its own modeling requirements.
A discussion of the different types can be found in [2][8]
[9]. For the purpose of this paper, we will only consider
tuple-based and time-based sliding windows as described
in [2]. We will develop the cost model for the tuple-based
type. However, since we are concerned with steady state
conditions and are using average rate, it is easy to adapt
the model for time-based windows using the following
argument. On average, the number of active tuples in a
window i of size T is λi·T. So, by replacing the size Wi of a
tuple-based window with λi·T, the equations will be
applicable to time-based windows as well.

3.2 Rate and Window Calculations
3.2.1 Selections and Projections

We will consider projections as a special case of
selections in which the selectivity factor is equal to 1. The
number of tuples a selection/projection operator handles
in a unit time is λi. Of those, only f·λi qualify for the
selection. Hence, the output rate is

λo= f·λi (1)
Since selections and projections are treated as filters on

incoming streams, there are no buffer requirements above
what is necessary to store and inspect the current tuple.

If the input stream to the selection or projection
operator has a window predicate defined on it and then
the output of the selection operator is fed into a join
operator, we need to estimate the output window size
resulting from the selection. To see the reason for this,
consider a continuous query on two streams A and B. The
query is composed of a selection on A followed by a
sliding window join on the two streams with WA and WB
being the values of the sliding windows defined on the
two streams respectively. Two plans for the query are
possible (Figure 2.) The window size on the left side of
the join in the two plans cannot be equal, otherwise, for
the left plan, we would be joining tuples from B with the
last WA tuples that have passed the selection on A, instead
of the last WA tuples that arrived (as done in the right
plan), and the two plans will not produce the same results.
To resolve this, the input window size should be reduced
by a factor matching the selective capability of the
selection operator.

Hence, for a selection operator with a window Wi
defined on its input, the size of the output window is

Wo= f·Wi (2)

3.2.2 Joins and Cartesian Products
Similar to the previous section, a Cartesian product can

be viewed as a special case of a join with the selectivity
factor equal to 1. We assume a deterministic timestamp
ordering (e.g., arrival time) on the tuples from external
sources.

Consider sliding windows of sizes WL and WR tuples
placed on the left and right inputs of the join respectively.
The number of tuples arriving from the left-hand side of
the operator in a unit time is equal to λL, each of which is
expected to join with f·WR tuples from the right-hand side
window. Hence, the number of tuples produced as a result
of tuples arriving from the left-hand side is f·WR·λL per
unit time. Similarly, the number of tuples resulting from
right-hand side arrivals is f·WL·λR. So, the total output rate
for a window join is

λo= f (WR·λL + WL·λR) (3)

⋈

A

B
σ ⋈

A B

σ

Figure 2. Two plans for the same query.
The window size on the left side of the

join is less in the left plan.

WBWA

WB

WA

 5

Similar to the filter-only case above, if the output of
the join is fed into another join operator, we need to
calculate the size of the resulting window Wo to use it as
an input value for the other join. Any joined tuple is
considered valid (not expired) only if all the original
tuples it is comprised from are still valid. Consider
arrivals on the left side of the join. Each arriving tuple
that is inserted into the window on the left side causes the
earliest tuple in the window to expire. The arriving tuple
produces an average of f·WL tuples, while the same
number of tuples resulting from the expired tuple
becomes invalidated. The same scenario occurs for
arrivals on the right hand side. So, on average, the number
of resulting active tuples stays the same, which is the
expected size of joining the active tuples on the left hand
side with the ones on the right hand side. So

Wo=f·WL·WR (4)

3.2.3 The general case
The above equations are all derived for binary joins.

Using these derivations, it is possible to generalize them
for the case of n-ary joins. In doing so, we arrive at the
following observation.

Observation 1

The output rate of an n-ary join of n streams is constant
and is estimated by

∑ ∏∏
=

≠
= 


















⋅⋅=
n

k

n

ki
i

ik

iesselectivit
all

n
o Wf

1 1

λλ (5)

where λk is the arrival rate of stream k, and Wi is the size
of the tuple-based window predicate on stream i.

The size of the resulting active window for an n-ary
join can also be estimated by

∏∏
=

⋅=
n

i
i

iesselectivit
all

n
o WfW

1

 (6)

Proof
The proof is simply by induction on the number of
streams involved in the join and using equations (3) and
(4) for the base case.

It is clear from the above that the final output rate and
active window size resulting from joining n streams are
independent of how the join operation is performed. This
is intuitively equivalent to the fact that, for a traditional
relational query, the size of the final result is independent
of the execution plan.

The previous observation, coupled with the equations
in Section 3.2.1, suggest that the output rate of a
conjunctive continuous query is independent of the

execution plan and that it should not be the goal of query
optimization.

3.3 Processing and Memory Constraints
The problem of optimizing a conjunctive continuous

query is similar to the traditional problem of optimizing
conjunctive queries in relational databases. In both
problems, we need to search the space of query plans to
find the minimum cost tree. The current problem differs,
however, in that it is a constrained one. In traditional
query optimization, even the worst plan is supposed to be
feasible given enough time. When dealing with
continuous queries, if the system cannot handle the load,
the plan is simply infeasible and resorting to
approximations is inevitable. To correctly qualify the
feasibility of a plan, we need to derive the necessary
requirements for the different types of operators, which
we do in the current section.

3.3.1 Selections and Projections
The cost of handling a tuple for a selection or a

projection operator, Cσ, includes reading, inspecting the
condition, and writing out the result, if necessary. For a
selection or a projection operator to be able to correctly
handle an arriving tuple, Cσ must be, on average, less than
the average time until the next arrival. Hence, the
following constraint

Cσ·λi < 1 (7)
There are no memory constraints on selection and

projection operators since no buffers are required.

3.3.2 Joins and Cartesian Products
In the case of joining infinite streams, only non-

blocking algorithms can be used, like the symmetric hash
join [37]. Kang et al. made the observation in [22] that the
join cost can be divided into the cost of performing the
left and the right parts of the join, and that the method of
performing the two parts are completely independent.
They derived a general cost model for the sliding window
join which we will use here. The cost of the join per unit
time is

CL = λR·CP(L) + λL· (CI(R) + CV(R))
CR = λL·CP(R) + λR· (CI(L) + CV(L))

CL⋈R = CL + CR

(8)

The previous calculations are necessary if asymmetric
operators will be used on the left and right side of the
join. If, on the other hand, the traditional symmetric
operator is used, the cost functions can be simplified to

CL⋈R = (λR + λL)·(CI + CV + CP) (9)
In both cases, the constraint is

CL⋈R < 1 (10)
In the later case, the operator can be seen as having an

arrival rate of (λR + λL) and a service rate of (CL + CR +
CP), analogous to equation (7).

 6

It is worth mentioning that the cost of the join is
dependent on the join algorithm used. The model
presented in [22] can be used to choose the best possible
algorithm for each join.

In terms of memory requirements, the join operator
needs at least enough memory to hold the active tuples on
both sides of the join1, so the minimum memory
requirement is

M = WL + WR (11)

3.3.3 Notes on Processing and Memory Constraints
The constraints derived in this section have the subtle

assumption that the operator will be the only running
process in the system. In case a host of operators are
sharing processing resources, the previous bounds are not
tight. For the constraints to become tight in this case, the
cost values of each operator should be dilated by the
inverse of the fraction of time the operator is scheduled to
run on the system. For example, if it takes 1 millisecond
to process a tuple for selection, but the operator is sharing
the processor fairly with 9 other operators, then the cost
should increase ten fold to 10 milliseconds.

Another note on the memory constraints is that the
ones developed here do not take into account the queuing
requirements for each operator. The estimation of such
constraints requires a queuing model of the execution
plan, which is part of our future work.

Example 1

To motivate the classification we had in the
introduction and the cost model computations, consider
the following simple SQL-like query (the window
constraint syntax is modeled after [27]):

1 The amount of memory needed depends on the join algorithm. In case
of a symmetric hash join, for example, the size of the hash table may
slightly exceed the size of the window.

SELECT A.a, B.b, C.c
FROM A [ROWS 10]

B [ROWS 10]
C [ROWS 10]

WHERE A.a = B.a
AND B.b = C.b

This is a simple three-way tuple-based window join
between the streams A, B, and C with the window being
the latest 10 rows in each stream. Assume 0.5 is the
selectivity of A⋈B and 0.2 is the selectivity of B⋈C.
Also assume that 10, 20, and 70 are the rates of arrival of
streams A, B, and C respectively in tuples/second. Further
assume, for ease of exposition, that any join operator
takes a constant amount of time to handle an incoming
tuple from either side of the join, and that memory is
measured in tuples. Figure 3 shows the possible plans to
evaluate the query.

First, assume that a join operator takes 0.5
milliseconds to join an incoming tuple, which means that
the system can handle at most 2000 tuples/second. In this
case, it is obvious that any of the plans is feasible. In
terms of memory consumption, all three plans require
three queues capable of holding 10 tuples each for every
stream. The plans differ dramatically, however, in terms
of the active window size for the intermediate result that
is input to the second join. Buffering requirements for
plans (a), (b), and (c) are 80, 50, and 130 tuples
respectively. A poor choice (plan (c) in this case) can
result is in an expected 160% increase in memory
consumption. The plans also differ dramatically it terms
of their resource utilization. While plan (c) keeps the
system 50% utilized, plan (b) has only 14% utilization,
and plan (a) has 12.5% utilization. Choosing plan (c)
results in a 400% increase in the necessary resources to
answer the query.

Now, assume that a join requires 4 milliseconds to
handle an incoming tuple, meaning that the system
capacity is 250 tuples/second. In this case, the tuple

⋈

⋈

A B

C

λ=10 λ=20

λ=70
f =0.5

f =0.2 ⋈

C
λ=70

⋈A

B

λ=10

λ=20

f =0.2

f =0.5 ⋈

λ=10

x

A

B

C

λ=20

λ=70

f =1

f =0.1

Plan (a) Plan (b) Plan (c)

λA⋈B= 0.5*10*(10+20) = 150 λB⋈C= 0.2*10*(20+70) = 180 λA⋈C= 1*10*(10+70) = 800
WA⋈B= 0.5*10*10 = 50 WB⋈C= 0.2*10*10 = 20 WA⋈C= 1*10*10 = 100

Figure 3. Possible plans to evaluate the join.

 7

arrival rate should be taken into consideration. A join
operator should be able to handle an arrival rate at least
equal to the sum of the arrival rates of its input streams.
Since all operators are run on the same system, the sum of
the service rates of all operators cannot exceed the total
system capacity. To test whether a plan is feasible, we
need to sum the minimum service rates required for all
joins and compare this to the system capacity. For plan
(a), the first join must handle at least 30 tup/sec., and the
second join 220 tup/sec resulting in total system
requirement of 250 tup/sec. Similarly, plan (b) requires
280 tup/sec, and plan (c) requires 900 tup/sec. This means
that plan (a) is the only feasible solution and choosing
either (b) or (c) requires the system to resort to
approximation unnecessarily.

If a join requires 5 milliseconds per incoming tuple
(i.e., maximum system capacity of 200 tuples/second,) all
plans become infeasible and some sort of approximation
must take place. One way to approximate the result of a
query is to randomly drop tuples from the input queues of
the different operators. A heuristic measure of the quality
of approximation can be the final plan throughput; the
plan that drops the least number of tuples might be the
best choice (the MAX-subset measure in [15]). We later
discuss (in Section 5) some of the issues related to how to
arrive at such a plan.

3.4 Discussion
In the previous sections we have proved that all

feasible plans of a continuous query have the same output
rate. This does not mean that all feasible plans produce
the same result at the same time. To understand this, it
may be helpful to regard a query execution plan as being
analogous to an open queuing system, with the input
being the data streams and output being the query answer.
From queuing theory, the throughput of any two stable
systems seeing the same input is fixed and is equal to the
input throughput (for separable networks [23],) while the
utilization and response times may vary between the two
depending on the characteristics of each. In our context,
the response time of a result tuple is the time difference
between the production time of the tuple and the arrival
time of the latest input tuple involved in generating it. The
response time of a plan is the average response time of all
resulting tuples. Feasible plans differ in their response
times, meaning that they produce the same result tuples
with each shifted in time by an average amount equal to
the average response time. The response time of a plan
can increase arbitrarily which is not desirable for
streaming applications with real-time requirements.

In the next section, we formalize the optimization
problem to use the model above for obtaining the plan
with the least resource usage (i.e., utilization.) Although
the model does not directly model the response time of
the plan, it can be easily argued that the plan produced

will be the one with the least response time. From
queuing theory, to use the analogy again, utilization is
directly proportional to response time (i.e., the system
with the least utilization has the least response time.)

4. The Optimization Problem Definition

Definition 1: Execution Plans. Given a certain
conjunctive query Q on streaming sources, an execution
plan p is a tree, whose leaves represent streaming sources,
and internal nodes represent query operators each of
which is a selection; a projection; or a join. The plan p
represents a possible execution order of the operations
in Q.

We are now ready to formulate the optimization
problem of conjunctive queries over infinite streams.
Depending on the situation, we may choose to optimize
for processing or memory resources. Two cost functions,
C(p) and M(p), can be associated with each execution
plan, defined as follows

() ()∑=
pinioperatorsall

icpC (12)

() ()∑=
pinioperatorsall

impM (13)

where c(i) and m(i) are the processing per unit time and
memory cost, respectively, of operator i. The objective of
optimization is to

Min {C(p)| p is an execution plan for Q} (14)
subject to

C(p) < 1 (15)
when optimizing for processing resources, or

Min {M(p)| p is an execution plan for Q} (16)
subject to
M(p) < M, where M is the available memory

budget
(17)

when optimizing for memory resources.
Equation (15) needs some further explanation. Since

the cost function of each operator in the execution plan is
defined in terms of the cost required per unit time, and
since the assumption is that all the operators will be
competing for the same computational resources, the
whole plan is feasible only if the total cost of all operators
per unit time is less than one unit time (i.e., utilization <
100%.) Figure 4 shows an example of a simple plan with
two selections. Assuming the time unit is a second, the
first selection takes half a millisecond to process a tuple,
the second takes a millisecond. In the first alternative
(plan A,) it takes 500 milliseconds – on average – for
selection σ1 to take care of arrivals in one second, and 250
milliseconds for σ2. This means that there is enough time
for both operators to handle the load coming their way in
a unit time. Hence, both operators can share the same
processing resources and the plan is feasible. Plan B, on
the other hands, dictates that σ1 needs 250 milliseconds,

 8

and σ2 needs one second to handle the arrivals in a unit
time. Hence, it is infeasible and should be discarded.

We end the section with a discussion on several related
issues:

The Single Processor Assumption. The above
assumption, that the whole plan will be executed on one
machine, is not necessary for the correctness of the
model. Sometimes it is desirable to allow for some head
room for the operators to avoid congestion in case of burst
arrivals [29], other times, the plan can be distributed on
more than one processor. The model can easily
accommodate both cases. In the first case, if it is desired
to leave 20% of the resources as head room, the bound of
equation (15) should be 0.8 instead of 1. In the later case,
if n processors are available, the bound should be n.

Querying Relational Tables. A continuous query can
combine relational tables with continuous streams [2].
Our model can easily integrate this scenario. Two cases
arise. The first is when an operator, or a sequence of
operators in a plan operate only on relational tables. In
such case, the optimizer will treat this sub-query in a
traditional way coming up with the best possible
arrangement of the operators and estimating the result
size. The option of materializing the result in memory or
on disk should then be taken into account. The
computational cost of the sub-query, however, is zero
since it should be only a one-time computation that can be
done before registering the query (notwithstanding
updates to the relational tables while the query is
running.) The second is when a relational table is joined
with a stream. In this case, we can consider the join to be
a filter on the stream with a variable cost-per-tuple that is
dependent on the join selectivity, the different access
paths available for the relation, and the placement of the
relation (i.e., in memory, partially/completely on disk.)
The optimizer should consider all possibilities and choose
the one with the least cost. The estimated size of the
resulting window is calculated in the same way as

streaming joins if we consider the relational table to have
a window size equal to its cardinality.

The Relation to Scheduling. The best plan, or any
feasible plan, found using the previous model does not
dictate the best method by which its operators should be
scheduled for execution. In developing the model, we
have assumed a steady state in which the arrivals are
stable and can be represented using the average rate. In
reality, arrival rates can exhibit bursts of high loads that
require adapting. Such adaptations are the function of the
scheduling strategies used [5]. The static plan, however,
can guide the scheduler by dictating that the scheduling
strategy allows execution time to each operator
proportional to its cost per unit time. For example, plan A
of Figure 4 suggests that a good scheduling strategy
would, on average, allot selection σ1 twice the time
allotted for selection σ2.

Complexity of Optimization. It can be proven, in a
manner similar to [20], that the problem of finding the
best join order for a deep tree of a conjunctive continuous
query is NP-complete. An optimizer would have to resort
to heuristics to reach a good plan. A dynamic
programming approach, combined with heuristics similar
to the ones used for traditional relational query
optimization, would be applicable here too.

5. Approximation Methods
We now turn to the case when all the plans are

infeasible and approximation is inevitable. Load shedding
[8] is one form of approximation which reduces load by
dropping tuples from the incoming streams. Load
shedding can be done by several methods (e.g., random or
semantic dropping of tuples) and can have several
objectives (e.g., maximize throughput,) see [8][27] for a
discussion. In this section, we consider random dropping
of tuples as the method of approximation and the goal is
to maximize the output rate of the approximated query.
We consider the best way to place random filters2, and the
optimal setting of the amount that each filter should drop.
We also attempt to answer another interesting question. If
approximation is inevitable, does the goal of optimization
change? In other words, is it better to approximate the
best plan, or can we achieve the same, or higher,
throughput working on a suboptimal one.

We start by handling the case of only selection
operators and then extend the problem to include joins.

5.1 Selection Only Queries
Consider a query consisting of n consecutive filters,

and an execution plan for it that orders the filters in
ascending order by their designated numbers. The cost per
tuple for filter i is ci time units, and its selectivity is σi.

2 We use random filter and drop box interchangeably.

σ1

σ2

C1= 5*10-4

f = 0.25

C2= 10-3

f = 0.5

λ = 1000

λ = 250

c(1) = 0.5
c(2) = 0.25

c(1) = 0.25
c(2) = 1

Plan A - Feasible Plan B - Infeasible

σ2

σ1

C2= 10-3

f = 0.5

C1= 5*10-4

f = 0.25

λ = 1000

λ = 500

Figure 4. Feasible and infeasible alternatives.

 9

Now, assume that the plan is infeasible and drop boxes
should be used to approximate the result. There are n+1
possible places to put drop boxes (see Figure 5.) We will
assume that the selectivity of drop box i is xi (i.e., the filter
randomly drops 100-xi percent of the tuples it sees.)
Notice that the filter becomes unnecessary if its parameter
is equal to 1. The problem is to determine the optimum
values of the xi’s such that the output rate is maximized.
Using the model, the output rate of the approximated plan
will be

∏
+

=

⋅=
1

1

n

i
ioapprox xλλ (18)

and the total cost of the approximated plan will be

() ()∑ ∏
= =














⋅=

n

i

i

j
jxicpC

1 1

 (19)

where λo is the output rate of un-approximated plan,
calculated as

∏
=

⋅=
n

j
jo

1

λσλ (20)

and c(i) is the cost per unit time of filter i, i=1..n,
calculated as

() ∏
−

=

⋅⋅=
1

1

i

j
jicic σλ (21)

Using the previous equations, and noticing that we will
only need to drop tuples in case the plan is infeasible (i.e.,
C(p) > 1,) we can formulate the problem as a constrained
optimization one as follows

Max λapprox
Subject to

() 1=pC
1...1,10 +=≤≤ nixi

(22)

The above formulation leads to the following
observation.

Observation 2

To approximate a plan for a filtering-only continuous
query, we only need to drop tuples directly from the
streaming source before they are processed by any of the
filters. Furthermore, the approximation should be
performed on the plan with the least cost in order to
maximize the output rate given certain computational
resources.

Proof Sketch
The proof is by inspecting the solution of equation (22).
The optimum solution is:

()

1..2,1

1

*
1

*
1

+==

=

∑
=

njx

ic
x

j

n

i
 (23)

The optimum value of the objective function is

oapprox x λλ ⋅= *
1

* (24)
From the solution, only the first drop filter is necessary
with all the others having 100% selectivity. This proves
that we only need to drop tuples directly from the
streaming source before being processed by any filter.
To prove that the approximation should be performed on
the plan with the least cost, two observations are
necessary. First, the solution is applicable for any given
plan for the query. Second, given a certain plan, c(i) is the
cost per unit time for filter i, making the summation in the
denominator of *

1x the cost of running the plan without
approximation. Combining these two, the lower the cost
of the plan, the higher *

1x is (i.e., the less the number of
tuples dropped.) Since the optimum approximate rate is
directly proportional to *

1x , we can see that the plan with
the lowest cost yields the highest approximated rate.

 The first part of this observation provides a rigorous
validation of a rule of thumb reported in [29].

5.2 Join Queries
We now turn to the case where the query contains

window joins. For ease of analysis, we will only consider
tuple-based windows in this section. If the query is
infeasible, the goal is again to find the optimum places to
put drop boxes and the values of each drop box so that the
throughput of the final plan is maximized. We would like
to also confirm the intuition that the best approximate
plan results from approximating the plan with the least
cost as was shown in the filter-only case.

We first look at the where to put the drop boxes. For a
query joining n streams, a drop box can be put before
each of the two inputs to the n-1 join operators, plus a box
right after the last join is performed, resulting in 2n+1
possible places. We can show, however, that similar to the
filter-only case, we need to drop tuples only from the
input streams before they are processed by any join
operator.

Observation 3

To approximate a plan for a continuous query joining n
streams, it is sufficient to drop tuples only from the input
sources before they are processed by any join operator.

σ1 x1 … σn xn+1 λ λoxn

Figure 5. A plan with n filtering operators
with drop boxes in all possible places.

 10

Proof

Figure 6 shows an arbitrary join operator in an
approximated plan for the n-ary join with drop boxes in
all possible locations. Assume that WA and WB are the
sizes of the left and right windows of the join. We will
show that, given certain values of the parameters x1; x2;
and x3 of the drop boxes, we can always arbitrarily
increase x3 without affecting the rest of the plan while
decreasing the cost of the join. Note that the operator’s
effect on the rest of the plan is through its output rate, and
the resulting active window size.

In the case of tuple based windows, the active window
size is obtained from equation (4). To prove that it is
independent of the values of the drop boxes consider two
cases: a) the two inputs to the join are directly coming
from the input streams, and b) at least one input is a result
of joining i streams, where 2 ≤ i ≤ n-1. In case (a), the
output window size obtained from equation (4) is
independent of the input rates and hence the drop boxes.
In case (b), let WA be the window resulting from previous
join(s), the value of WA obtained from equation (6) is only
dependent on the sizes of the windows on its i input
streams, which are also independent of the input rates and
the drop boxes. From the previous two cases we can see
that the resulting window size is independent of the
values of the drop boxes. This leaves the resulting output
rate of the join.

To prove the observation for the output rate, consider
its value. From the model, the output rate is

()213 xWxWfx ABBAo ⋅⋅+⋅⋅⋅⋅= λλλ (25)
Now, assume that x3 is increased by ∆x3 to 1 (its
maximum value.) In order for λo to remain constant, we
need to decrease x1 and x2 by ∆x1 and ∆x2 respectively.
After simplification, the relation between the increments
is

2313

21

xxWxxW
xWxW

ABBA

ABBA

⋅∆⋅⋅+⋅∆⋅⋅
=∆⋅⋅+∆⋅⋅

λλ
λλ

 (26)

From the above, there are many values to set ∆x1 and ∆x2
to compensate for the increase in x3

3. The cost of the join,
however, is directly proportional only to the input rates to
the join, dropping tuples after the join has no effect on the
cost. This means that decreasing the values of x1 and x2
will decrease the join cost. From the previous we can
conclude that, for an arbitrary join operator and for any
output rate, it is always preferable to drop tuples only
from the inputs to the join.

Now, assume the arbitrary join in Figure 6 is the top
most join in the query plan. Recursively applying the
previous observation to the joins feeding its inputs until
reaching the original input streams will complete the
proof.

We now turn to determining the amount of tuples

dropped by each box. As in the previous section, we can
formulate the problem as an optimization one. Placing
drop boxes only at the leaves of a query plan decreases
the complexity of the problem significantly. For every
input stream i to the query with rate λi, there exists an
associated drop box with the parameter xi. Using equation
(5), we can estimate the approximate output rate for a
query with n input streams to be

∑ ∏∏
=

≠
= 


















⋅⋅⋅=
n

k
kk

n

ki
i

i

iesselectivit
all

approx xWf
1 1

λλ (27)

Contrary to the filtering only case, there is no closed
form for the total cost of the approximated plan since the
cost depends on its shape. However, it can be easily
verified that the cost function is linear in the values of the
xi’s. We can therefore express it as

() ∑
=

⋅=
n

i
ii xapC

1

 (28)

where the ai’s are constants. The problem can then be
formulated as

Max λapprox
Subject to

() 1=pC
nixi ...1,10 =≤≤

(29)

The solution of the problem is easily calculated by
noticing that it is an instance of the continuous knapsack
problem. The solution is obtained by sorting the drop
boxes parameters in descending order by the ratio of their
coefficients in the objective function to their coefficients
in the constraint equation (28). Then, we assign as much
as possible to the parameter with the highest ratio, then if

3 Note that the increments ∆x1 and ∆x2 are also bound by 0 and x1 and x2
respectively. Setting ∆x1 to ∆x3. x1 and ∆x1 to ∆x3. x2 still satisfies such
bounds.

⋈

λA λB

x3

Figure 6. A join operator with drop boxes
placed at all three possible locations.

λo

x1 x2

f

 11

there is still room left to the next one, and so on until the
constraint cannot be satisfied.

Interestingly, the intuition confirmed in the previous
section about the best approximate plan does not carry
over in the current case. The approximation of the plan
with the least cost is not guaranteed to result in the best
throughput. Figure 7 shows the optimum throughput for
the three plans of example 1 as the cost per tuple is
increased (i.e., system resources decrease.) All three plans
start at the maximum throughput of 1000 tuples/sec. Up
until the cost reaches 0.004 sec/tuple (i.e., system capacity
of 250 tuples/sec,) plan (a) can sustain the maximum
throughput without any approximation. Afterwards, all
plans are infeasible and they start dropping tuples, which
brings down the optimum throughput value. Plan (a), the
one with least cost, remains the best choice until the cost
is about 0.05 sec/tuple (system capacity of 20 tuples/sec,)
at which time plan (c) (the worst feasible plan) catches up
and the throughputs of the two become identical. If the
cost increases to 0.097 sec/tuple (system capacity of about
10 tuples/sec,) the throughputs of all plans become
identical, and the choice between all three becomes
irrelevant. We can also see that when the cost is in the
interval of 0.022 to 0.095 sec/tuple (system capacity of 45
to 10 tuples/sec,) the throughput of plan (b) is worse than
that of plan (c) even though plan (b) has a lower cost if
both are feasible. This shows that having a lower cost
with no approximation does not guarantee that the plan
will have a better throughput if approximated. This
suggests that in case approximation is necessary, we need
some different types of heuristics to guide the search than
the ones used to find the optimum feasible plan. Such
methods are still an open problem.

There are a number of issues regarding the solution
presented above. In the following we will discuss these
issues and suggest methods to deal with them.

1. The solution of the optimization problem may dictate
that certain streams be completely shut off to produce
the maximum throughput. This is similar to the result
obtained in [22] for the single join case. This
represents an undesirable semantic problem since for
these streams, only the first window’s worth of tuples
will be represented in the join result. The problem is
inherent in the objective of the approximation; to
maximize throughput. The solution suggested in [22]
is still applicable. A minimum rate can be required
for each stream so that the answer is not completely
biased. This can be done by raising the lower bounds
on the parameters of the drop boxes from 0 to the
required lower percentage for each stream. Such
restriction may render a problem completely
infeasible. However, if there is a feasible solution, it
can still be obtained by the above algorithm, except
for an additional initialization step that assigns to
each parameter its minimum possible value.

2. The solution favors streams with higher value per
cost ratio which may be different from the relative
importance of the streams from the application’s
point of view (e.g., in a road monitoring situation, the
system may prefer to get as much as possible from
the road sensor readings than accurately tracking
continuous polling from cars requesting update on
their toll for the day in a system like the one
simulated in [31].) This can be solved by assigning
numeric weights to each input stream. These weights
can be multiplied by the coefficient of each stream in
the objective function to increase the solution’s bias
toward more important streams.

3. The solution views the selectivity of a join as
symmetric for both of its inputs, which lead to them
being considered as equals. In reality this may not be
true. In a one-to-many join, for example, dropping a
tuple from the one side can drop more than one tuple
from the result while dropping a tuple from the many
side will drop at most one tuple from the result. This
can be solved by modeling the selectivity of the join
by two numbers representing the join selectivities of
incoming tuples on each side of the join into the
windows of the other.

6. Conclusion and Future Work
In this paper, we developed a cost model for

optimizing conjunctive continuous queries with sliding
window joins. Using the cost model, we proved that all
feasible plans of a continuous query produce the same
rate, hence we introduced a framework for static
optimization based on feasibility and resource
management as opposed to rate-based optimization.

We used the cost model to study the problem of
approximating a continuous query with tuple-based
sliding windows using random filters. Our results show

0

100

200

300

400

500

600

700

800

900

1000

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Cost of a join per tuple (sec.)

O
pt

im
um

 th
ro

ug
hp

ut
 (t

up
le

s/
se

c.
)

Plan (a)
Plan (b)
Plan (c)

Figure 7. Optimum throughput for the query
of example 1.

 12

that given a plan, finding the optimum places for the
random filters and their values is an easy task. However,
finding a plan to approximate, is not that obvious.
Furthermore, we found that the best feasible plan and the
best approximate plan are not necessarily the same.

There are a number of possible extensions to this work,
we discuss them in the following paragraphs.

The model can be extended in two directions; to
handle multi-query optimizations, and to model
disjunctions, partitions, and aggregations.

To answer the question of when to use static or
dynamic optimization, models for both the overhead of
adaptability and the change in data characteristics are
needed to determine which situations each technique is
more beneficial at, and when it would be better to use a
hybrid scheme of the two.

From the discussion in Section 3.4, a feasible plan can
still have a large response time. For applications with
real-time requirements, a feasible plan may still be
unacceptable. The problem can be solved by guiding the
optimizer using our model to leave more head-room for
the system to avoid approaching saturation. A better
approach would be to use a queuing model to optimize
directly for response time. Such a model would also be
useful for modeling the average memory requirements of
a plan.

References
[1] A. Arasu, B. Babcock, et al. Characterizing Memory
Requirements for Queries over Continuous Data Streams. ACM
PODS, June 2002.
[2] A. Arasu, S. Babu, J. Widom. An Abstract Semantics and
Concrete Language for Continuous Queries over Streams and
Relations. Technical Report, Department of Computer Sciences,
Stanford University, November 2002.
[3] R. Avnur, J. M. Hellerstein. Eddies: Continuously Adaptive
Query Processing. SIGMOD, May 2000.
[4] B. Babcock, S. Babu, et al. Models and Issues in Data
Stream Systems. PODS, June 2002.
[5] B. Babcock, S. Babu, M. Datar, R. Motwani. Chain:
Operator Scheduling for Memory Minimization in Data Stream
Systems. SIGMOD, June 2003.
[6] B. Babcock, M. Datar, et al. Maintaining Variance and k-
Medians over Data Stream Windows. PODS, June 2003.
[7] B. Babcock, M. Datar, R. Motwani. Sampling From a
Moving Window Over Streaming Data. SODA 2002.
[8] D. Carney, U. Cetintemel, et al. Monitoring Streams: A New
Class of Data Management Applications. VLDB 2002.
[9] S. Chandrasekaran, A. Deshpande, et al. TelegraphCQ:
Continuous Dataflow Processing for an Uncertain World. CIDR,
January 2003.
[10] J. Chen, D. J. DeWitt, J. F. Naughton. Design and
Evaluation of Alternative Selection Placement Strategies in
Optimizing Continuous Queries. ICDE 2002.
[11] J. Chen, D. J. DeWitt, F. Tian, Y. Wang. NiagaraCQ: A
Scalable Continuous Query System for Internet Databases.
SIGMOD, May 2000.
[12] S. Chandrasekaran, M. J. Franklin. Streaming Queries over

Streaming Data. VLDB 2002.
[13] A. Dobra, M. Garofalakis, J. E. Gehrke, R. Rastogi.
Processing Complex Aggregate Queries over Data Streams.
SIGMOD, June 2002.
[14] M. Datar, A. Gionis, P. Indyk, R. Motwani. Maintaining
Stream Statistics over Sliding Windows. SODA 2002.
[15] A. Das, J. Gehrke, M. Riedewald, Approximate Join
Processing Over Data Streams. SIGMOD, June 2003.
[16] J. Gehrke, F. Korn, et al. On Computing Correlated
Aggregates Over Continual Data Streams. SIGMOD, June 2001.
[17] M. A. Hammad, M. J. Franklin, et al. Scheduling for
shared window joins over data streams. VLDB 2003.
[18] P. J. Haas and J. M. Hellerstein. Ripple Joins for Online
Aggregation, ACM SIGMOD, June 1999.
[19] Z. Ives, D. Florescu, et al. An Adaptive Query Execution
System for Data Integration. SIGMOD, June 1999.
[20] T. Ibaraki, T. Kameda. On the Optimal Nesting Order for
Computing N-Relational Joins. ACM Transactions on Database
Systems, Vol. 9, No. 3, September 1984.
[21] N. Kabra, J. DeWitt. Efficient Mid-Query Reoptimization
of Sub-Optimal Query Execution Plans. SIGMOD, June 1998.
[22] J. Kang, J. F. Naughton, S. D. Viglas. Evaluating Window
Joins over Unbounded Streams. ICDE 2003.
[23] E. D. Lazowska, J. Zahorjan, G. S. Graham, K. C. Sevcik,
Quantitative System Performance, Prentice Hall, 1984.
[24] S. R. Madden and M. J. Franklin. Fjording the Stream: An
Architecture for Queries over Streaming Sensor Data. ICDE
2002.
[25] S. Madden, M. Franklin, J. Hellerstein, W. Hong. The
Design of an Acquisitional Query Processor for Sensor
Networks. SIGMOD, June 2003.
[26] S. Madden, M. Shah, et al. Continuously Adaptive
Continuous Queries over Streams. SIGMOD, June 2002.
[27] R. Motwani, J. Widom, et al. Query Processing,
Approximation, and Resource Management, in a Data Stream
Management System. CIDR, January 2003.
[28] P. Selinger, M. Astrahan, et al. Access Path Selection in a
Relational Database Management System. SIGMOD, May 1979.
[29] N. Tatbul, U. Çetintemel, et al. Load Shedding in a Data
Stream Manager. VLDB 2003.
[30] F. Tian, D. J. DeWitt. Tuple Routing Strategies for
Distributed Eddies. VLDB 2003.
[31] The Linear Road Benchmark.
http://www.cs.brown.edu/research/aurora/linear-road.pdf.
[32] The Telegraph Project. http://telegraph.cs.berkeley.edu
[33] The Stanford Stream Data Manager.
http://www-db.stanford.edu/stream.
[34] T. Urhan, M. J. Franklin, L. Amsaleg. Cost Based Query
Scrambling for Initial Delays, SIGMOD, May 1998.
[35] S. D. Viglas, J. F. Naughton. Rate-Based Query
Optimization for Streaming Information Sources, SIGMOD,
June 2002.
[36] S. Viglas, J. F. Naughton, J. Burger. Maximizing the
Output Rate of Multi-Way Join Queries over Streaming
Information Sources. VLDB 2003.
[37] A. N. Wilschut, P. M. G. Apers. Dataflow Query Execution
in a Parallel Main-Memory Environment. PDIS 1991.
[38] Y. Yao, J. E. Gehrke, Query Processing in Sensor
Networks, CIDR 2003.

