Static Optimization of Conjunctive Queries with Sliding
Windows Over Infinite Streams

Ahmed M. Ayad

Jeffrey F.Naughton

Department of Computer Sciences
University of Wisconsin - Madison
1210 W. Dayton, Madison, W| 53706

{ahmed, naughton}@cs.wisc.edu

ABSTRACT

We define a framework for static optimization afisig window
conjunctive queries over infinite streams. When gotational
resources are sufficient, we propose that the gbaptimization
should be to find an execution plan that minimimsource usage
within the available resource constraints. Wheroueses are
insufficient, on the other hand, we propose thatgbal should be
to find an execution plan that sheds some of tipaitinoad (by
randomly dropping tuples) to keep resource usagi@irwbounds
while maximizing the output rate. An intuitive appch to load
shedding suggests starting with the plan that wbeldptimal if
resources were sufficient and adding "drop boxesthis plan.
We find this to be often times suboptimal — in mamtances the
optimal partial answer plan results from addingpdtmxes to
plans that are not optimal in the unlimited reseucase. In view
of this, we use our framework to investigate anrapgh to
optimization that unifies the placement of drop é®xand the
choice of the query plan from which to drop tupléghe
effectiveness of our optimizer is experimentalljidated and the
results show the promise of this approach.

1. INTRODUCTION

The focus of research on data and information m%ing has
recently shifted towards an emerging type of aggitbmis in which
the data is streaming from its sources. Such agics include
monitoring network traffic, intrusion detection,
telecommunications, sensor networks, financial isesy and e-
business applications.

Some major assumptions made by traditional dateagemnent
systems do not hold in the context of streamindiegions. In
these applications, the system has no control iheearrival time
of the data. Hence, the adoption of a push modebofputation
is mandatory. Also, in such applications, monitgroueries can
run for a long time (e.g., on the order of daysmamths) so that
they can be assumed for all practical purposesetaumning
continuously, hence the namentinuous queries

An important goal in systems designed for suchiappbns is

Permission to make digital or hard copies of all opart of this work
for personal or classroom use is granted without £ provided that
copies are not made or distributed for profit or canmercial
advantage and that copies bear this notice and tHall citation on the
first page. To copy otherwise, or republish, to pdson servers or to
redistribute to lists, requires prior specific permission and/or a fee.

SIGMOD 2004 June 13-18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 ...$5.00.

to provide an easy framework for users to expriess tjueries. A
good approach is to provide users with a declaFatiethod to do
so, leaving the decision on arranging how the gissexecuted to
the system. Such approach is taken by the STREAY] f@am
which extended the SQL query language with contrte pose
gueries on any combination of relations and comtirsustreaming
sources [3]. This approach opens the problem ofryque
optimization for continuous queries.

In the context of data streaming systems, the apition
problem is distinguished by the necessity to adoppush model.
The system has no choice but to keep up with tbening data.
Given a continuous query in steady state, eachugioacplan can
be viewed as a queuing network system in whiclviagituples
from the input streams are the clients and quesraiprs are the
servers. From basic queuing theory [20], if thetesyscapacity
exceeds the requirements for the input rate (atitim < 100%),
the system is stable. Otherwise, the system isteal® saturated
or unstable. In the context of continuous quer&s,execution
plan for the query ieasibleif the system it will execute on will
be stable. Afeasible queryis one for which at least one feasible
plan exists.

To illustrate the above, Figure 1 shows an exampkesimple
query composed of two selections, and g,, on a single data
stream. The cost per tuple for the first selectiGq, is half a
millisecond and its selectivityf;, is 0.25. The cost per tuple for
the secondC,, is one millisecond and its selectivity, is 0.5. The
rate of the input data stream is 1000 tuples/secekch selection
operator, assuming computational resources ardablai(see
section3), the output rate of a selection is computedraply its
input rate multiplied by its selectivity. Two altetive plans exist
for the query. In the first alternative (plan A}, takes 500

Cx=10°

f2 =0.5 @
2 = 25(
Ci= 5*10*
f1=0.25
J.=1000
c(1)=05 c(1)=0.25
c(2)=0.25 c2)=1

Plan A - Feasible Plan B - Infeasible
Figure 1. Feasible and infeasible alternatives to query.
c(i) is the cost per second af;.

milliseconds, on average, for selectionto process its input in
one second, and 250 milliseconds dgr This means that there is
75% average resource utilization and there is emdimge for
both operators to handle the load coming their imagy unit time.
Hence, both operators can share the same processingrces
and the plan i¢easible Plan B, on the other hand, dictates that

needs 250 milliseconds, amd needs one second to handle the

arrivals in a unit time. Hence, it isfeasible Since a feasible plan

exists for the query, the query itselféasible
It can be observed that, if an execution planasifde, its final

output rate is only determined by the rates ofitiput streams.

Since the input is the same for all plans of a guthis leads

directly to the observation that all feasible plafithe same query

have the same final output rate (see Se&idrB).
If no feasible plans exist for the query, load stied becomes

a necessity to bring down the demand on the sy&ienithin the

available resources. Load shedding can be done ebgra

methods (e.g., random or semantic dropping of 8)pésd can
have several objectives, see [1][23] for a disarssin this work,
we choose random dropping of tuples as the metHotbaul
shedding. This is achieved by inserting random dooges at
several points in the query plan. When tuples a&iaedbdropped
from a plan, the final output rate becomes dependenthe
amount of shed load. Since, as demonstrated aptares differ in
their resource usage, different plans will neeéedit amounts of
load shedding. Therefore, the final output rateplafs with drop
boxes inserted will differ. In light of this, we abse the goal of
load shedding to be the plan that maximizes thpudutte of the
partial answer query. In this context, there are tdifferent
problems that need to be addressed. The first ésafptimal
placement of drop boxes in an execution plan armdagtimal
setting of their sampling rate. The second is corest with the
choice of plan to shed load from. Notice that iis ttese, all the
plans considered should finally have the same resautilization,
the maximum possible, while differing on the firaltput rate.
Recent research on load shedding (e.g., [7][258uded on
examining the best method to shed load from a gplan. The
plan used is usually assumed to be the plan sdlesteen
resources where sufficient. We are unaware of atgmats to
address the issue of selecting the best plan &t $hedding.
Given the above discussion, a static query optimios
continuous queries faces a number of challengesabe the
query is feasible, the optimizer has to find thesfble plan for the
query that has the lowest resource utilizatioratdeast avoid the
infeasible plans to avoid unnecessary load sheddimgase the
query is infeasible, the goal becomes to searchhfemlan that,
when tuples are dropped from it, yields the maximautput rate.

We present a framework for static query optimizatibat tackles

these challenges. In particular, our main contriing are:

* We develop a model for estimating the final outpate and
resource utilization of an execution plan of a ocwmus
query.

*« We use the model to investigate the best way ta $bad
from a plan by inserting random drop boxes.

« We show that the approach of shedding load frompiae
that was running when resources were sufficienftan times
suboptimal. Significant gains can be achieved & tjuery is
re-optimized with load shedding in mind.

* We develop an optimizer that integrates load shegtfito the
optimization process by taking resource constraim®
account.

e We experimentally validate
optimization framework.

Much of the recent work on systems for streamirigrination
sources is built on being able to dynamically adaptthe
changing characteristics of the data as it flowsThe paradigm
is: start with a plan, and then continuously chaih@s you know
more about the data. Examples are the work in FJ&B]. This
is built on the earlier idea of mid-query re-optzation [18]. It is
important to note that, by introducing a static im@ation
framework, we are not effectively stating thatsita better way to
approach the problem. Static optimizations candmfull in cases
where the rates of the input streams are slow ¢hgngnd the
pattern of change is predictable (e.g., networképartation
traffic loads, building sensors.) It suffers froms irigidity and
inadaptability to rapid changes of basic assumptiahout the
data characteristics. The adaptive approach stthese problems,
but it is not without its overhead. The questionwbiich is better
depends upon several things, including the exaocbuatn of
overhead, and how volatile the environment is. A¢ @xtreme,
very static environments, static optimization vii# best. At the
other extreme, very dynamic environments, adaptivey be
superior. In between the two are a number of trfisle@.g.,
optimize and monitor then re-optimize when necgssar
optimize every k number of seconds.) Our goal istncanswer
the question of which is better or when to use Whikto be able
to answer such questions, we need first to knowt vthmeans to
do static optimization for continuous queries, \hig the goal of
this paper.

The rest of the paper is organized as follows: iSec®
discusses the semantics of sliding window conjwecstreaming
queries that we study. Section 3 describes themoskl used in
the optimization problem. Section 4 tackles thedl@hedding
problem. Section 5 defines the optimization framéwand the
proposed optimizer. Section 6 discusses the expeatah
evaluation. Section 7 discusses related work in litezature.
Section 8 concludes the paper.

2. THE SEMANTICS OF SLIDING
WINDOW CONTINUOUS QUERIES

There has been no agreed upon concrete semantigaddes
over data streams. Attempts towards this goal aarfoland in
[1][3]. These attempts differ slightly on the meaamiof a
timestamp, whether strict ordering of tuples isuiegfd, handling
out of order tuples, timestamps for generated &ypipierying
relational data, and how resulting tuples are stezhout.

For the purpose of this work, we are only concewétl the
modeling of a data stream and the precise semanficthe
selection and the sliding window join operators. A&sume a
global, discrete, ordered time domainfrom which timestamp
values are derived. For ease of analysis, we alakensome
simplifying assumptions:

1- For any data stream, the time stamps are unigeeg #re no
ties.

2- Tuples arrive in the stream in a monotonically @asing
order by its time stamp; there is no out of ordewal.

3- There are no relational tables involved in the guer

The easiest way to satisfy our assumptions forsiamps is to

assume that they are assigned by the system fortapte upon

its arrival.

the effectiveness of our

D
Wg
D
B
Wi VV w
A A B
Figure 2. Two plans for the same query. The active

window size on the left side of the join is less the
left plan.

2.1 Definitions

We adopt the definition of data streams in [3].

Definition 1: Data Stream.A streams S is a bag of elements

<s, t>, where s is a tuple belonging to the schefridne stream
andt//r is the timestamp of the element. a

Besides their semantic usages, window predicates aneans
to restrict an infinite stream for operations liggeam joins to
become feasible. Many types of window predicatéstesach has
its own modeling requirements. A discussion ofdterent types
can be found in [1][3][8]. For the purpose of tipaper, we will
only consider tuple-based and time-based slidinglaivs. Again,
we adopt the definitions in [3].

Definition 2: Time-based WindowAt any time instant, a time-
based window of siz& on a streantS defines a subset &
containing all elements &with timestamg’ such that-t' <T.Q

Definition 3: Tuple-based WindowAt any time instant, a tuple-
based window of siz&/ on a strean$ defines a subset &with
the largesiV timestamps not exceedimnglf the size ofS at timet
is less tharw, the window includes all elements of the streddh.

Note that the number of tuples satisfying the wingwedicate
is affected by the tuple arrival rate in the cadetime-based
windows only. Tuples satisfying the window pred&atan

becomestale by the passage of time and the window size can

eventually be zero if no new tuples arrive. Thifnisontrast with
tuple-based windows, in which, once the window ud, fthe
number of tuples satisfying the predicate remaimmstant
regardless of the rate of new arrivals.

2.2 Selection and Join Semantics

A selection operator, also called a filter, takestr@ams as
input and outputs a streawhose elements are the subseSof
that satisfy the selection predicate. Elementhiendutput stream
of a selection have the same timestamps and relatider they
had in the input stream.

As for joins, since we are only considering stresgrsources,
we are only interested in sliding window joins. é|lsvithout loss
of generality, we will only consider equality predies. From [2],
equi-joins on infinite streaming sources result uinbounded
memory requirements, hence the necessity of slidimgdow
predicates.

The sliding window join is a symmetric operatortttekes two
input streamsS andR. For every arriving tuple on any of the two
input streams, the operator joins it with the cotrevindow
contents on the other input stream. The operatar Hireams out
resulting tuples that satisfy the join predicathe Timestamp of a
resulting element from the join is the greater ok ttwo

timestamps of its components. The resulting strisaardered on
the timestamps of its elements.

3. THE COST MODEL

In this section, we provide the necessary calauatito
estimate the expected processing constraints foviging an
answer to continuous queries. First, we derive tleeessary
equations to estimate the output rate for the wdiffe operators
assuming there are no constraints (i.e., assumntiegplan is
feasible.) Second, we estimate the size ofattteve window By
that we mean the average number of output elentbatsare
eligible for participation as input if the output the operator is
fed into the input of a second one. Consider tlargte in Figure
2. It shows two plans for the same query that jeingamsA and
B and has a selection oA. Both streams have tuple-based
window predicatesW, andW; respectively. For the plan on the
right, each element arriving from stre@ijoins with the latestV,
elements of strea. This can’t be true for the left plan or else we
would be joining elements froB with the latesiV, elements that
pass the selection, instead of the lat>arriving. Instead, for
the left plan, elements from streaBnshould join only with the
active elements in the window ofy the size of which 3N,
multiplied by the selectivity of the selection ogtar. A similar
argument can be made for the size of the activalovinif the
windows were time-based instead. Lastly, we movedtimate
average processing requirements for these opertaigether with
the constraints on such requirements.

We assume steady state conditions and use thegavexte to
characterize the rate of arrivals of incoming tgpi®m external
sources. This implicitly assumes a stable arrieé.r We also
assume that there is enough memory to hold theeitiodf
requirements for any query plan. Table 1 definesnibtation used
throughout the paper. All costs are in time units.

We will develop the cost model for tuple-based vaiwd only.
However, since we are concerned with steady statdittons and
are using average rate, it is easy to adapt theshfiodtime-based
windows using the following argument. On averape, number
of active tuples in a windowof sizeT is 4;-T. So, by replacing the
size W, of a tuple-based window with-T, the equations will be
applicable to time-based windows as well.

The development of the results concerning the dufgtes and
costs of single operators resembles the one in [19]

3.1 Rate and Window Calculations

3.1.1 Selections and Projections

We will consider projections as a special caseetdctions in
which the selectivity factor is equal to 1. The memof tuples a
selection/projection operator handles in a unietisy;. Of those,
only f-4; qualify for the selection. Hence, the output iate

o= 4 1)

For a selection operator with a wind&W defined on its input,

the active window size is (see discussion of Figuadove)

W= f-W, (2

3.1.2 Joins and Cartesian Products

A Cartesian product can be viewed as a special akagoin
with the selectivity factor equal to 1. We defirtee tselectivity
factor of a sliding window join to be the percergagf tuples
satisfying the join predicate relative to a sim@lartesian product.

Table 1. Variables used in estimating resource reduements.

C, Cost of performing a selection on a single tuple

Cp Cost to probe an active window for a matching typs
arriving

C Cost to insert an arriving tuple into the slidingndow

Cy Cost to invalidate an expired tuple from the siglin
window

o Selectivity factor of a selection predicate

f Join selectivity factor

Ji Rate of arrival of tuples from sourte

W Size of a tuple-based window

T Size of a time-base window

We assume, without loss of generality, that theectility is
symmetric relative to the two inputs.

Now, the number of tuples arriving from the leftisiof the
operator in a unit time is equal 9. From the join semantics,
each of which is expected to join withWg tuples from the right
side window. Hence, the number of tuples produced eesult of
tuples arriving from the left side i$Wx-A. per unit time.
Similarly, the number of tuples resulting from rigtide arrivals is
f-W_-/g. SO, the total output rate for a window join is

20: f (WR/L + WL/R) (3)

To compute the active window size, we need to edénthe
average number of valid tuples coming out of tha.jé joined
tuple is considered valid (not expired) only if #fie original
tuples it is comprised from are still valid. Coreidthe join
operator at steady state. There Afeand\W; active tuples in the
windows on the left and the right sides respectiv@élach of
which must have already joined with the other a&ctiyples in the
opposite window. The resulting size of this joirf-8/ -Wk. Now,
consider arrivals on the left(right) side of thénjoEach arriving
tuple that is inserted into the window on the Fgtft) side
producesf-Wg(f-W,) new tuples. While at the same time, the
arriving tuple invalidates the earliest one in Wiadow, causing
the same number of tuples to become invalid. Hemcegverage,
the number of resulting active tuples stays thees&o

Wo=F-WL Wi 4
3.1.3 The general case

The above equations are all derived for binary goidsing
these derivations, it is possible to generalizentti@r the case of
n-way joins. In doing so, we arrive at the follogiabservation.

Observation 1
The output rate of an n-ary join nfstreams is constant and is
estimated by

A= (5)

n n
|_|f IZIKZ:;)IkEI:JV\/i

all”
selectivities

where/, is the arrival rate of streak) andW, is the size of the
tuple-based window predicate on strdam

The size of the resulting active window for an y-goin can
also be estimated by

izk

We' = ®)

[

selectivities

Proof

The proof is simply by induction on the number tams
involved in the join and using equations (3) anfif4 the base
case. a

It is clear from the above that the final outpuierand active
window size resulting from joining streams are independent of
how the join operation is performed. This is inugty equivalent
to the fact that, for a traditional relational quethe size of the
final result is independent of the execution plan.

The previous observation, coupled with the equatidm
Section 3.1.1, suggest that thsteady stateoutput rate of a
conjunctive continuous query, given enough res@rces
independent of the execution plan and that it shodt be the
goal of query optimization.

3.1.4 Discussion

We pause to discuss some issues relating to th@opee
observation. We have proved that all feasible pladsa
continuous query have the same output rate. Frersémantics
discussed in Sectiod, all feasible plans must produce the same
tuples in the same order, and with the same timgsaThis does
not mean, however, that all feasible plans prodtiee same
output at exactly the same time. To understand thisay be
helpful again to regard a query execution plannasgen queuing
system. From queuing theory, the utilization ansbomse times
of two stable systems may vary between the twonidipg on the
characteristics of each. In our context, the respotime of a
result tuple is the time difference between thedpobion time of
the tuple and its timestamp. The response time plfaa is the
average response time of all its resulting tupkesasible plans
differ in their response times, meaning that theydpce the same
result tuples with each shifted in time, from itméstamp, by an
average amount equal to the average response fitne plan.

3.2 Processing Constraints

We move to derive the necessary computational resou
requirements for the different types of operatorgeny their
inputs. We also compute the constraints on thesmirees.

3.2.1 Selections and Projections

The cost of handling a tuple for a selection orrajgztion
operator, C,, includes reading, inspecting the condition, and
writing out the result, if necessary. For a setetir a projection
operator to be able to correctly handle an arrivimqge, C, must
be, on average, less than the average time uetihéxt arrival.
Hence, the following constraint holds

C,7i<1 @

3.2.2 Joins and Cartesian Products

In the case of joining infinite streams, only ndodking
algorithms can be used, like the symmetric hash[jg8]. Kang et
al. made the observation in [19] that the join amst be divided
into the cost of performing the left and the riglarts of the join,
and that the method of performing the two parts cmapletely
independent. They derived a general cost modetHersliding

f=0.2 ™ f=0.5 4 £=0.1
f=0.5 M C A f=0.2 X f=z1 X B
/ \ 2=20 =10 / =70
A B B A
=10 =70 =70 =20 =10 =20
Plan (a) Plan (b) Plan (c)

Jag= 0.5*(10*10+70%10) = 400
Wig= 0.5*10*10 = 50
Aaragyc = 0.2*(400*10+20*50) = 1000

Jgmc= 0.2%(20*10+70%10) = 180
W= 0.2+10*10 = 20
Ja(grecy = 0.5%(180*10+20*10) = 1000

Jamc= 1%(10%10+20%10) = 300
W= 1¥10*10 = 100
Ja<cy<s = 0.1%300%10+70%100) = 1000

Figure 3. Possible plans to evaluate the join. Assing enough resources, all three plans have the sarfinal output rate.

window join which we will use here. The cost of fbe per unit
time is
CL = 4rCp(L) + A (G(R) + G(R))
Cr=LCp(R) +/r (C(L) + CuL))
CLMR = C|_ + CR
The previous calculations are necessary if asyninetr
operators will be used on the left and right sifi¢he join. If, on
the other hand, the traditional symmetric oper&arsed, the cost
functions can be simplified to

8)

Cior=(r+ 4)(C+ Cy+Cp) 9
In both cases, the constraint is
Crr<l1 (10)

In the later case, the operator can be seen asghawiarrival rate
of (A + A.) and a service rate o€(+ Cyz + Cp), analogous to
equation (7).

It is worth mentioning that the cost of the joindispendent on
the join algorithm used. The model presented ir] e be used
to choose the best possible algorithm for eachrijaén.

3.2.3 Notes on the Processing Constraints

The constraints derived in this section have thétlsu
assumption that the operator will be the only ragnprocess in
the system. In case a host of operators are sharmocessing
resources, the previous bounds are not tight. @constraints to
become tight in this case, the cost values of epemnator should
be dilated by the inverse of the fraction of tinhe perator is
scheduled to run on the system. For example, ifailes 1
millisecond to process a tuple for selection, the bperator is
sharing the processor fairly with another 9 ideaitioperators,
then the cost should increase ten fold to 10 reifli;ds.

Example 1

We end this section with a concrete example orafidication
of the cost model. Consider the following simpleLSi®&e query
(the window constraint syntax is modeled after J23]

SELECT A.a, B.b, C.c
FROM A [RONS 10]
B [ROAS 10]
C [RONs 10]
VHERE A.a = B.a
AND B.b=Chb

This is a simple three-way tuple-based window jo@tween the
streams A, B, and C with the window being the kafésrows in

each stream. Assume 0.5 is the selectivity sfB\and 0.2 is the
selectivity of B<IC. Also assume that 10, 70, and 20 are the rates
of arrival of streams A, B, and C respectively uples/second.
Further assume, for ease of exposition, that amy ¢perator
takes a constant amount of time to handle an incgruiple from
either side of the join. Since the cost of the pfathe summation
of the individual costs of its operators (in thase the two joins)
the previous assumption makes the cost of the piaectly
proportional to the summation of the input streaates and the
output rate of the intermediate join. It is notdhéw also show that
the utilization of every plan is the multiplicatiaf this sum by
the join cost. Figure 3 shows the possible plansvauate the
query. Note that using the model and assuming @dah has
enough computational resources to execute, alletimave the
same final output rate.

First, assume that a join operator takes 0.5 radbsids to join
an incoming tuple, which means that the system twamdle at
most 2000 tuples/second. In this case, it is ols/ibat any of the
plans is feasible. The plans differ dramaticallgyiver in terms
of their resource utilization. While plan (a) keaghs system 25%
utilized (500*.0005), plan (c) has only 20% utilizen
(400*.0005), and plan (b) has 14% utilization (28005). Plan
(b) is therefore the best choice. Choosing planréalts in a
170% increase in the necessary resources to atissvguery.

Now, assume that a join requires 3 millisecondbdndle an
incoming tuple, meaning that the system capacitghiout 334
tuples/second. In this case, plan (a) will have%5@ilization,
plan (c) will have 120% utilization, and plan (b)livhave 84%
utilization meaning that only plan (b) is feasibhoosing either
of the other two plans will unnecessarily requoad shedding.

If a join requires 5 milliseconds per incoming ®ip{i.e.,
maximum system capacity of 200 tuples/secondplatis become
infeasible and some load must be shed. One wappmzaimate
the result of a query is to randomly drop tuplemrfrthe input
queues of the different operators. A heuristic measof the
quality of load shedding can be the final plan tigioput; the plan
that drops the least number of tuples might bebtst choice (the
MAX-subseteasure in [11]). We discuss in the next section h
to arrive at this choice.

i @ - -

Figure 4. A plan with n filtering operators with
drop boxes in all possible places.

4. LOAD SHEDDING

We now turn to the case when all the plans aragilte and a
partial answer is inevitabld.oad sheddind1] is one form of
approximation which reduces load by dropping tugtesn the
incoming streams. Load shedding can be done byaawethods
(e.g., random or semantic dropping of tuples) aad bave
several objectives (e.g., maximize throughput omligy of
service), see [1][23] for a discussion. In thistget we consider
random dropping of tuples as the method of loaddimg and the
goal is to maximize the output rate of the apprated query. We
consider the best way to place random filteemd the optimal
setting of the amount that each filter should dispmentioned in
the introduction, there are two basic questiontitémizer needs
to answer. The first is, given a plan to shed ltvach, where do
we place the random filters, and how much shoulddws in
each? The second, which plan do we choose for $badding?
Intuition suggests that we should choose the bést grhen
resources were sufficient. We test the validitythif intuition
here.

We assume for convenience that the random filtes ha

negligible cost compared to other operators. Siheedrop boxes
are artificial operators, we will also assume thhey are
semantically invisible (i.e., the query operatorsill wnot
differentiate between a drop in arrival rate at soerce and one
resulting from a drop box.) We start by handling ttase of only
selection operators and then extend the probldnctode joins.

4.1 Selection Only Queries

Consider a query consisting aof consecutive filters, and an
execution plan for it that orders the filters ircasding order by
their designated numbers. The cost per tuple farfiis ¢ time
units, and its selectivity ig;. Now, assume that the plan is
infeasible and drop boxes should be used to sheatl [bhere are
n+1 possible places to put drop boxes (see Figure 4)wl
assume that theelectivity of drop boxi is x (i.e., the filter

randomly dropsl00*(1-x) percent of the tuples it sees.) Notice

that the filter becomes unnecessary if its paramistequal to 1.
The problem is to determine the optimum valueshefx’'s such
that the output rate is maximized. Using the motihel,output rate
of the partial answer plan will be

n+l

Aapprox =4 EI_J %
1=

and its total cost will be

11)

n i
clo)=3|)] »
i=1 j=
where/, is the output rate of un-approximated plan, cal@d as
n

A0=|:!ajua

(12)

(13)

1 We use random filter and drop box interchangeably.

andc(i) is the cost per unit time of filtéri=1..n, calculated as
i-1
ci)=Am El_l g
j=1
Using the previous equations, and noticing thatwile only
need to drop tuples in case the plan is infeagitde the cost of
the plan is greater than 1), we can formulate tfublpm as a
constrained optimization one as follows

(14)

MaxX Aapprox
Subject to
15
c(p)=1 1)
0<x <1 i=1.n+1

The above formulation leads to the following obséon.

Observation 2

To approximate a plan for a filtering-only contiusoquery,
we only need to drop tuples directly from the gty source
before they are processed by any of the filtersthieéamore, the
approximation should be performed on the plan tithleast cost
in order to maximize the output rate given cer@dmputational
resources.

Proof

The easiest way to prove the above is to consiterahalogy
between the problem at hand and the one concetimngptimum
way to order a number of expensive predicates avesiational
table, replacing the input relation cardinality thye input stream
raté. From rank optimization [14], all random filterse zero
cost and selectivities less than one, which mdaamswill all have
infinite rank. Hence they should all be pushedhe Ikeft to be
applied the earliest. Since a combination of randbiters
amounts to a single one, we deduce that the optisalation is
to have a single filter at the beginning. This m®the first part of
the observation and leads to the following solutainequation
(15):

* 1

X =
> ef)
i=1
Xj=1 j=2.n+1
The optimum value of the objective function becomes
A;pprox: XI D (17)

To prove that the load shedding should be perforowedhe
plan with the least cost, two observations are sgy. First, the
solution above is applicable for any given plan the query.
Second, given a certain plas{j) is the cost per unit time for filter

(16)

i, making the summation in the denominator gf the cost of
running the plan without load shedding. Combiningse two, the
lower the cost of the plan, the highezf is (i.e., the fewer the
number of tuples dropped.) Since the optimum apprate rate is
directly proportional to x{, we deduce that the plan with the
lowest cost yields the highest rate. a

2 Another method is to directly solve the constrdingtimization
problem.

X1 X2

An B
Figure 5. A join operator with drop boxes placed at
all three possible locations.

The first part of this observation provides a rmes validation of
a rule of thumb reported in [25].

4.2 Join Queries

We now turn to the case where the query contaimlavy
joins. For ease of analysis, we will only consideple-based
windows in this section. We first investigate tigimum method
to drop tuples from a given query plan, and thenmave to
investigate the choice of the plan to shed loathfro

4.2.1 Shedding Load from a Specific Plan

We first look at the where to put the drop boxes: & query

plan joiningn streams, using binary joins, a drop box can be put

before each of the two inputs to thel join operators, plus a box
right after the last join is performed, resultimg2n - 1 possible
places. We can show, however, that similar to ilterfonly case,
we need to drop tuples only from the input strebsfsre they are
processed by any join operator.

Observation 3

To approximate a plan for a continuous query janim
streams, it is sufficient to drop tuples only froime input sources
before they are processed by any join operator.

Proof Sketch

Figure 5 shows an arbitrary join operator in anrapimated
plan for the n-way join with drop boxes in all pii¥s locations.
As a first step to prove the observation, we needhiow that,
given any values of the parametess X,; and x; of the drop
boxes, we can always arbitrarily increagevithout affecting the
rest of the plan while decreasing the cost of thre j

The operator's effect on the rest of the plan ioudhh its
output rate, and the resulting active window sizee prove the
manipulations of the filter values will not affdabth values, we
can guarantee they will not affect the rest offitam.

In the case of tuple-based windows, it can be yeabkibwn by
examining equations (4) and (6) that in steadyesthe size of the
resulting active window size of any join in a quetan is always
independent of the values of the input stream rakésnce,
manipulating the settings for the drop box wonfeef the active
window size. This leaves the resulting output rate.

For the output rate, it suffices to show that, ¢ée the output
rate the same after increasirg the values of; and x, must

decrease. Sinog does not contribute to the cost of this join, the

final effect of this manipulation would be a de@ean the join
cost.

Now, assume the arbitrary join in Figure 5 is the most join
in the query plan. We can then consider it to lmse case and
recursively apply the previous observation to thiag feeding its

inputs until reaching the original input streamsisTcompletes
the proof. d

Despite the difference in characteristics betweaare-based
and tuple-based windows (the number of active tipiea time-
based window is dependant on the input rates), nailasi
reasoning can be applied to prove the previousreasen for
time-based windows.

We now turn to determining the selectivity of edadx. As in
the previous section, we can formulate the problash an
optimization one. Placing drop boxes only at tlevés of a query
plan decreases the complexity of the problem diaifly. For
every input stream to the query with ratg;, there exists an
associated drop box with the parame¢etJsing equation (5), we
can estimate the output rate after load shedding fuery withn
input streams to be

Aapprox = (18)

fD W O | B
aII znk

selectivites k#i

It can also be easily verified that the cost fumetis linear in the
values of theg’s. We can therefore express it as

= a
i=1

where thegy's are constants. The problem can then be fornuilate
as

(19)

Max)vapprox
Subject to
c(p)=1 (20)
0<x <l i=1.n

The solution of the problem can be obtained by olisg that
the problem has a linear objective function, omedr constraint
in all the variables, and a set of limiting constt® on each
variable. This problem is then an instance of tlatiouous
knapsack problem. Thus, the solution is by the ofwihg
algorithm:

1- Set all values of the variables to 0.
2- For every variable;, compute the ratio

1)

k¢|
g,

which is the ratio between its coefficients in thigiective
function (less the multiplication of all selectiei$ since it is
constant for all variables), and the equality craist
respectively.

3- Sort the ratios in descending order.

4- If all ratios have been considered, then stop.

5- Set the value of the variable that correspond$éocurrent
highest ratio to the maximum possible; 100%.

6- If setting the latest variable caus€fp) to exceed 1 then

decrease it untiC(p) reaches 1 and stop. Else, remove the

variable and its ratio from the list.
7- Repeat step 4. d

—- pI;n(a)

ann —— plan(b) H
! —=+ plan(c)

a00

700

600 -

a00

400

300

Optirnurm Throughput (tuples/sec.)

200 1

100 F

il 1 L L 1 1 1 1 1 1
0o o001 002 003 004 005 006 OOF 008 0029 01
Cost of a join per tuple (sec.)

—IG— planl(a) H
—— planib)
—=- planic)

1000 1

980

960

940 1

9201

900

880

o960

COptirnum Throughput (tuplesfsec.)

340

8201

0 05 1 15, 2 258 i 35 4 45
Cost of a join per tuple (sec.) o 10-3

Figure 6. Optimum throughput for the query of Example 1.
The figure on the right magnifies the upper left caner of the left figure, with more data points.

4.2.2 Choice of Plan for Load Shedding

We now move to investigate the second question erointg
load shedding; what is the best plan to select3dction4.1 we
have confirmed for selection queries the intuitibat the plan to
select is the one with the lowest resource utitiratinterestingly,
this intuition does not carry over in the case @hjqueries.
Depending on the available resources, a plan tlatldvhave
been suboptimal when resources were abundant can dmdter
choice for load shedding. We show this using a Enepample.
Consider the query of Example 1 presented in Se@ioWe
tested the behavior of each of the three alteregtians for the
query when the join cost per tuple increases frafnfhitely fast
processor) to 100 milliseconds. For each plan, emeputed the
optimum output rate at each join cost. When a anfeasible,
the optimum output rate is the one obtained aftep doxes have
been optimally inserted into the plan. The leftesif Figure 6
shows the behavior of the three plans. All threenglstart by
delivering 1000 tuples/sec., which is the maximumsgible rate.
As resources become scarcer, the throughputs gfitims start to
drop as they are forced to shed load. The plamss$tadding load
in the order of their average utlization, startingh the worst,
plan (a), followed by plan (c) then finally, whehet join cost
exceeds 3.5 milliseconds, plan (b) starts to sbad.ISomewhere
between the join cost of 4 and 4.5 millisecondstpple, a switch
over occurs (see the right side of Figure 6.) Bor fosts starting
4.5 milliseconds and higher, plan (c) becomes test lshoice,
delivering the maximum throughput. This trend counés until all
plans deliver the same throughput at join cost0sf tilliseconds.

A number of interesting observations can be madethen
previous example:

1- The plan with the lowest utilization is not alwalyse best
choice for load shedding.

2- The gap between the lowest utilization plan andbigst plan
to shed load from keeps increasing until the peihén the
join cost is approximately 14 milliseconds. At tipisint, the
throughput of the best plan is more than twicettineughput
of the lowest utilization plan.

3- It may be the case that the lowest utilization pkaactually
the worst choice, as it is in the example whenjtlire cost
exceeds 17 milliseconds.

From the previous demonstration, it is evident thezdd
shedding has to be integrated in the process dmiattion, as
opposed to being treated as an afterthought. Wharclsing for
the best plan, the optimizer must take into accdhatresource
constraints in addition to the input stream ratéadow sizes and
selectivities. This is the focus of the rest of plager.

5. THE OPTIMIZATION FRAMEWORK

We are now ready to formulate the optimization peobfor
conjunctive queries over infinite streaming sourd&® start by
defining a query plan, and then we move on to thjeative of the
optimization. Finally, we discuss a heuristic basgghamic
programming optimizer developed to approximate blest left
deep tree for a tuple-based sliding window conjwectjuery.
Although, as in the load shedding section abovepmg develop
the problem for tuple-based sliding windows, maspegts of the
solution carry to time-based windows. A completatment of
time-based windows is left for future work.

5.1 The Optimization Problem

Given a conjunctive quer) on streaming sources, we can
define two functions on any execution plan p @rThe first is
A(p), which is the throughput of the plan, and theosekcisC(p),
which is the utilization cost of the plai(p) is bounded by the
maximum output rate of the query, a@fp) is bounded from
above by 100%.

From the previous discussions it is now clear thate are two
distinct modes of operation. The first is when theery is
feasible, and the second is when it is not. Forfitse mode, the
goal of optimization is to minimiz€(p). While in this modei(p)
is fixed at its maximum value for all feasible pdgnof the query.
In the second mode, the goal is to maximig®. In this mode,
the value ofc(p) is fixed at its maximum value for ail

To tackle the problem in a uniform manner, we \&isume
that the search space of alternative plan€)ds always equipped
with drop boxes for load shedding, if necessaryis Tay, all

plans in the search space will be feasible, andcave treat the
problem as an unconstrained one.
Now, we can define the objective of the optimizatiof a

queryQ as
Ap)

Max R(p) :E(a , wherep is a plan forQ 1)

To see why this works, consider a feasible queoy.a&f plans

p of the query, eithep has no drop boxes, which means that the

numerator ofR is fixed at the maximum query throughput while
the denominator is less than 1,mphas drop boxes, which means
that the denominator is now 1, while the numeretdess than the
maximum throughput. It is then obvious that allndawith no
drop boxes have a higher valueRofhan any one with. Among all
plans with no drop boxes, the one with the least ¢@s the
highest value. If the query itself is infeasibl#,@ans will have
drop boxes and the one with maximum throughput aVe the
highestR value.

Using equation (21), the simplest optimization alton is
now as follows:
1- Generate the setof all plans of the query.
2- Forallp O 2, computeC(p).
3- If C(p) > 1, insert drop boxes ip using the algorithm of

Section4.2.1.

4- ComputeR(p).
5- Returnp that maximize&(p).]

The complexity of the above algorithm
combinatorial in the number of input streams bgaiged. Since
the algorithm to determine the optimum settingthefdrop boxes
is linear in the number of input streams, the peoblhas, in
essence, not changed a lot from the traditionainmopation
problem of conjunctive queries for relational dat8ome
techniques should be directly applicable here ,(egandomized
algorithms, as in [15].) In the next section, wegmse a bottom
up dynamic programming optimizer, similar to thepagach in
[24], which searches the space of left deep plans.

5.2 A Heuristic Optimizer

One technique used in relational optimization tduee the
size of the search space is to confine the searchly left deep
plans. This was used by the original System R apén{24]. In
this section, we adapt the dynamic programmingnapér of
System R to search, bottom up, for the best lefpdaan for a
continuous query. The optimizer uses equation (2%) its
objective function.

At first glance, the problem looks trivial. The opizer should
treat the drop boxes as regular selection operaods proceed
with optimization normally. The catch is, unlike rnal
selections, the selectivity of the drop boxes amt known
beforehand. In fact, the selectivity of the dropxémis one output
of the optimization procedure.

The way our proposed algorithm works is by procegdis the
original System R optimizer, building the plan bott up by
storing the best plans for successively larger estishsf the input
streams. When computing the best plan for any s$ulibe
algorithm tests whether this subplan is actualbsiiele given the
resource constraints. If the plan is infeasible, dlgorithm tunes
the values of the drop boxes placed at its inpeasts using the

is obviously

load shedding algorithm. The subplan is then stositti the
settings of its drop boxes. At the next stage whens
reconsidered, the stored settings of the drop baxegaken into
account as if the drop boxes were normal filtdrat Bny stage the
algorithm places a drop box in front of a streamiciwhhad
another one from a previous round, the two are doacbinto one
drop box whose selectivity is the product of thigioal two.

The astute reader will notice that we have reliadtlee same
optimality principal employed by the System R optien; namely
that the best plan to join a subset of the streafrsizek+1 in
which streamk+1 is the last one to join is the plan that joins
streamk+1 with the best subplan joining the other k streath
can be shown that the optimality principal holdgh# query has a
feasible left deep plan. The algorithm is guarashteearrive at the
best feasible left deep plan for the query if axigts. If the query
is infeasible, however, this is not necessarilg trtihis is why we
call it a heuristic, since the algorithm is not gardeed to arrive at
the best plan which maximizes throughput if no itdasplan
exists. We can intuitively argue though, that theurdstic will
perform well in most cases. The reason is, it posg the
decision for dropping tuples until the latest pbkesiround and
progressively adjusts the values of the drop baxaly when
needed.

We test the performance of our optimizer in thetsextion.

6. EXPERIMENTAL EVALUATION
In this section we discuss a number of experimeéesigned to
study the following points:

1- We have shown by example that reoptimization wiead |
shedding is necessary can be better than stickitly tive
lowest utilization plan. The question is: Was thist an
artificially constructed pathological case, orhigstsomething
that occurs often enough that it is worth payirigrgton to?

2- We study the benefits of reoptimization when lohddgling
is necessary. In particular, we answer the questitow
much do we lose if we shed load from the lowedization
plan and ignore reoptimization?

3- We validate the effectiveness of the heuristic rojzer
developed in the previous section.

We limited the search space throughout the studlyabof left
deep plans.

Table 2. Fixed parameters for the
randomized queries.

fams 0.2 A 100
farc 0.5 W 300
famo 0.1 We 500
fore | 0.001 | Wp 400
We 1000
6.1 Setup

For all experiments, we generated 1000 random mootis
queries with tuple-based sliding window joins. Eaghery
represents a join of five input streaming source8AC, D, and
E. For all queries, the window sizes and join dalgies were
fixed, while the rates of the input streams wemdoanly picked
uniformly from 10 to 1000 tuples/sec. We tried s@ne set of
experiments with different values of the join sélétes and

Percentage needing reoptimimzation

i SESSESEE S

1% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Available processing r as a percentage of saturation r

Figure 7. Percentage of queries benefiting from
reoptimization.

window sizes but found the general trends in osults to be
relatively insensitive to these changes. Table Atains the
settings used for the fixed parameters.

As in Example 1 above, we assumed that the joihperstuple
is fixed. This enables the characterization of aystesources to
be represented only by this single value. Usinge&haustive
optimizer that searches the space of left deep splame
determined for each query the plan with the lowestource
utilization. Then, we found the join cost per tuplewhich the
query becomes infeasible. We call the inverse @ tralue
(measured in tuples/sec) tlsaturation resourceswhich means
that at this capacity, the system becomes saturatésl then
gradually increased the join cost and took measemn¢snat 1%
decrements of the saturation resources (e.g., af shturation
resources are 1000 tuples/sec, we measured at recesou
decreasing by 10 tuples/sec.) At each of these tpoiwe
optimized each query using the exhaustive optimittean again
with our heuristic optimizer. We report our findsigt 100% of
saturation resources then decreasing by 10% urih lof
saturation resources, then finally at the 1% les#lthe reported
results are based on the predictions of our cosdeinof the
performance of the query plans.

6.2 The Need for Reoptimization

In this experiment we measured for every examiresel| of
system resources, the percentage of queries wigickfibed from
reoptimization (i.e. the lowest utilization plan ot the best
choice for load shedding.)

690%

o
@
3

H
3
\

=
N
]

N
N
S

Average gain (%)
[N

x B

8 8

2
3
|

5
8
|

N
S

.

1% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Available processing resources as a percentage of saturation resources

Figure 8. Average gain in throughput over using théowest
utilization plan.

Figure 7 shows the results of the experiment. Titodability
that a plan would need reoptimization rises alntiogtarly with
decreasing system resources. At about 60% of dsmara
resources, a plan will more likely than not needptanization.
The curve flattens at around 30% of saturation uess, after
which, it is almost certain that reoptimizatiorbistter.

We then measure the tangible benefits of reoptitoiza At
each examined resource level, we compute for eaehyqgthe
throughput after load shedding for the best lefepd@lan with
drop boxes. We then compute the throughput of theest
utilization plan after load shedding. We compute tfain as the
ratio between the difference of the two throughgund the lowest
utilization throughput (i.e., a gain of 100% medhat the best
plan delivers twice the throughput of the loweslizstion one.)
We then compute the average gain for all queries.

From Figure 8, at very low resources, the gain &yv
significant (almost 8 folds at the 1% mark.) Sigrahce drops,
however, as more resources become available. A6@P& level,
when there is more than a 50% chance of havingdugment,
the average gain is about 4%.

To check the effect of dilution from the queriesttididn’t
need reoptimization, we repeated the previous é@xget but
computed the average gain only among the querashnefited
from reoptimization. We also report, at every reseuevel, the
max gain attained. The results are shown in Fi§u#es expected,
the most notable difference between the two averages when
available resources are near the saturation |8taiting from the
50% level, most of the plans benefit from reoptatiiazn and there
is no notable dilution effect. The figure also depithe maximum
gain measured at each level of resources. As ressutecrease,
the ratio between the maximum and the average giéso
decreases. Near the saturation resources level, gdie is
negligible for most queries needing reoptimizatibat it makes a
huge difference for the worst case. With decreas#sgurces, the
benefit of reoptimization becomes more distributadong all
queries.

6.3 Testing the Heuristic Optimizer

Our final experiment is designed to gauge the #ffecess of
the heuristic optimizer developed in Sect®R2. To accomplish
this, at every examined level of resources, wenupéd every
query using our optimizer. Then, for every querg eomputed
the difference in the value of the objective fuantbetween the
plan found by the optimizer, and the best one aeduihrough
the exhaustive search. The ratio between thisrdiffee and the
best value is the relative error of the optimizer this query.

6619% 690% 803% 364%
220 q

B Max Gain
O Average Gain

200

180

160

140

120

Gain (%)

100

80

60

40

20

oA
1% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Available processing resources as a percentage of saturation resources

Figure 9. Average and maximum gain.

28%

Relative error (%)

0:7 . I:II:I—’_DDE

1% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Available processing resources as a percentage of saturation resources
Figure 10. Average relative error for the optimizer

From Figure 10, it is clear that, except at veny l@sources, the
performance of the heuristic optimizer is quite iegsive. At the
1% mark, the worst case, the average error was E8%all other
scenarios, the average error never exceeded 0.2%.tHe

experiments that we have conducted, the error veagsrnmore
than 100%, which means that the best throughputhferquery
was always within a factor of 2 of the optimizepisk.

7. RELATED WORK

The existence of applications built on streaminfprimation
motivated building specialized systems to manageasting data.
Among the recent examples are: Niagara [9], STRERY],
Aurora [1], and Telegraph [28]. The survey in [Bhtains a good
documentation of earlier models and systems theadlao targeted
at such applications, together with a number aidssrelated to
building a data stream management system. Senswonke and
databases (e.g., TinyDB [21] and the Cougar [3djgut) are also
closely related.

The seminal work of [24] introduced a framework for

optimization of relational queries aimed at minimg query
completion time. NiagaraCQ [9] aims at addresshegscalability
of a system supporting a large number of continuquesries by
grouping predicates and queries together. The woj&][10][22]
uses similar techniques by extending the earlietkvem eddies
[4] to support multiple concurrent continuous qasri The
difference between this body of work and ours & they are all
dynamic optimization methods that adapt at run timehanging
data and query characteristics; they do not dedh wiatic
optimization.

The Aurora system [1] treats multiple streamingrses and
multiple output queries as data flows between dpesaboxes)
that are input by the user. The queries in Auroeacamposed by
the user through an interface, and then the systamages them
with little, if any, modification. Similarly, the ark on scheduling
operators in [6][12] deals with scheduling operatof a static
plan to minimize resource usage or response timéerent
problems related to scheduling and static resoaliogation are
reported in [23] together with a brief discussidrsolutions. The
assumption in such work is that a query optimizas hlready
arrived at aestplan.

The work in [31] advocates moving from cardinaligsed
optimization to rate-based optimization and prosidemodel for
a rate-based optimizer. Such work is geared towapdisnizing
queries over finite streaming sources, or shokdigueries on
infinite streams. It does not model the effect lafisg windows
for continuous queries over infinite sources. Therkwin [32]

provides a symmetric multi-join operator for muléipjoined

streams to minimize memory usage as opposed tg usitdtiple

binary join operators. Also close is [26] in whithe authors
provide a queuing model for distributed eddies. @rtieresting
result provided is that sometimes no single plathésbest if the
goal is to achieve the maximum input rate before $gstem
saturates. A combination of plans running concdlyerach with

some share of the input load is proven to be beTiee subtle
difference between this work and ours is that guases the
operators are running on different processors, di@ach has its
fixed resources. Our work assumes all operatorsesagool of
resources. In this case, one plan is always better;one our
framework optimizes for. An interesting directioromid be to

look at how an optimum plan can be distributed owertiple

processors if operators are allowed to be duplicate the

different processors.

A lot of work dealt with providing partial answer®
continuous queries. In [23], the authors survey umimer of
methods to arrive at a partial answer, among wigchandom
sampling (i.e., random dropping of tuples) discdskere. The
work in [25] provides algorithms for placing dropxes to reduce
resource usage. It explores both random and semfiliring.
The work in [7] also deals with the optimum placeinef random
filters for multiple aggregation queries sharingergiors and
resources over data streams. The difference betttiéeibody of
work and ours is that it does not explore the éftéamodifying
the query plan to achieve better results. The wiork[19]
discusses single join approximation using randoopslin case of
either memory or computational resource shortagdsth. This
work extends that by studying the problem of insight
computational resources for multiple joins. Alsosg to our work
is [11], in which the authors study the problemmaiximizing the
result size of a single sliding window join in casé memory
constraints by smartly selecting tuples to dropm@stic load
shedding [1].) There is a brief discussion abouemding the
work to multiple joins and to deal with resourcenstaints. In
this work, we deal with computational resource tests, and
multiple window joins. A comparison between our heique
extended to handle smart load shedding and thiésextension
to multiple joins and resource constraints is aeotihteresting
direction.

8. CONCLUSION AND FUTURE WORK

In this paper, we proposed a framework for stagittnaization
of sliding window conjunctive queries over infinisgreams. We
illustrated the constrained nature of the optiniraproblem and
proposed different goals for the optimization witemputational
resources are sufficient and when they are tigha.d&veloped a
cost model to estimate the average resource titilizand output
rate of a query plan. Using the model, we studiedgroblem of
how to optimally shed load from a query by randomitgpping
tuples such that the final output rate is maximizatfe
demonstrated that the intuition suggesting thatplaa to shed
load from is the same plan that is selected whepurees are
sufficient is often times incorrect. We then progosan
optimization algorithm that integrates resourcestiints into the
optimization process. Finally, we analyzed the nefedl
reoptimization when resources are insufficient. &l&o analyzed
the effectiveness of the proposed optimization rtigm.

In developing a solution for the problem, we hawedmsome
simplifying assumptions. There are a nhumber ofriutirections

to be explored by relaxing those assumptions. Wee ha

considered the optimization of single isolated trserin reality,
streaming systems are envisioned to handle multiplecurrent
queries, often with significant overlap in theiguirements. In
this scenario resource sharing between queriesnsust. This
makes multi-query optimization an immediate extensio our
work.

We have also focused on modeling the average sttatiyrate
of arrival for data streams. It might be more iagting to consider
the effect of the variance of the rate around itsrage on the
different query plans.

It is an interesting extension to this work to istigate
semantic load shedding, in which tuples are smadtlypped
based on their data values. It is not clear if dmults presented
here will hold for the semantic load shedding case.

To answer the question of when to use static oranyo
optimization, models for both the overhead of adhaitity and the
change in data characteristics are needed to determhich
situations each technique is more beneficial at,\alnen it would
be better to use a hybrid scheme of the two.

Finally, a feasible plan that is close to 100%iz4tion can still
have a large response time and buffer requirem@tile there is
a quick fix to this situation in our model by résting the actual
resources to leave more head-room for the systenavtnd
approaching saturation, a better approach wouldtiobeise a
queuing model to optimize directly for response etimnd
buffering requirements.

REFERENCES

[1] D. Abadi, D. Carney, et al. Aurora: a new model
architecture for data stream maaagnt. The VLDI
Journal, Vol.12(2), pp. 120 — 139, 2003.

[2] A. Arasu, B. Babcock, et alCharacterizing Memo
Requirements for Queries over Continuous Data B
ACM PODS, June 2002.

[3] A. Arasu, S. Babu, J. WidonThe CQL Continuous Que

Language: Semantic Foundations and Query Execution

Technical Report, Department Sadsnc

Stanford University, October 2003.

[4] R. Avnur, J. M. Hellerstein. Eddies: Continuouslgaptive
Query Processing. SIGMOD, May 2000.

[5] B. Babcock, S. Babu, et al. Models and Issues éate
Stream Systems. PODS, June 2002.

[6] B. Babcock, S. BahuM. Datar, R. Motwani. Chai
Operator Scheduling for Memory Minimization in C
Stream Systems. SIGMOD, June 2003.

[7] B. Babcock, M. Datar, R. MotwaniLoad Shedding ft
Aggregation Queries over Data Streams. ICDE 2004.

[8] S. Chandrasekaran, A. Destnde, et al. TelegraphC
Continuous Dataflow Processing for an Uncertain M/
CIDR, January 2003.

[9] J. Chen, D. J. DeWitt, F. Tian, Y. WanbliagaraCQ: /
Scalable Continuous Query System for Internet Dteb.
SIGMOD, May 2000

[10] S. Chandrasekan, M. J. Franklin. Streaming Queries ¢
Streaming Data. VLDB 2002.

[11] A. Das, J. Gehrke, M. Riedewald, Approximate
Processing Over Data Streams. SIGMOD, June 2003.

of Computer

[12] M. A. Hammad, M. J. Franklin, et al. Scheduling $bare:
window joins over data streams. VLDB 2003.

[13] P. J. Haas and J. M. Hellerstein. Ripple JoinsGatine
Aggregation. ACM SIGMOD, June 1999.

[14] J. M. Hellerstein. Optimization Techniques for Qasrwitr
Expensive Methods. TODS 23(2), pp- 113-157, 1998.

[15] Y. loannidis and Y. Kang. Randomized Algorithms
Optimizing Large Join Queries. SIGMOD, May 1990.

[16] T. Ibaraki, T. Kameda. On the Optimal Nesting Orfl
Computing NRelational Joins. ACM Transactions
Database Systems, Vol. 9, No. 3, September 1984.

[17] Z. Ives, D. Florescu, et al. An Adaptive Query Ex#m
System for Data Integration. SIGMOD, June 1999.

[18] N. Kabra, J. DeWitt. Efficient MidQuery Reoptimization
Sub-Optimal Query Execution Plans. SIGMOD, June3199

[19] J. Kang, J. F. Naugbn, S. D. Viglas. Evaluating Windc
Joins over Unbounded Streams. ICDE 2003.

[20] E. D. Lazowska, J. Zahorjan, G. S. Graham, K. G/cig¢
Quantitative System Performance, Prentice Hall4198

[21] S. Madden, M. Franklin, J. Hellerstein, Wong. The
Design of an Acquisitional Query Processor for Se
Networks. SIGMOD, June 2003.

[22] S. Madden, M. Shah, et al. Continuously Adag
Continuous Queries over Streams. SIGMOD, June 2002.

[23] R. Motwani, J. Widom, et al. Query Process
Approximation,and Resource Management, in a Data St
Management System. CIDR, January 2003.

[24] P. Selinger, M. Astrahan, et #ccess Path Selection ir
Relational Database Management Syst&SIGMOD, Ma
1979.

[25] N. Tatbul, U. Cetintemel, et aLoad Shedding in a De
Stream Manager. VLDB 2003.

[26] F. Tian, D. J. DeWitt. Tuple Routing Strategies
Distributed Eddies. VLDB 2003.

[27] The Linear Road Benchma
http://www.cs.brown.edu/research/aurora/linear-rpdfl

[28] The Telegraph Project. http://telegraph.cs.berkethy

[29] The Stanford Stream Data
http://mwww-db.stanford.edu/stream.

[30] T. Urhan, M. J. Franklin, L. Amsaleg. Cost Based @
Scrambling for Initial Delays, SIGMOD, May 1998.

[31]S. D. Viglas, J. F. Naughton. R&Based Quel
Optimization for Streaming Information Sources, BIGD,
June 2002.

[32] S. Viglas, J. F. Naughton, Burger. Maximizing the Outp
Rate of MultiWay Join Queries over Streaming Informa
Sources. VLDB 2003.

[33] A. N. Wilschut, P. M. G. Apers. Dataflow Query Exéon
in a Parallel Main-Memory Environment. PDIS 1991.

[34] Y. Yao, J. E. Gehrke, QueBrocessing in Sensor Netwol
CIDR 2003.

Manager.

