Incremental Mining of
Constrained Association Rules

*

Ahmed Ayad’, Nagwa El-Makky~ and Yousry Taha™

Abstract

The problem of mining association rules has attracted a lot of attention in the
research community. Several techniques for efficient discovery of association rules
have appeared. However, it is nontrivial to perform incremental mining or efficient
mining of constrained association rules, in spite of their practical benefits. The
research community has recently focused on providing separate solutions for these
two problems.

Since many believe that constrained mining will be the standard, incremental
mining of constrained rules will be necessary. In this paper, a new algorithm, /CAP,
for incremental mining of constrained association rules is introduced. The concept of
constrained negative border is also introduced and its usage for the maintenance of
constrained association rules when new transaction data is added to a transactional
database is proposed. This fast incremental mining technique is applied to the
constrained association mining algorithm CAP. A key feature of the proposed
algorithm is that it requires at most one scan of the original database only if the
database insertions cause the constrained negative border to expand. Thus the speed-
up of incremental mining is combined with the flexibility of the framework of
constrained frequent-set queries, CFQs, used for specifying user constraints on the

Computer Sciences Department, University of Wisconsin — Madison,
ahmed@cs.wisc.edu. Work done when author was in graduate school, Faculty of
Engineering, Alexandria University, Alexandria Egypt.
™ Computer Science Dept., Faculty of Engineering, Alexandria University, Alex.,
Egypt, nagwamakky@hotmail.com.
™ Computer Science Dept., Faculty of Engineering, Alexandria University, Alex.,
Egypt, yousry taha@hotmail.com.

produced association rules. The correctness of the proposed algorithm is studied and
a proof of it is given.

Several experiments were conducted to measure the relative performance of the
new algorithm compared to the single alternative approach available so far, which is
rerunning the CAP algorithm on the whole updated database. The results of the
experiments show a significant improvement over rerunning CAP in almost all of the
cases.

Key words: Data mining, association rules, incremental mining, constrained
frequent-set queries.

1. Introduction

Since its first introduction in [2], mining association rules has been a hot topic in
the data mining research community. Several algorithms were introduced to solve the
problem [3, 4,7, 10, 18, 22, 24, 27, 28]. However, it was not until its first
introduction in [11] that the problem of incrementally mining associations began to
attract attention. Since then, several proposals to solve the problem appeared [6, 12,
17, 21, 26]. Those proposals serve to optimize the discovery of the new frequent
itemsets after a non-trivial update of the database. Parallel to those efforts,
constrained mining of association rules was also investigated on several levels. Such
investigations can be found in [8, 15, 16, 20, 25]. In an interactive mining
environment, it becomes a necessity to enable the user to express his interests
through constraints on the discovered rules, and to change these interests
interactively. In [20], Ng et al. presented a new model for exploratory mining of
association rules to enable true interactive mining through ad-hoc queries that specify
several constraints of different types. The problem of constrained rule mining is how
to integrate the constraints into the core of rule generation to avoid generation of
unnecessary rules earlier. In the same paper, Ng. et al. introduced the notion of anti-
monotonicity and succinctness of a constraint by which the constraint can be pushed
deeply into the algorithm of mining association rules. They also introduced the
concept of constrained frequent-set queries (CFQs).

It can be seen that the research community has proposed separate solutions for the
incremental mining and the constrained mining problems. However, incremental
mining of constrained association rules is motivated by the fact that soon, constrained
mining of associations will be the standard and methods will be needed to maintain
the discovered rules after database updates [6]. In this paper, we present a new
algorithm called /CAP (Incremental Constrained APriori) for incremental mining of
constrained association rules. This algorithm incorporates the benefits of fast
incremental mining into the framework of constrained frequent-set queries (CFQs).
We introduce the concept of constrained negative border and apply it in the context
of CFQs. The proposed algorithm requires a full scan of the whole database only if
the constrained negative border expands. The new algorithm is based on the fast
incremental mining algorithm in [26] and the constrained mining algorithm CAP in
[20]. Thus, it combines the speed-up of fast incremental mining with the flexibility of
the framework of CFQs.

The rest of the paper is organized as follows: section 2 presents the bases on
which the proposed algorithm is built. Section 3 gives a formal description of the
problem. It defines the constrained negative border and proves that this border is an
indicator for the necessity of checking the original database. Section 4 presents the
new algorithm in detail and gives a descriptive example. Section 5 deals with the
method by which the constrained negative boarder is calculated. Section 6 gives a

detailed performance study for the proposed algorithm. Finally, section 7 concludes
the paper.

2. Foundations of The Proposed Algorithm

This section presents the previous theoretical foundations which form the bases
on which our proposed algorithm is built. These bases include the theoretical
foundations of the two problems of constrained and incremental mining of
association rules. We begin by formally defining association rules. Then we move on
to a brief discussion of constrained mining of association rules in which we present
the concept of constrained frequent-set queries (CFQs), the anti-monotonicity and
succinctness properties of constraints and the optimizations using these properties.
Finally, a description of the incremental mining problem and a formal definition of
the concept of the negative border are given.

2.1 Association rules

Let ltem = {il,iz,...,im} be a set of literals called items, DB be a database of
transactions where each transaction 7 < Iltem and has a unique identifier, 7ID.
Given an itemset X < Item , X is contained in T iff X < T . An association rule is an
implication of the form S, = S, where both S, (rule antecedent) and S. (rule
consequent) are itemsets and S, NS, =® . A rule has support s iff s% of the
transactions in DB contain S, US.. A rule has confidence ¢ iff ¢% of the
transactions containing S, also contain S, U S, . An itemset is frequent iff its support
exceeds a certain support threshold minsup.

2.2 Constrained mining of association rules

2.2.1 Constrained Frequent-set Queries (CFQs)

Following the definition in [20], a CFQ is defined to be a query of the form:
{(SQ,SC XC }, where C is a set of constraints on S, and S. (rule antecedent and rule

consequent respectively). The syntax of constraint constructs is detailed in [20].
Assuming that the minable view consists of the relations trans(TID,
Itemset) and itemInfo(Item, Type, Price), some examples of CFQs

are as follows: The query {(Sl,Sz)|c0unt(S2): 1& count(S,) = 1} asks for all pairs
of single items satisfying frequency constraints. The query
{(S, .S,) | S,.Type o {snacks, sodas}& S,.price > 30} asks for itemsets in the

antecedent of the rule, which contain at least one snack item and one soda item, that
are associated with itemsets that contain items with a price of at least $30. Finally,
{(Sl s S2)| S Type < {snacks}& S, Type {beverages}& max(Sl. price) < min(Sz. price)}
finds pairs of sets of cheaper snack items and sets of more expensive beverage items.
In all the examples, the domain and frequency constraints (those stating that itemsets
should belong to the universal set /fem and that they should be frequent) are omitted
for brevity and are assumed to exist by default.

Constraints in [20] were divided into 1-variable constraints (those constraints
concerning only one set variable, as in the first and second examples) and 2-variable
constraints (those relating two set variables, as in the third example). In this paper,
however, focus is only on 1-variable constraints.

2.2.2 Anti-monotone and succinct constraints

The constraints were also classified according to two orthogonal properties; anti-
monotonicity and succinctness. Informally, an anti-monotone constraint is a
frequency-like constraint, meaning that it satisfies the same closure property of the
support constraint, which states that if an itemset satisfies the constraint, then all its
subsets will do. An example would be to require that the minimum price of any item
in the itemset exceeds $30. A succinct constraint, on the other hand, is a constraint
having the property that all itemsets following it can be generated, using some
member generating function (MGF), once and for all before any iterations take place.
An example of a succinct constraint would be to require that the itemset should
contain at least one ‘soda’ item. Clearly, one can generate all such itemsets without
any counting of the transactional database. The importance of this classification lies
in that one can exploit both properties while trying to discover frequent sets that
follow the constraints. This gives a great advantage over the naive approach of
counting the frequent sets first and then filtering out those which do not follow the
constraints.

The optimization strategy for anti-monotone constraints in CAP [20] is similar to
that used in Apriori [4] for the support constraint (which is also an anti-monotone
constraint). This means that the candidate itemsets are generated in the same way as
in Apriori; i.e., if a candidate set does not satisfy the anti-monotone constraint it is
discarded from further counting and generation of candidates. For succinct
constraints, CAP used the member generating functions to avoid the generate-and-
test environment of other types of constraints. The MGF ensures that all the itemsets
generated are known to satisfy the constraint.

For a complete description of the CAP algorithm and its optimization strategies
the reader is referred to [20].

2.3 Incremental Mining of Association Rules

In their paper [11], Cheung et al. introduced the problem of incrementally mining
association rules according to the support-confidence framework. Cheung et al. stated
that maintenance of frequent itemsets involves searching for two kinds of itemsets:

a- Losers: frequent itemsets that became infrequent after adding the increment data
to the database.

b- Winners: infrequent itemsets that became frequent after adding the increment data
to the database.

Cheung et al., proposed the FUP (Fast UPdate) algorithm to solve the problem. It
is based on the Apriori algorithm and requires O(n) passes over the database, where n
is the size of the maximal frequent itemset. Since the introduction of FUP, several
proposals to solve the problem appeared, e.g. [6, 12, 17, 21, 23, 26].

We will include, without proof, the important lemmas cited in [11] upon which FUP
and virtually all other incremental mining algorithms are based. Table 1 summarizes
the notations used henceforth.

Lemma 1
An infrequent itemset S in DB can become a winner in the updated database (DB+)
only if it is frequent in the increment database db (i.e. only if S e L%). a
Lemma 2

Let S be an itemset. If S € L? and S € L% then S e L5, Q

DB The original database

Db The increment database

DB+ The updated database

|A| Number of transactions in database A

minsup Minimum support threshold

C A constraint on association rules

cs The candidate set of size k. The superscript ¢ (if present) represents a
constraint C

Cteq» Cam, | The frequency, anti-monotone, succinct and succinct-anti-monotone

Cauce> Ciam components of the constraint C respectively

C-C, The components of the constraint C excluding the component x,
where x stands for succ, am or freq.

Lf The set of frequent itemsets in database 4. The subscript ¢ (if
present) represents a constraint C

‘) (s) Support count of itemset s in database 4

Table 1: List of used notations

The first lemma is the most important one since it greatly restricts the number of
the candidates that need to be checked against the original database, which is the
most demanding task of the whole process with respect to time and resources.

The BORDERS algorithm [13, 26], developed simultaneously by Thomas et al.
and Feldman et al., is a novel and creative algorithm that uses the concept of the
negative border introduced by Toivonen in [27] to indicate whether it is necessary or
not to check any candidate against the original database. The contribution is that the
algorithm introduced needs at most one scan of the original database to update the
frequent itemsets. Since this is closely related to our work, we include the definition
of the negative border [26, 27].

Definition 1: Negative border (NBd(L)) of a set of frequent itemsets L

Given a collection L < P(R) of sets, where P(R) is the power set of R, closed with
respect to the set inclusion relation, the negative border NBd(L) of L consists of the
set of minimal itemsets X © R not in L. a

The algorithm in [13, 26] maintains information about the support of frequent
itemsets in the original database along with the support of their negative border. An
important result cited in [26] is that if any itemset is to become a winner in the
updated database, it follows that some itemset formerly in the negative border will
also become a winner. This means that the negative border becomes an indicator for
the necessity of looking for winners in the original database. If no expansion happens
to the border, then we do not need to scan the original database. This result is
formulated in the next theorem [26], which we include without proof.

Theorem 1
Let S be an itemset, S e L?2* & S ¢ LP? U NBd (LDB), then there exists an itemset ¢

such that t< S,te NBd (LDB)&t e LPB* _ That is some itemset has moved from
NBdA(L"®) to LP*. Q

3. Incremental Mining of Constrained Association Rules

In this section, the required formal description of the tackled problem is set.
Section 3.1 defines the problem of incremental mining of constrained association

rules in the context of CFQs. Next, section 3.2 defines the proposed constrained

negative border to be used in this context. Then the proof that the new constrained
border is a valid indicator for the necessity of checking the original database after
adding transactions is given.

3.1 Formal problem definition
In the context of constrained frequent-set queries, the problem of incremental
mining of association rules can be restated as follows: let LLD,B be a set of frequent

itemsets in a database DB that satisfies a certain constraint C defined by some CFQ.
After some update of the database, another set of transactions db is added to DB to

get the updated database DB+. It is required to discover the new set LLD,B+ of

frequent itemsets that satisfies the same constraint C in the updated database.

As mentioned before, the concept of the negative border proved useful in the
problem of incremental mining of association rules. The challenge is to try to adapt
the concept of negative border for CFQs. It can be noticed that the negative border as
defined before represents the candidate itemsets counted by the Apriori algorithm
that turned to be not frequent. This may give an insight to use the same sets counted
by the CAP algorithm but found small, as the new negative border. This leads to the
following definition of the new negative border, which is named the constrained
negative border.

3.2 The constrained negative border

Definition 2: Constrained Negative Border CNBd(L_) of a set of constrained frequent
itemsets L,

The constrained negative border of a set of frequent itemsets L., satisfying a
constraint C, henceforth referred to as CNBd(L,) is defined as follows:

CNBd(L,)= {S‘ | Sis an itemset satisfying only C—C 4,

&S'cS=S8"€L, orS'doesnotsatisﬁ/wa}

Informally, the constrained negative border consists of all the itemsets that are not
frequent but have all their subsets (of which their frequencies are known) frequent.
The reason for our uncertainty is the generate-only paradigm of succinct constraints
which leaves us with no knowledge of the frequency of itemsets which do not satisfy
the constraint since they are not generated from the first place. Just like strategy II of
the CAP algorithm, if an itemset in the border has such a subset, it is given the merit
of doubt by assuming it to be frequent.

Given that the normal negative border was an indicator for the necessity of
checking the original database for winners, it seems natural for the constrained
negative border to play the same role. The original negative border possessed the
property of having all its members minimally small, meaning that all their proper
subsets are frequent. In the context of CFQs, the same concept can be generalized to
include all anti-monotone constraints. But since succinct constraints do not posses the
same closure property, it is not guaranteed that all proper subsets satisfy the
constraint. The following lemmas, which we include without proof for the lack of
space, help better understand the succinct constraints. They clear the way for the
proof of the next theorem, which states that the constrained negative border is still

Q

indeed an indicator for checking the original database. The proof of the following
lemmas and Theorem 2 can be found in [5].

Lemma 3
Let C be a succinct constraint with an MGF M defined as follows:

M=, 0 UX, X, co, (lem\I<isn&Ik<n: X, #¢1<j<kf Tt i
assumed, without loss of generality, that the satisfying sets of the selection predicates
(o, 's) of M are all disjoint for 1 <j < k. Let S be an itemset satisfying C. It follows

that |S| > k where k is as defined in M. Q

In other words, k is the lower bound of the size of any itemset that satisfies the
succinct constraint. If the X;’s were not disjoint, this means that there might be an
item included in the satisfying set of two or more selection predicates. We then have
a lower bound than k for the size of an itemset satisfying a succinct constraint. This
lower bound, m, is between 1 and &. This will not affect the result of the lemma.

To see the result of this lemma, consider the following simple example. Referring
to the example database of Figure 1, let C be the succinct constraint
S.Type o {snack, Soda}. The MGF of this constraint is:
M= {Xl VX,UX3| X, co, (Item),X, =P, X, # ¢} where p, :(Type :'soda‘),
Py = (Type :'snack'), and p; = (Type #'soda'AType ;t'snack‘). The value of k& here
is 2. The lemma simply states that any itemset satisfying the constraint should have
at least 2 items. This is clear since a satisfying itemset must contain both a ‘snack’
and a ‘soda’ item (this is of course assuming no single item is both a ‘snack’ and a

‘soda’ item at the same time). For the example database, those minimum sized
itemsets satisfying the constraint are the itemsets BC and BF.

trans
TID Itemset
itemInfo 1 A B
Item Type Price 2 A B C
A Dairy 10 3 B C E
B Soda 20 DB C D F
C Snack 50 5 B E
D Juice 30 6 A
E Candy 25 7 B
F Snack 45 8 |A B C F
db 9 A E
10 A B C D E
Figure 1: An example database
Lemma 4

Assuming k is as defined in the MGF of Lemma 3 and a general constraint C. All
itemsets of size k satisfying C-Cj,, are in L, W CNBd(L,). Furthermore, all itemsets
of size k+1 satisfying C-Cj., and having all their k-sized subsets which satisfy Cg,c.
in L.are in L. v CNBd(L,). a

To see this by example, consider the same constraint S.7Type o {snack, soa’a}. As

discussed after Lemma 3 the set of itemsets of size 2 satisfying the constraint is {BC,
BF}. It is clear that both itemsets should be in L, U CNBd(L.). Now, consider the
itemset ABC. It sure satisfies the constraint, however, all its proper subsets except BC
do not satisfy the constraint. Assuming BC is in L., if ABC is frequent then it is in L.

Otherwise, it would be in CNBd(L. by definition since its only proper subset
satisfying the succinct constraint is in .. Hence, ABC is in L. W CNBd(L,).

The previous lemma sets a lower bound on the size of itemsets in the constrained
negative border.

Lemma 5

Let C be a succinct constraint with an MGF M similar to that defined in Lemma 3 ,
and let S be an itemset satisfying C. If |S| > k, where & is as defined in M, then 3t S
such that ¢ satisfies C. a

Informally, the previous lemma states that any itemset satisfying the succinct
constraint with a greater cardinality than the minimum cardinality set by Lemma 3
will have a proper subset of it that also satisfies the constraint.

To see this by example, consider the same constraint and example database. We
know that the minimum sized itemsets satisfying C are {BC, BF}. Consider the
itemset ABC, it has exactly one soda item, ‘B’, and one snack item, ‘C’. Then, it has
the itemset set BC as the required proper subset satisfying the constraint.
Furthermore, consider the itemset BCF which also satisfies the constraint. Here, there
are more than one item of type ‘snack’, namely ‘C* and ‘F”. This makes both BC and
BF qualify as the required proper subsets.

The previous results clear the road for proving the next theorem.

Theorem 2
Let S be an itemset, SeL”®* and S ¢ L?® UCNBd (L?B), then there exists an

itemset ¢ such that t = S, t € CNBd (L?B)and te PP, Q

The previous theorem proved that the constrained negative border is playing the
same role played by the normal negative border in [26]. This result will be employed
in the proposed algorithm /CAP. ICAP uses the CAP algorithm to discover the initial
set of constrained frequent itemsets along with its constrained negative border and
assumes that the support count of each itemset in both sets is kept in the database.

4. The Proposed Algorithm ICAP (Incremental Constrained
APriori)

Before proceeding with the description of the algorithm it should be noted that
only updates of the transactional database is taken into consideration (i.e. no changes
occur in the data describing the items). Therefore, it should be clear that adding and
removing transactions can only affect the support of an itemset and has no effect on
the satisfiability of C-Cj,,. Formally, if an itemset S satisfied C-Cj,,, before the
database update, S will satisfy C-Cj,, after the database update.

The algorithm uses as input the set of constrained frequent sets L?B of the

original database DB and the constrained negative border CNBd (LLD 5) discovered

using the algorithm CAP along with the frequencies of the itemsets in both sets.
The proposed algorithm can be summarized in the following steps:
1. Use algorithm CAP to discover all frequent itemsets following the constraint in
the increment database db.

2. Count the frequencies of the itemsets in the previously discovered set L?B along

with the constrained negative border CNBd (LfB) in the increment database db

to discover the losers and those itemsets which will remain frequent.
3. If no new itemsets qualify as candidate frequent itemsets (i.e., the border
expanded), then there is no need to rescan the original database. The new

negative border can be recomputed in a similar manner as in [26] only if losers
exist (see section 5 for the method of generating and maintaining the constrained
negative border).

4. If there are new qualifying candidates, generate the constrained negative border
closure in the same manner as in [26] and count the candidates in this closure
against the original database.

It is clear from the description of /CAP that it requires at most one scan of the
original database (done in step 4) only if the database insertions cause the constrained
negative border to expand. Expansion of the border means that there are potential
itemsets that can become winners other than those in L.\ CNBd(L,). This happens if
there exist winners that can be joined with other frequent itemsets or that can allow
other itemsets to be candidates for testing.

The fact that /CAP can exploit and use the constrained negative border makes it
superior compared to the classical level-wise algorithms. A high-level description of
the proposed algorithm /CAP is shown in Figure 3. The following theorem
establishes the correctness of ICAP. A detailed proof for it can be found in appendix
A.

Theorem 3
Algorithm /CAP is sound and complete with respect to counting all constrained
frequent itemsets in the updated database DB+. a

Figure 2: The possible intersections of L% , CNBd (LLD 5), and "

Example:
Consider a transactional database as depicted in Figure 1. Let the first 7

transactions be the original database DB and the last 3 transactions be the increment
database db. Consider the following CFQ:
{X |X Type o {soda, Snack}& min(X.price) > 20& min sup = 0.2}

The algorithm /CAP is now applied on the database to find the updated
constrained frequent sets. It is assumed that the CAP algorithm has been applied on
the original database DB. Thus the set of constrained large frequent set

% = {BC fand the constrained negative border CNBd (LCD ”): {BF ,BCD,BCE } .

Initially, CAP is run on db to get the set L ={BC,BF,BCF,BCD, BCE, BCDE}.
Referring to Figure 2, the sets of itemsets {B }, {BF ,BCD,BCE }, and
{BCF ,BCDE} correspond to those in regions 1, 2, and 4. Region 3 is empty since

the only frequent itemset in DB is also frequent in db. Now, BC is frequent in the
updated database. Checking items in the negative border, we have BCE only moving
from the negative border to the updated set of frequent itemsets. Before checking for
the itemsets in region 4, we check the constrained negative border expansion. Since,
moving BCE into the frequent sets does not expand the negative border, we conclude
that there is no need to count the support of the candidates of region 4 in DB. Thus,

10

the final updated constrained frequent itemsets LLD,B+ :{BC,BCE} and the new

constrained negative border CNBd (LLD,B+): {BF , BCD} . a

As can be seen from the previous example, /CAP did not need a scanning of the
original database. This is a great improvement over rerunning the CAP algorithm on
the original database in terms of the number of transactions read. It would be natural
to assume that a more drastic improvement gain will be obtained for typical sizes of
databases and database increments or updates.

The operations of computing and maintaining the constrained negative border are
not as straightforward as those for the negative border in [26]. The next section
describes the problems faced when trying to compute the constrained negative border
and explains how it can be generated.

Function /CAP(L”* , CNBd (LP*), ab)

1 Compute L[C”’ using CAP

2 Count support of all items of L2% and CNBd (L? s) in db.

3 LDB+ =®

4 For each itemset s in LfB N Lfb do //itemsets still frequent

5 tops (8)=tpg(s)+24(s) /lcalculate new support count
6 OB+ — P8)

7 For each itemset s in CNBd (L?B)m L‘C”’ do //cand. of the border
8 tpp+(8)=tpp(s)*tts(s) //calculate new support count

9 If tpp+(s) > minsup * |DB+| then

10 LB = PP O s)

11 For each itemset s in (LLD B_ L%)do

12 If tg,(s) + tpp(s) = minsup * |DB+| then

13 LB = DB O s}

14 1f L2 = LD then

15 CNBd (L? B+)z constrained — negativeborder — gen (LfB+ ,C)
16 Else CNBA(L?"*)= cNBa(LP?)

17 If LP% O CNBd (L?B)¢ LPP* O CNBd (L?B+) then //scan necessary?
18 S =rIPB

19 Repeat

20 S =8 Uconstrained — negativeborder — gen(S ,C)

21 Until S does not grow

22 For each itemset s in S — L2%*

23 //count candidate itemsets against the updated database

24 If tpg+(s) > minsup * DB+ then

25 LB =[PP U s}

26 CNBd (LLD,B+): constrained — negativeborder — gen (LLD,B+ ,C)
27 Return L* OCNBA(LP")

Figure 3: A high level description of the algorithmI/CAP

11

5. Computing The Constrained Negative Border

The original border in [26] was easily produced and maintained as a by product of
the Apriori algorithm since it represents all candidate itemsets that did not pass the
counting test, which means that those itemsets are counted by the algorithm anyway.

The constrained negative border, on the other hand, does not posses the same
property. According to Lemma 4, all itemsets of minimum size that satisfy C-Cj,,
should be in the constrained border. CAP, however, does not produce and hence does
not count all those itemsets since it guarantees that all generated itemsets satisfying
C-Cjey of minimum size will have all their subsets satisfying C-Ci,. [20]. It can also
be noticed that, assuming the minimum size of itemsets satisfying C-C,, is k, all
itemsets of size k+1, having all their k-size subsets satisfying Cj,.., in L. should also
be in the constrained border. CAP, on the other hand, only counts a subset of such
itemsets.

To see this, consider the example database of Figure 1 and the succinct constraint
S.Type o {snack, soda}. From the previous discussions it is known that any

generated itemset should contain at least one item from the set {B} and at least one
item from the set {C, F} and optionally one or more other items from the whole
universal set of items. Assume that the set of frequent items was {A, B, C}.
According to strategy Il of CAP, only the itemsets BC and ABC will be generated and
counted. However, BF, BCD, BCE and BCF should also be counted, since they are
by definition in the constrained border (Lemma 4).

To work around this problem, CAP should be modified to generate and count all
the candidates belonging to the constrained negative border. This can be done as
follows:

Assuming Cj,.. is as defined in strategy II of CAP [20] and observing that such
definition makes the minimum size of an itemset, satisfying C-Cj,,, equal one (i.e.
k=1), strategy II should be as follows:

a. Define Cf =0, (Item) and C7° = o, (Item). Define corresponding sets of
frequent sets of size 1: L= {e|e eCf & freq(e)}, and
L = {e|e eCy” &freq(e)}.

b. Add Cf L to CNBd(L,).
Define C, = L] x (Lﬁ U Cf”), and L, the set of frequent itemsets in C,.

d. Add C,-L,to CNBd(L,).
Do step 3 of strategy II with no modification.

Function Constrained-negativeborder-gen(L., C)

1 Split L. into L,, L, ... , L, where L, is the set of constrained frequent
itemsets in L of size k, m and n are the size of the smallest and the largest
sets of frequent itemsets in L. respectively.

2 Use the modified strategy II in section 5 to generate all candidates of size m,
C,, (using step a) and all candidates of size m+1, C,.; (using step c),
according to the constraint C.

3 CNBd(L)= (Ly, - Cp) I L+t = Cper)

4 For £=m+1 to n-1 do

5 Use CAP to generate Cy.; from L,

6 CNBd(L.) = CNBA(L)NCir1 — Ly+1)
7 Return CNBd(L,)

Figure 4: A high level description of the function constrained-negativeborder-gen

12

The process of re-computing the constrained negative border, given a set of
constrained frequent-sets L. and a constraint C, is done by the function
constrained-negativeborder-gen(L,, C). Figure 4 gives a high-level description of this
function.

6. Performance Study

6.1 The experimental environment and performance parameters

The algorithm was implemented and tested on an IBM compatible PC with a
Pentium II ® 300 processor and 96 MB of main memory running the Microsoft
Windows 95 operating system. The program was the only major job running on the
machine throughout all the experiments to achieve a fair environment for
comparison. As for the test data, the program developed in IBM Almaden research
center was used to generate the test data (available from the IBM QUEST web site
http://www.almaden.ibm.com/cs/quest).

Number of Transactions in the updated database 400,000 (in the basic set of
experiments)

Number of Items 1000

Average Transaction Size 10

Average size of maximal potentially large itemsets | 6

Table 2: Parameter Settings

The parameter settings used for the experimental database are listed in Table 2.
Such parameters are assumed to mimic a reasonable retailing environment. They also
give the chance to explore the relative merits of the incremental algorithm. When
generating the increment database, the method in [11, 23, 26] was used. In this
method, the increment database is taken as a contiguous block from a generated set
representing the whole updated database DB+. The increment size x% means that
(IDB+|-x%) of the database is considered as DB and the remaining x% is considered
as db. The increment database was taken from the first x% transactions of the
database.

6.2 Measuring performance for different increment sizes and different
query types
As discussed in [20], there are four different categories of constraints; namely
succinct only, anti-monotone only, succinct anti-monotone and non-succinct non-
anti-monotone constraints. Representative queries of each of the four categories were
used in the first set of experiments. The set of figures Figure 5 to Figure 8 represent
the speedup of ICAP for these different types of constraints, the speedup is measured
for different increment sizes (measured as a percentage from the size of the original
database). Figure 5 shows the results when using the succinct only constraint
S.Type 2 {soda}. Figure 6 shows the results when using the succinct anti-monotone
constraint min(S.Price) > 60. Figure 7 uses the anti-monotone constraint
sum(S.Price) < 50. To test the non-succinct non-anti-monotone category of
constraints, the constraint avg(S.Price) <15 was used. Finally, Figure 8 tests the
speedup when using a hybrid constraint combining both the succinct constraint
S.Type o {soda, snack} and the succinct anti-monotone constraint min(S.Price) > 20.
The selectivity of the soda items and snack items were 5% each throughout all
experiments. The previous constraints mimic those reported in [20] for which the
CAP algorithm performed well.

13

Several observations apply generally to all the results of this set of experiments.
The results show that ICAP is superior to CAP in almost all of the cases. The speedup
also exhibits a similar pattern as reported in [26] for the BORDERS algorithm. The
justification is also the same. For high support thresholds, it is less costly to re-rum
CAP. At low support thresholds, however, there is a greater possibility for the border
to expand and for /CAP to scan the database. This is why the speedup has a global
minimum around the support value of 0.6% in all cases. The speedup also increases
for smaller increment sizes since there is less data for /CAP to process.

Several glitches appear in the figures that disobey the general trend discussed
above (e.g. the case of 0.8% minsup in Figure 5). Such abnormalities are due to the
local characteristics of the transactions in the increment, which cause the border to
expand. To eliminate the effect of the local characteristics of the data in the
increment database, the experiment for the hybrid constraint was repeated 10 times
for 10% and 5% increment sizes taking the increment block from a different part of
the database each time. Average speedup is taken for all cases. The results are shown
in Figure 9. From the figure, it can be noticed that speedup still obeys the same
general trend.

Some particular observations can be deduced for every case. For the hybrid
constraint, due to the high selective power of the constraint, the performance gain
was more drastic than all the other cases. For the anti-monotone constraint and the
succinct-anti-monotone constraint, ICAP exhibits a similar behavior with respect to
CAP as that reported in [26]. In both cases, the behavior of CAP degenerates to
Apriori. Finally, for the non-succinct non-anti-monotone constraint, it should be
noted that the constraint used will induce the weaker constraint min(S.Price) < 15
which has exactly the same constraining capability as the succinct only constraint of
Figure 5 since both constraints have the same selectivity. The extra pass required to
filter out the extra itemsets not satisfying the original constraint accounted for a
negligible amount of time with respect to the other tasks. This made the results of
Figure 5 apply also to this case.

6.3 Measuring scalability with database size

The second experiment intended to test how ICAP scales-up when changing the
database size. The database size was changed in 100,000 transactions increments
starting from 100,000 transactions until 400,000 transactions. The experiment was
conducted for the 10% increment database size to test /CAP in its worst cases. The
results of the experiment can be seen in Figure 10. It was expected that the
performance gain should increase drastically with the increase in database size since
this increases more the I/O cost of the non-incremental algorithm. The results of the
experiment, as seen from the figure, was not quite what was expected. In spite of the
general trend which shows that performance gain increases with the database size,
the recorded increase was not that significant. The reason for this is that the size of
the database file is small (18 MB in the case of 400,000 transactions) compared to the
size of the main memory. This probably enables the operating system to cache the
whole database file into main memory after the first pass. The increase in the
database size in this case did not impose a drastic difference on performance. An
interesting question arises here which is, if the whole database can be cached in
memory, from where does the incremental algorithm obtain its edge? The answer is
that, no matter what, the non-incremental algorithm wastes too much time
sequentially passing on the database many times. More drastic increase in
performance is expected for larger practical databases.

6.4 Measuring sensitivity to item selectivity

In case of succinct constraints, and from Lemma 4, the constrained negative
border requires the generation and counting of several itemsets that are known

14

beforehand to be not frequent. From section 5, to generate the minimum sized
itemsets satisfying he succinct constraint, it is required to generate the cross product
of the mandatory sets in the MGF of the constraint. The number of itemsets in the
border can be very large, especially if the cardinality of the sets involved in the cross
product is high. This places a burden on /CAP that does not exist for CAP and raises
a natural question, does the performance gain disappear for higher number of border
items?

The following experiment was designed to answer this question. The algorithms
are compared for the same succinct constraint of Figure 5 and for 10% increment size
(again to be harsh on /CAP) and the different support settings. The item selectivity
was increased from 5% to 25% (i.e. the number of soda items in this case was
changed from 5% of the whole set of items to 25%). This increased the number of
border itemsets.

The results of the experiment can be seen in Figure 11. The interesting discovery
is that JCAP still has its performance edge. This is due to the fact that, as reported in
[20], the performance of CAP itself also drops with item selectivity because it has to
count more itemsets that satisfy the constraint, and more importantly the probability
that the length of the frequent itemsets increases is highly costing it extra precious
passes over the database. This balances the deterioration in time in /CAP needed to
maintain the large number of border itemsets.

7. Conclusion and Future extensions

In this paper, a new algorithm (Incremental Constrained APriori /CAP) for
incremental mining of constrained association rules is proposed. The algorithm
applies the techniques of incremental mining in the BORDERS algorithm on the
constrained mining algorithm CAP to produce the new set of updated constrained
frequent-sets after the update of the original transactional database by adding new
transactions. In the course of developing the proposed algorithm, the concept of the
constrained negative border is introduced as the counterpart of the classical concept
of the negative border. The constrained border is proved to have the same property
as the normal border, namely being an indicator for the necessity of checking the
original database, which is the most costly operation in incremental mining. The
proposed algorithm utilizes the constrained border efficiently to maintain the set of
constrained frequent-sets. As a direct consequence of this usage, I[CAP performs at
most one pass on the original database and only when it is absolutely necessary.

Several experiments are conducted to measure the relative performance of the
new algorithm compared to rerunning the CAP algorithm from scratch on the whole
updated database. The test results show that /CAP exhibits a speedup gain in virtually
all situations. The sensitivity of the algorithm is tested for several increment sizes and
support thresholds.

A natural extension to the presented problem would be to handle the case of
deleted transactions and the exploration of the benefits of incremental mining on 2-
variable constraints. Another harder problem is to try to handle the case when the
database updates includes updating the characteristic data of the items (e.g. changing
the price of some items or changing the item type).

Recently, a number of studies appeared [1, 14, 19] that utilize clever tree
structures to compactly represent the transaction database and frequency information.
These structure allow very efficient implementations of algorithms for discovering
association rules especially for dense databases with very long frequent itemsets. It
remains to be seen how such techniques could be utilized for the incremental
discovery of constrained association rules.

15

Succinct only CFQ, T10.16.D400K

Succinct Anti-monotone only CFQ, T 10.16.D400K

50.0 40.0
450 35.0
400
30.0
350
T10% Inc. 250 m10% Inc
2300 W7% Inc. 3 m7% Inc.
3 250 05% Inc. 3§ 200 05% Inc.
& 200 03% Inc. & 03% Inc.
1% Inc. 150 1% Inc.
15.0
10.0 1
100
50 5.0
0.0 0.0
1.0% 0.8% 0.6% 0.4% 0.2% 1.0% 0.8% 0.6% 0.4% 0.2%
Minimum Support Minimum Support
Figure 5: Speed up for succinct only and non-succinct non-anti- Figure 6: Speedup for inct anti constraint
monotone constraints
Anti-monotone only CFQ, T 10.16.D400K Hybrid CFQ, T10.16.D400K
35.0 70.0
30.0 60.0
25.0 50.0
m10% Inc @10% Inc.
2200 m7% Inc. 2 400 7% Inc.
K 05% Inc. H 05% Inc.
& 15.0 03% Inc. & 300 03% Inc.
1% Inc. 1% Inc.
10.0 1 20.0
5.0 1 10.0
0.0+ 0.0
1.0% 0.8% 0.6% 0.4% 0.2% 1.0% 0.8% 0.6% 0.4% 0.2%
Minimum Support Minimum Support
Figure 7: Speedup for antimonotone constraint Figure 8: Speedup for a hybrid constraint
Hybrid CFQ, T1016D400K Hybrid CFQ, T10.16.DXK, 10% increment size
18.0 10.0
16.0 9.0
14.0 8.0
2120 o
2 6.0
2100 5
lz H 5.0
g 8o & 4ol
g
< 60 30—
4.0 2011
2.0 104—
0.0 0.0

1.0% 0.8% 0.2%

0.6%
Minimum Support

1.0%

Figure 9: Average Speedup for the hybrid constraint

Figure 10: Measuring performance for different database sizes

Succinct only CFQ, T10.16.D400K, 10% increment size

6.0

5.0 1

40 T5% sel
s 10% sel
330 015% sel.
& 020% sel

20 W25% sel

1.0

0.0

1.0% 0.8% 0.6% 0.4% 0.2%
Minimum Support

Figure 11: Measuring performance with item selectivity

16

8. References

[1] AGARWAL, R.; AGGARWAL, C.; AND PRASAD, V. V. V. 4 Tree Projection
Algorithm for Generation of Frequent Itemsets. In Journal of Parallel and
Distributed Computing (Special Issue on High Performance Data Mining), 2000

[2] AGRAWAL, R.; IMIELINSKI, T. AND SWAMI, A. Mining Associations between Sets
of Items in Massive Databases. Proc. of the ACM SIGMOD Int'l Conference on
Management of Data, pp. 207-216, Washington D.C., May 1993.

[3] AGRAWAL, R.; SHAFER, J.C. Parallel Mining of Association Rules. IEEE
Transactions on Knowledge and Data Engineering, Vol. 8§, No. 6, December
1996.

[4] AGRAWAL, R. AND SRIKANT, R. Fast Algorithms for Mining Association Rules.
Proc. of the 20th Int'l Conference on Very Large Databases, Santiago, Chile, Sept.
1994.

[5] AYAD, M. ABMED. Incremental Mining of Constrained Association Rules. Master
Thesis, Dept. of Computer Science and Automatic Control, Alexandria
University-2000.

[6] AYAN, NECIP F.; TANSEL, ABDULLAH U.; AND ARKUN, EROL. An efficient
algorithm to update large itemsets with early pruning. Proceedings of the fifth
ACM SIGKDD international conference on Knowledge discovery and data
mining (KDD’99) August 15 - 18, 1999, San Diego, CA USA pp. 287 — 291.

[7] BAYARDO, R. J. Efficiently Mining Long Patterns from Databases. In Proc. of the
1998 ACM-SIGMOD Int’l Conf. on Management of Data, pp. 85-93.

[8] BAYARDO, R. J.; AGRAWAL, R.; AND GUNOPULOS, D. Constraint-Based Rule
Mining in Large, Dense Databases. In Proc. of the 15th Int’l Conf. on Data
Engineering , pp. 188-197, 1999.

[9] BRADLEY, PAUL; FAYYAD, USAMA; AND MANGASARIAN, OLVI. Data Mining:
Overview and Optimization Opportunities. Microsoft Research Report MSR-TR-
98-04, January 1998

[10] BRIN, S.; MOTWANI, R.; ULLMAN, J.; AND TSUR, S. Dynamic Itemset Counting
and Implication Rules for Market Basket Data. In Proc. of the 1997 SIGMOD
Conf. on the Management of Data, pp. 255-264.

[11] CHEUNG, D.; HAN, J.; NG, V. AND WONG, C.Y. Maintenance of Discovered
Association Rules in Large Databases: An Incremental Updating Technique.
Proc. of 1996 Int'l Conf. on Data Engineering (ICDE'96), New Orleans,
Louisiana, USA, Feb. 1996.

[12] CHEUNG, DAVID W. L.; LEE S.D., AND BENJAMIN, KAO. 4 general incremental
technique for maintaining discovered association rules. In Proceedings of the
Fifth International Conference On Database Systems For Advanced Applications,
pp. 185-194, Melbourne, Australia, March 1997.

[13] FELDMAN, R.; AUMANN, Y.; AMIR, A.; AND MANNILA, H. Efficient Algorithms
for Discovering Frequent Sets in Incremental Databases. In Proceedings of the
1997 SIGMOD Workshop on DMKD, Tucson, Arizona, May 1997.

[14] HAN, J.; PEL J.; AND YIN, Y. Mining Frequent Patterns without Candidate
Generation. Proc. 2000 ACM-SIGMOD Int. Conf. on Management of Data
(SIGMOD'00), Dallas, TX, May 2000.

[15] HAN, J.; LAKSHMANAN, L. V. S.; NG, R. Constraint-based, Multidimensional
data mining. IEEE Computer, Special issue on data mining, August 1999.

[16] LAKSHMANAN, L. V. S.; NG, R.; HAN, J. and Pang, A. Optimization of
Constrained Frequent Set Queries with 2-Variable Constraints. Proc. 1999 ACM-
SIGMOD Conf. on Management of Data (SIGMOD'99), Philadelphia, PA, June
1999, pp. 157-168.

17

[17] LEE, S.D.; AND CHEUNG, DAVID W. L. Maintenance of Discovered Association
Rules: When to update?. In Proceedings of the 1997 ACM-SIGMOD Workshop
on Data Mining and Knowledge Discovery (DMKD-97), Tucson, Arizona, May
1997.

[18] LIN, D. AND KEDEM, Z. M. Pincer-Search: A New Algorithm for Discovering
the Maximum Frequent Set. In Proc. of the Sixth European Conf. on Extending
Database Technology.

[19] MEO, ROSA. A New Approach for the Discovery of Frequent Itemsets. In Proc.
of Data Warehousing and Knowledge Discovery, First International Conference,
DaWakK '99, Florence, Italy, 1999.

[20] NG, R. T.; LAKSHMANAN, V. S.; HAN, J.; AND PANG, A. Exploratory Mining
and Pruning Optimizations of Constrained Association Rules. In Proc of the 1998
ACM-SIG-MOD Int’l Conf. on the Management of Data, pp. 13-24, 1998.

[21] OMIECINSKI, E.;AND SAVASERE, A. Efficient mining of association rules in large
dynamic databases. In Proc. BNCOD’98, pages 49-63, 1998.

[22] PARK, J.-S.; CHEN, M.-S.; AND YU, P. S. 4n Effective Hash Based Algorithm for
Mining Association Rules. Proceedings of ACM SIGMOD, pp. 175-186, May
1995.

[23] SARDA, N. L.; AND SRINIVAS, N. V. An adaptive algorithm for incremental
mining of association rules. In Proceedings of DEXA Workshop’98, pp. 240-245,
1998.

[24] SAVASERE, A.; OMIECINSKI, E.; AND NAVATHE, S. An Efficient Algorithm for
Mining Association Rules in Large Data-bases. In Proc. of the 21st Conf. on Very
Large DataBases, pp. 432-444.

[25] SRIKANT, R.; VU, Q.; AND AGRAWAL, R. Mining Association Rules with Item
Constraints. In Proc. of the Third Int’l Conf. on Knowledge Discovery in
Databases and Data Mining, August 1997 pp. 67-73.

[26] THOMAS, SHIBY; BODAGALA, SREENATH; ALSABTI, KHALED; AND RANKA,
SANIJAY. An efficient algorithm for the incremental updation of association rules
in large databases. In Proceedings of the 3rd International conference on
Knowledge Discovery and Data Mining (KDD 97), New Port Beach, California,
August 1997.

[27] ToIvONEN, H. Sampling large databases for association rules. In 22nd
International Conference on Very Large Databases (VLDB'96),pp. 134-145,
Mumbay, India, September 1996.

[28] ZAKI, M. J.; PARTHASARATHY, S.; OGIHARA, M.; AND LI, W. New Algorithms
for Fast Discovery of Association Rules. In Proc. of the Third Int’l Conf. on
Knowledge Discovery in Databases and Data Mining, pp. 283-286, 1997.

Appendix A: Correctness proof of the ICAP algorithm

In this appendix, we will prove thorem 3 which states that /CAP is sound and
complete; it discovers all and only those itemsets that are frequent in DB+ and
satisfying the CFQ. We rely on the correctness of CAP proved in [20].

Theorem 3: Proof

In Figure 2 - which represents all the possible intersections of LfB , CNBd (LfB),
and L[C”’ - we have four shaded regions, representing all the possible candidates for
inclusion in L?B * (Lemma 1). Regarding the steps of algorithm ICAP shown in

Figure 3, step 1 computes L‘Zb using CAP and should be correct by the correctness of

18

CAP. Steps 4-6 add itemsets in region I of Figure 2 to L?B+ after updating their

support count. By Lemma 2 we know that all those itemsets are in L?B+ . Steps 7-10

check candidates in region 2, those are candidates of the negative border. If an
itemset is found to be frequent in DB+, it is directly considered frequent by definition
of the support constraint. Steps 11-13 check the candidates in region 3 by scanning
the increment database. Now we have only region 4 remaining to check. By Theorem
2 we know that there is no need to do that if the constrained border does not expand.
Steps 14-17 check for the negative border expansion by observing the change in

L% U CNBd (LLD,B) If an expansion occurs, then we need to scan DB for candidates
in region 4. Steps 18-21 generate the constrained negative border closure of items in
LPP* discovered so far. Steps 22-25 count the candidates against DB to discover
winners. Finally, step 26 generates the constrained negative border of the
complete L?m. Since the candidates counted by the steps of ICAP are all and only
those candidates that need counting, it follows that /CAP is sound and complete. U

	Abstract
	Introduction
	Foundations of The Proposed Algorithm
	Association rules
	Constrained mining of association rules
	Constrained Frequent-set Queries (CFQs)
	Anti-monotone and succinct constraints

	Incremental Mining of Association Rules

	Incremental Mining of Constrained Association Rules
	Formal problem definition
	The constrained negative border

	The Proposed Algorithm ICAP (Incremental Constrained APriori)
	Computing The Constrained Negative Border
	Performance Study
	The experimental environment and performance parameters
	 Measuring performance for different increment sizes and different query types
	Measuring scalability with database size
	Measuring sensitivity to item selectivity

	Conclusion and Future extensions
	References
	Appendix A: Correctness proof of the ICAP algorithm

