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Abstract. We consider the problem of finding a cutset in a directed
graph G = (V, E), i.e. a set of vertices that cuts all cycles in G. Finding
a cutset of minimum cardinality is NP-hard. There exist several approx-
imate and exact algorithms, most of them using graph reduction tech-
niques. In this paper we propose a constraint programming approach to
cutset problems and design a global constraint for computing cutsets.
This cutset constraint is a global constraint over boolean variables as-
sociated to the vertices of a given graph and states that the subgraph
restricted to the vertices having their boolean variable set to true is
acyclic. We propose a filtering algorithm based on graph contraction op-
erations and inference of simple boolean constraints, that has a linear
time complexity in O(|E| + |V |). We discuss search heuristics based on
graph properties provided by the cutset constraint, and show the effi-
ciency of the cutset constraint on benchmarks of the literature for pure
minimum cutset problems, and on an application to log-based reconcil-
iation problems where the global cutset constraint is mixed with other
boolean constraints.
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1 Introduction

Let G = (V, E) be a directed graph with vertex set V and edge set E. A cycle
cutset, or cutset for short, of G is a subset of vertices, V ′ ⊆ V , such that the
subgraph of G restricted to the vertices belonging to V \ V ′ is acyclic. Deciding
whether an arbitrary graph admits a cutset of a given cardinality is an NP-
complete problem [9]. The minimum cutset problem, i.e. finding a cutset of
minimum cardinality (also called a feedback vertex set [6]), is thus an NP-hard
problem. This problem has found applications in various areas, such as deadlock
breaking [3], program verification [14] or Bayesian inference [19].

There are a few classes of graphs for which the minimum cutset problem has
a polynomial time complexity. These classes are defined by certain reducibil-
ity properties of the graph. Shamir [14] proposed a linear time algorithm for
reducible flow graphs. Rosen [3] modified this algorithm to an approximation
algorithm for general graphs. Wang, Lloyd and Soffa [18] found an O(|E| ∗ |V |2)
algorithm for an unrelated class of cyclically reducible graphs. Smith and Wal-
ford [16] proposed an exponential time algorithm for general graphs that behaves
in O(|E| ∗ |V |2) in certain classes of graphs. The comparison of these different
reducibility properties was done by Levy and Low [11] and Lou Soffa and Wang
[12] who proposed an O(|E| ∗ log|V |) approximation algorithm based on a sim-
ple set of five graph contraction rules. Pardalos, Qian and Resende [13] used
these contraction rules inside a Greedy Randomized Adaptive Search Procedure
(GRASP). The GRASP procedure is currently the most efficient approximation
algorithm for solving large instances, yet without any guarantee on the qual-
ity of the solution found. Bafna, Berman and Fujito [17] have given a constant
ratio approximation to the cutset problem in undirected graphs. Exact solving
has been tried with polyhedral methods by Funke and Reinelt who presented
computational results with a branch-and-cut algorithm implemented in CPLEX
[7].

Our aim here is to develop a constraint programming [8] approach to cutset
problems and design a global constraint [1] for cutsets. Specialized propagation
algorithms for global constraints are a key feature of the efficiency of constraint
programming. Global constraints are n-ary relations between variables. They are
used to prune the search space actively, more efficiently than by decomposing
them into binary constraints whenever this is possible [2]. The idea of this paper
is to embed relevant graph reduction techniques into a global cutset constraint
that can be combined with other boolean constraints and that can be used within
a branch-and-bound optimization procedure or local search methods.

Our interest for cutset problems, arose from the study of log-based recon-
ciliation problems in nomadic applications [10]. The minimum cutset problem
shows up as the central problem responsible for the NP-hardness of optimal rec-
onciliation [4]. In this context however, the cutset constraint comes with other
constraints which aggregate vertices into clusters, or more generally, express
dependency constraints between vertices. In our previous constraint-based ap-
proach [4], the acyclicity constraint was expressed as a scheduling problem mix-
ing boolean and finite domain constraints. We show in this paper that the global



cutset constraint provides more pruning for the acyclicity condition. Moreover
it allows for an all boolean modeling of log-based reconciliation problems.

The rest of the paper is organized as follows. In the next section, we define
the global cutset constraint, and propose a syntax for its implementation in con-
straint logic programming (CLP). Section 3 describes log-based reconciliation
problems and illustrates the use of this global constraint in these applications.
In section 4, we propose a filtering algorithm based on graph reductions and
inference of boolean constraints. We show its correctness, discuss some imple-
mentation issues, and prove its O(|E|+ |V |) linear time complexity. In section 5,
we discuss some search heuristics based on the properties of the internal graph
managed by the cutset constraint. Section 3 describes the log-based reconcilia-
tion problem in nomadic applications and its modeling with the cutset constraint.
Section 6 presents computational results on Funke and Reinelt’s benchmarks for
pure minimum cutset problems, and on benchmarks of log-based reconciliation
problems. The last section concludes our study of this global constraint for cutset
problems.

2 The Cutset Constraint

Given a directed graph G = (V, E), we consider the set B of boolean variables,
obtained by associating a boolean variable to each vertex in V . A vertex is said
to be accepted if its boolean variable is true, and is said to be rejected if its
boolean variable is false. We consider the boolean constraint on B, or its variant
including the finite domain size variable S,

cutset(B, G) or cutset(B, G, S)

which states that the subset of rejected vertices according to B forms a valid
cutset of G of size S.

More specifically, we shall consider the implementation of the following con-
straint logic programming (CLP) predicates:

cutset(Variables,Vertices,Edges)
cutset(Variables,Vertices,Edges,Size)

where Variables=[V1,...,Vn] is the list of boolean variables associated to the
vertices, Vertices = [a1,...,an] is the list of vertices of the graph, Edges
= [ai-aj,... ] is the list of directed edges represented as pairs of vertices,
and Size is a finite domain variable representing the size of the cutset, i.e. the
number of rejected vertices. The boolean variable Vi equals 0 if the vertex ai is
in the cutset (i.e. rejected from the graph) and equals 1 if the vertex ai is not in
the cutset (i.e. accepted to be in the graph). The size variable S is thus related
to the variables Vi’s by the implicit constraint

S = n −
n∑

i=1

Vi



which can be treated with standard finite domain propagation techniques.
For the purpose of the minimum cutset problem, that is rejecting a minimum

number of vertices, the branch-and-bound minimization predicate of CLP can be
used in cooperation with the labeling predicate for instanciating the boolean
variables. So, essentially one expresses a minimum cutset problem with the CLP
query:

cutset(B,V,E,S),minimize(labeling(B),S).
Here the minimize predicate minimizes its second argument, the size variable S,
by repeatedly calling the first argument which in turn finds a satisfying assign-
ment to the list of boolean variables B by enumerating all possible assignments
(with some heuristics).

As usual, the cutset constraint does not make any assumption on the other
constraints that may be imposed on its variables and hence the user is allowed to
qualify the cutset solution he wants with extra constraints. The extra constraints
on the boolean varaibles may range from simple dependency constraints modeled
by boolean implications, as considered in the next section, to arbitrary complex
boolean formulas. For this reason, the cutset constraint has to be general enough
to allow the possibility of finding any cutset of the graph.

3 Log-based reconciliation problems

Our interest in the design of a global constraint for cutset problems arose from
the study of log-based reconciliation problems in nomadic applications [10],
where the minimum cutset problem shows up as the central problem responsible
for the NP-hardness of optimal reconciliation [4]. Nomadic applications create
replicas of shared objects that evolve independently while they are disconnected.
When reconnected, the system has to reconcile the divergent replicas. Log-based
reconciliation is a novel approach in which the input is a common initial state
and logs of actions that were performed on each replica [10]. The output is a
consistent global schedule that maximizes the number of accepted actions. The
reconciler merges the logs according to the schedule, and replays the operations
in the merged log against the initial state, yielding a reconciled common final
state. We thus have to reconcile a set of logs of actions that have been realized
independently, by trying to accept the greatest number of actions possible:

Input: A finite set of L initial logs of actions {[T 1
i , ..., T ni

i ] | 1 ≤ i ≤ L}, some
dependencies between actions T j

i ⇒ T l
k, meaning that if T j

i is accepted then T l
k

must be accepted, and some precedence constraints T j
i < T l

k, meaning that if
the two actions T j

i , T l
k, are accepted, they must be executed in that order. The

precedence constraints are supposed to be satisfied inside the initial logs.

Output: A subset of accepted actions, of maximal cardinality, satisfying the
dependency constraints, given with a global schedule T j

i < ... < T l
k satisfying

the precedence constraints.



Note that the output depends solely on the precedence constraints between
actions given in the input. In particular the output is independent of the precise
structure of the initial logs. The initial consistent logs, that can be used as start-
ing solutions in some algorithms, can be forgotten as well without affecting the
output. A log-based reconciliation problem over n actions can thus be modeled
with n boolean variables, {a1, ..., an}, associated to each action, satisfying:

– the dependency constraints represented with boolean implications, ai ⇒ aj

– the precedence constraints represented with a global cutset constraint over
the graph of all (inter-log) precedences between actions.

In section 6.2 we compare this modeling of log-based reconciliation problems
with our previous CLP(FD) program without the global cutset constraint used
in [4]. In that program, precedence constraints were handled with finite domain
integer variables, as in a scheduling problem, as follows:

– n integer variables p1, ..., pn are associated for each action, giving the position
of the action in the global schedule, whenever the action is accepted,

– precedence constraints are represented by conditional inequalities

ai ∧ aj ⇒ (pi < pj)

or equivalently, assuming false is 0 and true is 1,

ai ∗ aj ∗ pi < pj .

In this alternative modeling, the search for solutions went through standard con-
straint propagation techniques over finite domains and through an enumeration
of the boolean variables ai’s, with the heuristic of instantiating first the vari-
able ai which has the greatest number of constraints on it (i.e. first-fail principle
w.r.t. the number of posted constraints) and trying first the value 1 (i.e. best-first
search for the maximization problem) [4].

4 Filtering Algorithm

The filtering algorithm that we propose for the global cutset constraint uses
contraction operations to reduce the graph size, check the acyclicity of the graph,
and bound the size of its cutsets. The graph contraction rules that we use are
inspired from the rules of Levy and Low [11], and Lloyd, Soffa and Wang [12]
for computing one minimum cutset. They must be different however in our
constraint propagation setting, as the cutset constraint has to approximate all
cutsets in order to take into account the other boolean constraints which may
restrict their definition.

The cutset constraint maintains an internal state composed of an explicit
representation of the graph, that is related to the constraints of the constraint
store on the boolean variables, V1, ..., Vn, associated to the vertices of the graph.
The filtering algorithm tries to convert information in the graph (about the



cycles that have to be cut) to constraints over the boolean variables Vi. On
completing such conversion, any valid solution of the constraint store is checked
to provide a valid cutset of the original graph. The essential components of the
filtering algorithm are the graph contraction operations. They either simplify
the graph without loosing any information, or convert some information into
explicit constraints and simplify the graph in the process.

Below we present two basic Accept and Reject operations and the graph
contraction operations performed by the filtering algorithm.

4.1 Internal Accept and Reject Operations

We consider the two following operations on a directed graph:

1. Accept(v) : under the precondition that v has no self loop, i.e. (v, v) is not
an edge, this operation removes the vertex v along with the edges incident on
it and adds the edges (v1, v2) if (v1, v) and (v, v2) were edges in the original
graph.
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=>
Accept(v)

U2

U1

U3

v

V2

V1

U2

U1

U3

V1

V2

Fig. 1. The Accept operation on vertex v of a graph with only the neighborhood of v
shown

2. Reject(v) : This operation removes the vertex v along with the edges inci-
dent on it.

Note that these operations on the internal graph of the cutset constraint do
not preclude the instantiation of the boolean variables associated to the vertices
of the graph. If a boolean variable is instantiated, the filtering algorithm performs
the corresponding Accept or Reject operation. On the other hand we shall see in
the next section that the filtering algorithm of the cutset constraint can perform
Accept and Reject operations on its internal graph structure without instantiating
the boolean variables associated to the original graph.

We shall use the following :

Proposition 1. Let G = (V, E) be a directed graph with vertex set V and edge
set E and let v ∈ V be a vertex of the graph such that (v, v) �∈ E. Also let G′ =
(V ′, E′) be the graph obtained by performing Accept(v) on G. Then any cutset
of G which does not have v is also a cutset of the graph G′ and vice versa.



Proof. (⇒) Let S ⊆ V be a cutset of G and v �∈ S. Let G\S denote the graph
obtained by removing the vertices of S from G. Since S is a cutset, G\S should
be acyclic. Now, suppose that S is not a cutset of G′. Therefore, there exists a
cycle v1, v2, . . . , vn, v1 in G′ with each vertex in V ′−S. If this cycle has no edges
which came due to the operation Accept(v) then this is also a cycle in G\S.
Hence this cycle has edges induced by the accept operation. By replacing each
such edge (vi, vi+1) by (vi, v) and (v, vi+1), we again get a cycle in G\S. Hence,
by contradiction, we have one side of the result.
(⇐) Let S ⊆ V ′ be a cutset of G′. Again, suppose that S is not a cutset of G.
Therefore, there exists a cycle v1, . . . , vn, v1 in G\S. If none of these vertices is
v then this is also a cycle in G′\S. Hence, at least one of these vertices is v. If
vi = v then replace the edges (vi−1, vi) and (vi, vi+1) by (vi−1, vi+1) to get a
cycle in G′\S. Again we get a contradiction.

The accept operation can thus be used to check if a given set is a cutset or
not :

Corollary 1. A given directed graph G = (V, E) is acyclic provided we can
accept all vertices in it i.e. while accepting the vertices one by one, no vertex
gets a self loop.

Proof. Suppose that while accepting the vertices in G, no vertex gets a self loop.
Then after accepting all the vertices, the graph that remains has no vertices or
edges. Hence this has a cutset ∅. Now, by repeated application of proposition
1, ∅ is also a cutset of G. Hence G is acyclic. The reverse can also be proved
similarly by using proposition 1. So if G is a acyclic graph, then it has the cutset
∅. Now, while accepting the vertices of G, if we get a vertex with a self loop, then
that graph cannot have ∅ as the cutset. However, ∅ should have been a cutset
by proposition 1. Hence by contradiction, we have our result.

Similarly, we have :

Proposition 2. Let G = (V, E) be a directed graph and v ∈ V be a vertex of
the graph. Also let G′ = (V ′, E′) be the graph obtained by performing Reject(v)
in G. If S is a cutset of G which contains v then S − {v} is a cutset of G′ and
vice versa.

Corollary 2. The set of all cutsets of a graph remains invariant under the
operation Reject(v) if v has a self loop.

These propositions show that the accept and reject operations have the nice
property of maintaining any cutset by picking a right vertex to apply the oper-
ation on. If there is a minimum cutset that contains the vertex v then after the
operation Reject(v), we can still find that cutset but have a smaller graph to
work with. Similarly, if there is a minimum cutset that does not contain v then
after Accept(v), we can still find that cutset but again in a smaller graph.



4.2 Graph Contraction Operations

We shall use the following five graph contraction operations inspired from the
rules of Levy and Low [11], and Lloyd, Soffa and Wang [12]:

1. IN0 (In degree = 0) In case the in degree of a vertex is zero, that vertex
cannot be a part of any cycle. Hence its acceptance or rejection will cause no
change to the rest of the graph. So, its edges are removed but no constraints
are produced since a cutset can exist including or excluding this vertex.

2. OUT0 (Out degree = 0) In case the out degree of a vertex is zero, the
situation is similar to the one above. Again, the edges incident on this vertex
are removed and no constraints are produced.

3. IN1 (In degree = 1) In case a vertex i has in degree one, then the situation
is as follows,
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IN1(i)a j i h

b

c

d

e

f

a

b

c

d

e

f

Fig. 2. The IN1 reduction applied to a graph where {j, e, f} is the neighborhood of i
and {a, b, c, d, i} is the neighborhood of j, the unique predecessor of i

If a cycle passes through i then it must also pass through j. Hence by merging
these two nodes to form the node h, we do not eliminate any cycle in the
graph. Along with this reduction, we introduce a new Boolean variable Vh

and impose the constraint Vh = Vi ∧ Vj on the variables associated with the
vertices. This captures the fact that if h is not a part of any cycle, then both
i and j were not part of any cycle and vice versa. The rest of this paper will
use the names i and j in the context that vertex i has in (or out) degree 1 and
vertex j is the predecessor (or successor) of i. Note that, as a compromise
trading pruning for efficiency, we do not perform this operation if it leads to
merging two nodes that have themselves come due to the merging of other
nodes. This restriction is justified in the next section.

4. OUT1 (Out degree = 1) This case is similar to the above case.
5. LOOP (Self loop on a vertex) In case a vertex has a self loop then this

vertex is rejected and its boolean variable is set to 0 since no cutset can
exist without including this vertex. However, if the vertex is a merged node
h then we impose Vh = 0 but cannot reject h since that would imply rejection
of both i and j. So we look at the self loop edge of h and check if it comes
from a self loop on j or from a loop (i, j), (j, i). Note that there cannot be
a loop (i, i) since i has in (resp. out) degree equal to one and this edge is



not a loop. The necessary information maintained on merged nodes for these
checks is described in the next section.
In the case of a self loop on j, we impose Vj = 0 and remove h from the
graph. In the case of a loop involving i and j, we just convert h to j i.e.
remove edges corresponding to i. This conversion is done because we know
that the loop comes from a cycle involving edges between i and j. Hence at
least one of i and j should be rejected. Choosing to reject either renders the
edges of i useless.

In this filtering algorithm, the variable S representing the size of the cutset is
bounded by its definitional constraint as the number of vertices minus the sum
of the vertex variables.

Proposition 3. The complexity of the reduction algorithm (repeated application
of contraction operations till no more can be applied) is O(|E| + |V |).
Proof. The proof is very easy and comes from the fact that we look at an edge
only O(1) times and don’t add new edges. Let dv denote the in + out degree of
vertex v. The vertices can be initially stored in two arrays indexed by their in
and out degrees respectively. The counting of vertex degrees is in O(|E|), hence
the sorting of the vertices in the arrays according to their vertex degree is in
O(|E| + |V |) time (using bucket sort). Each time an operation is performed, we
will update these arrays. First consider the IN0 operation. Using the arrays just
created, we can find in O(1) time, a vertex to apply the reduction on. Reduction
on vertex v will take O(dv) time and will lead to deletion of all edges on it. Along
with this deletion, update the degrees of affected vertices while maintaining the
arrays correctly. Since new edges are not added to the graph at any stage, any
number of IN0 operations interleaved with any number of different reductions
can take at most O(

∑
v dv) = O(|E|) time. Similarly, any number of OUT0

reductions can take time at most O(|E|). For the LOOP case, we can see that
it too leads to rejection of edges of some vertex and hence satisfies the same
bound (history lookup is O(1)). The case for IN1 and OUT1 is easy to argue
since we are not allowing merged nodes to get merged. As a result, we look at a
vertex at most once and do O(dv) work. Hence these operations, on the whole,
can take O(|E|) time. This proves the proposition.

4.3 Maintaining History and Other Issues with IN1 and OUT1

When a merged node h is rejected, we might need to convert it back to j. For
this purpose, more information is maintained by keeping the history of each edge
along with it. This history tells if the edge is there due to edges from vertex j
or from vertex i. Since accept/reject operations on the neighbors of a vertex
cause the edges on the vertex to be changed, the history needs to be maintained
dynamically. The problem is only with the accept operation since it adds new
edges. Consider the following situation where a label on an edge denotes the
vertex it came from. We only use i and j as the labels since we only need to
know if an edge came from the vertex on which merging was performed (i - in/out



degree=1) or the other vertex(j - which gets merged as a result of reduction on
another vertex). In figure 3, when the vertex e is accepted, the history of the
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=>
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j

i
i

Accept(e)

Accept(f)

Fig. 3. Maintaining history as Accept operations are applied.

new edges (a, h) and (b, h) is determined by the history on the edge (e, h). One
can easily verify that such a simple system of maintaining history makes the
action of merging confluent with accept operations taking place in the rest of the
graph. This means that we would obtain the same result if we accept a vertex
v first and then merge some other vertices v1 and v2 or if we merge v1 and v2

first and then accept v. This ensures correctness of the merging operations with
respect to the accept operations.

Another issue we had to consider was that due to the constraints store, a
variable might get assigned due to assignments to other variables. This causes a
problem with the merged nodes since the constraints imposed on i and j are not
reflected entirely on h by the merging procedure. To take care of this, we look at
the nodes i and j for such assignments and reflect them on the merged node h.
The following is done if any of i or j or both is assigned, X means unassigned.

We can see from the above discussion that rejection of a merged node does not
necessarily mean that the node will disappear. It might get converted to another
node. This illustrates why we cannot trivially extend the merging procedure and
allow for merging of merged nodes as well. Rejection of ordinary nodes mean
that they actually get removed from the graph which is not the case with merged
nodes. In order to handle merging of merged nodes, each time an assignment is
made on the merged node, we would have to revert back to the original graph and
do the changes. Furthermore, the time complexity of the filtering algorithm with
complete merges would become in O(|E| ∗ |V |2). For these reasons, the choice
made in our current implementation has been to trade some pruning capabilities
for efficiency, so we don’t allow merging of merged nodes.



Vi Vj Action

0 0 Reject h

0 1 Convert h to j and accept

0 X Convert h to j

1 0 Reject h

1 1 Accept h

1 X Remove history on edges of h. Now h just represents j

X 0 Reject h

X 1 Convert h back to i and j and accept j

Table 1. Action taken on an assignment to vertices which form a part of a merged
vertex

To summarize, the cutset constraint maintains an internal copy of the orig-
inal graph and starts by looking at the boolean variables associated with the
vertices. If any of these are assigned (true or false) then the appropriate opera-
tion (Accept or Reject) is called on that vertex. In case the vertex formed a part
of a merged vertex, then the action taken follows from table 1. After all such
assigned vertex variables are taken care of, the reduction algorithm is applied.
This in turn repeatedly applies the graph contraction operations which result
in the simplification of the graph, generation of new constraints over the vertex
variables and possible assignments to them.

5 Search Heuristics

The internal graph managed by the cutset constraint provides interesting infor-
mation which can be used to build heuristics for guiding the search in cutset
problems. Depending on whether we are treating pure minimum cutset prob-
lems or problems containing some extra boolean constraints the heuristics are
different.

In particular we know that the IN0 and OUT0 vertices that have been
deleted from the internal graph managed by the cutset constraint, are not any-
more constrained by the cutset constraint, and can thus be freely accepted or
rejected. In pure minimum cutset problems, these vertices should be immediately
accepted. On the other hand, in mixed problems where the cutset constraint is
combined with other boolean constraints, the labeling of the IN0 and OUT0
vertices can be delayed as it no longer affects the graph of the cutset constraint.

The LOOP reduction leads to automatic rejection of vertices in the original
graph, except in the case of an ambiguity between the original vertices which
are responsible for the loop. The vertices having such loops are constrained
by a boolean clause that has the effect of rejecting at least one of them. In
pure minimum cutset problems, there is one labeling which preserves the size of
the minimum cutset [11, 12] and which should be immediately done. In mixed
problems, the vertices belonging to a loop should be labeled first altogether.



Concerning the remaining vertices, the vertices with the highest in or out
degrees are more likely to break cycles in the graph. The experience with the
GRASP procedure suggests that the selection of the vertex which maximizes
the sum of the in and out degrees provides better results than maximizing the
maximum of the in and out degrees, or than maximizing their product [13].
This heuristics can be used in a constraint program with a branch-and-bound
optimization procedure, but can also be used in principle with the heuristics
described above for pure minimum cutset problems to simulate the GRASP
procedure for computing the first solutions in the constraint program.

In the experiments reported below on log-based reconciliation problems, we
label first the nodes with highest sum of in and out degrees, and label at the
end the nodes having an in or out degree equal to zero.

6 Computational Results

In this section, we provide some computational results which show the efficiency
of the global cutset constraint. The first series of benchmarks are the set of
pure minimum cutset problems proposed by Funke and Reinelt for evaluating
their branch-and-cut algorithm implemented in CPLEX [7]. The second series
of benchmarks is a series of log-based reconciliation problems1 [4]. We provide
the timings obtained with and without the cutset constraint. The CLP program
which does not use the cutset constraint is the one described in section 3.

The results reported below have been obtained with our prototype implemen-
tation of the cutset constraint in Sicstus Prolog version 3.8.5 using the standard
interface of Sicstus Prolog for defining global constraints in Prolog [15]. The
timings of our experiments have been measured on an Intel Pentium III at 600
Mhz with 256Mo RAM under Linux. They are given in seconds.

6.1 Funke and Reinelt’s benchmarks

Table 2 summarizes our computational results on Funke and Reinelt’s bench-
marks [7]. The first number in the name of the benchmark indicates the number
of vertices. The second number in the name indicates the density of the graph,
as a percentile of the number of edges over the square of the number of vertices.
Dense graphs of density 20% and 30% are considered, for which the exact op-
timization problem is hard. The second column gives the number of accepted
vertices in the optimal solution.

The third column indicates the CPU time obtained with CPLEX on a SUN
Sparc 10/20 reported in [7] and divided by 10. This time ratio between a SUN
Sparc 10/20 and the machine of our experiments was measured with our CLP
program. The following columns indicate the CPU times for finding the optimal
solution and for proving the optimality, for each of the two constraint programs
without and with the cutset constraint.
1 http://contraintes.inria.fr/∼fages/Reconcile/Benchs.tar.gz



CPLEX CLP without CLP with
cutset constraint cutset constraint

Bench Optimal Opt. and Proof Opt. Proof Opt. Proof
solution time time time time time

r 25 20 14 14.00 2.43 8.95 0.22 1.42
r 25 30 13 17.80 3.15 5.57 0.53 0.84
r 30 20 19 22.10 21.91 48.92 0.71 1.55
r 30 30 14 91.10 3.49 16.63 0.95 1.81
r 35 20 18 379.00 5.66 214.91 3.12 3.29
r 35 30 14 675.40 14.37 167.48 3.45 4.28

Table 2. Computational results on Funke and Reinelt’s benchmarks.

The results on these benchmarks show an improvement by one or two orders
of magnitude of the CLP program with the global cutset constraint, over the
version of the program without the cutset global constraint, as well as over the
polyhedral method implemented in CPLEX reported in [7]. As expected, the
most spectacular improvement due to the global constraint concerns the CPU
time for proving the optimality of solutions.

On the other hand, it is worth noting that the GRASP method remains much
faster for finding good solutions which are in fact optimal in these benchmarks
[13]. The GRASP meta-heuristic should thus be worth implementing in CLP for
finding the first solution, the main benefit from the cutset constraint being the
capability of proving the optimality of solutions. The main difficulty in imple-
menting the GRASP meta-heuristic in CLP is to export the information used
in the global cutset constraint to the labeling procedure. This communication of
information can be implemented in an ad hoc way but goes beyond the standard
interface defined for global constraints in CLP [15]. This shows that it would
be interesting to study in its own right a more general communication scheme
between global constraints and search procedures.

6.2 Log-based reconciliation benchmarks

Table 3 shows the running times of the cutset constraint on the benchmarks of
reconciliation problems described in [4]. These problems have been generated
with a low density (number of constraints over number of variables2) of 1.5
for precedence constraints, as well as for dependency constraints, as it corre-
sponded to the distribution obtained in the log-based reconciliation applications
we were considering. Problems with higher density are even harder to solve. A
peak of difficulty was experimentally observed with our CLP program in random
reconciliation problems around density 7 for precedence constraints [5]. The de-
pendency constraints in these benchmarks are simple implications between two
variables.
2 With this standard definition of density for constraint satisfaction problems, the

density of Funke and Reinelt benchmarks ranges from 5 to 10.



CLP CLP CLP CLP
without cutset with cutset without cutset with cutset

Bench Optimal Opt. Proof Opt. Proof Bench Optimal Opt. Proof Opt. Proof
solution time time time time solution time time time time

t40v1 36 0.03 3.13 0.03 0.06 t800v1 ≥774 ? ? ? ?

t40v2 37 1.44 0.68 0.02 0.02 t1000v1 ≥967 ? ? ? ?

t40v3 38 0.02 0.07 0.01 0.01 r100v1 98 0.10 0.20 0.08 0.04

t40v4 37 0.93 0.60 0.08 0.05 r100v2 77 0.26 0.48 0.07 0.05

t50v1 45 9.90 31.71 0.03 0.11 r100v3 95 0.34 0.57 0.10 0.13

t50v2 47 1.16 0.09 0.08 0.05 r100v4 100 0.08 0.02 0.03 0.01

t50v3 44 9.03 44.93 0.04 1.22 r100v5 52 0.10 0.06 0.08 0.08

t50v4 46 1.10 0.35 0.06 0.02 r200v1 65 0.43 0.16 0.11 0.01

t70v1 68 2.63 0.34 0.11 0.04 r200v2 191 239.77 288.71 2.42 3.27

t70v2 67 0.07 1.36 0.05 0.09 r500v1 198 1.42 0.99 1.00 0.35

t80v1 76 ? ? 0.14 0.23 r800v1 ≥771 ? ? ? ?

t100v1 94 ? ? 19.00 38.10 r800v2 318 3.89 12.68 3.85 1.65

t200v1 ≥192 ? ? ? ? r1000v1 389 5.88 3.97 5.54 0.43

t500v1 ≥490 ? ? ? ? r1000v2 ≥943 ? ? ? ?

Table 3. Computational results on log-based reconciliation benchmarks.

The t series of benchmarks are pure minimum cutset problems containing
no dependency constraints. The r series contains both kinds of constraints. The
number in the name of the benchmark is the number of actions (vertices). The
table gives the number of accepted actions in the optimal solution. We indicate
the CPU times for finding the optimal solution and for proving the optimality, for
each version of the CLP program without and with the global cutset constraint
as described in section 3.

Compared to our previous results without the global cutset constraint re-
ported in [4], there is a slow down which is due to the use of Sicstus-Prolog
instead of GNU-Prolog for making the experiments. The difference does not
reduce however to a simple implementation factor because the heuristics left
unspecified some choice orderings which are thus implementation dependent.

6.3 Discussion

The advantage of the heuristic selecting the highest degree vertex is reflected
both in the first solution found which is accurate and takes little time, and in
the total execution of the program i.e. including the proof of optimality. We
could also look into some modifications of this heuristic. Low degree vertices
cause a little change in the graph, so if we could select those vertices that would
change the graph enough so that more graph reductions could take place, then
we might have more reduction in the search space.

For further improvement of the pruning of the global constraint, the IN1 and
OUT1 contraction operations should be implemented without restriction. For



this, merging of merged node should be allowed and if that is done then care
has to be taken that rejection of a vertex would not mean that it will disappear
from the graph. The best way to implement this would be to unmerge each time
a merged node is assigned and then perform the changes. Also, the cases when
external constraints cause those vertices to get assigned which have been merged
to form a new vertex, would have to be handled appropriately. The assignment to
these vertices would have to be reflected onto the merged node for the program
to work properly.

Another improvement that can be made is to change the representation of
the graph to speed up the time that the reductions take. The representation
can be changed from maintaining adjacency lists to maintaining an adjacency
matrix, as done in GRASP implementation. This will make lookups like finding
self loops, constant time.

7 Conclusion

The cutset constraint we propose is a global boolean constraint defined by a
graph G = (V, E). We have provided a filtering algorithm based on graph con-
traction operations and inference of simple boolean constraints. The time com-
plexity of this algorithm is O(|E|+|V |), thanks to a trade-off between the pruning
capabilities and the efficiency of one cutset constraint propagation.

The computational results we have presented on benchmarks of the literature
and on log-based reconciliation problems, show a speed-up by one to two orders
of magnitude over the constraint program without the cutset global constraint,
as well as over the polyhedral method of Funke and Reinelt implemented in
CPLEX [7].

As for future work, one can mention the problem of improving our trade-
off between the pruning capabilities of the filtering algorithm and its amortized
complexity. The heuristics discussed in the paper based on the data structures
manipulated by the cutset constraint, raise also the issue of finding a general
interface of communication between constraint propagators and search proce-
dures in constraint programming. One example of application of this interface
will be the use of the cutset constraint to simulate the GRASP procedure [13]
for finding a first solution in the constraint program.
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