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Abstract. We present and solve a path optimization problem on programs. Given
a set of program nodes, called critical nodes, we find a shortest path through
the program’s control flow graph that touches the maximum number of these
nodes. Control flow graphs over-approximate real program behavior; by adding
dataflow analysis to the control flow graph, we narrow down on the program’s
actual behavior and discard paths deemed infeasible by the dataflow analysis. We
derive an efficient algorithm for path optimization based on weighted pushdown
systems. We present an application for path optimization by integrating it with
the Cooperative Bug Isolation Project (CBI), a dynamic debugging system. CBI
mines instrumentation feedback data to find suspect program behaviors, called
bug predictors, that are strongly associated with program failure. Instantiating
critical nodes as the nodes containing bug predictors, we solve for a shortest pro-
gram path that touches these predictors. This path can be used by a programmer
to debug his software. We present some early experience on using this hybrid
static/dynamic system for debugging.

1 Introduction
Static analysis of programs has been used for a variety of purposes including compiler
optimizations, verification of safety properties, and improving program understanding.
Static analysis has the advantage of considering all possible executions of a program,
thus giving strong guarantees on the program’s behavior. In this paper, we present a
static analysis technique for finding a program execution sequence that is optimal with
respect to some criteria. Given a set of program locations, which we callcritical nodes,
we find a trace among all possible program execution traces that touches the maximum
number of these critical nodes and has the shortest length among all such traces. Since
reachability in programs is undecidable in general, we over-approximate the set of all
possible traces through a program by considering all paths in its control flow graph,
and solve the optimization problem on this collection of paths. We also consider how
to more closely approximate actual program behavior by discarding paths in the con-
trol flow graph deemed infeasible by dataflow analysis [1]. We show that the powerful
framework of weighted pushdown systems [2] can be used to represent and solve sev-
eral variations of the path optimization problem.
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Why is it important to find paths? Con- int ** a;

void main() {
init(a);
...
process(a);
...

}

void clear(int ** a) {
for(...)

a[i] = NULL;
}

void process(int ** a) {
switch(getchar()) {
case ’e’ :

clear(a);
break;

case ’p’ :
...

}
...
a[i][j]++;

}

Fig. 1: A buggy program fragment

sider the program fragment shown in Figure 1
and suppose that it crashes on some input
at line “a[i][j]++ ”. While debugging the
program, we find out (using some analysis)
that only the statement “a[i] = NULL ” in
clear() could have caused a null-pointer
deference at the crash site. However, look-
ing at this line in isolation gives no indica-
tion of what the actual bug is. When we con-
struct a path in the program from the entry
point of main() to the crash site that vis-
its this suspect line inclear() we get a
path that touches statements shown in bold in
Figure 1. It shows that the program can call
clear() from process() and then con-
tinue execution onto the crash site. Closer ex-
amination of this path may suggest that the
break statement afterclear() should have
been areturn statement. Seeing paths al-
lows a richer understanding of program behav-
ior than merely examining isolated statements
or procedures.

We have implemented our path optimiza-
tion algorithm and integrated it with the Coop-
erative Bug Isolation Project (CBI) [3] to cre-
ate the BTRACE debugging support tool. CBI adds lightweight dynamic instrumenta-
tion to software to gather information about runtime behavior. Using this data, it identi-
fies suspect program behaviors, calledbug predictors, that are strongly associated with
program failure. Bug predictors expose the causes and circumstances of failure, and
have been used successfully to find previously unknown bugs [4]. CBI is primarily
a dynamic system based on mining feedback data from observed runs. Our work on
BTRACE represents the first major effort to combine CBI’s dynamic approach with
static program analysis.

BTRACE enhances CBI output by giving more context for interpreting bug predic-
tors. Using CBI bug predictors as our set of critical nodes, we construct a path from
the entry point of the program to the failure site that touches the maximum number of
these predictors. CBI associates a numerical score with each bug predictor, with higher
scores denoting stronger association with failure. We therefore extend BTRACE to find
a shortest path that maximizes the sum of the scores of the predictors it touches. That is,
BTRACE finds a path such that the sum of predictor scores of all predictors on the path
is maximal, and no shorter path has the same score. We also allow the user to restrict
attention to paths that have unfinished calls exactly in the order they appear in a stack
trace left behind by the failed program, and to impose constraints on the order in which
predictors can be touched. These constraints enhance the utility of BTRACE for debug-



ging purposes by producing a path that is close enough to the actual failing execution
of the program to give the user substantial insight into the root causes of failure. We
present experimental results in Section 4 to support this claim.

Under the extra constraints described above, the path optimization problem solved
by BTRACE can be stated as follows:

THE BTRACE PROBLEM. Given the control flow graph(N,E) of a program having
nodes N and edges E; a single node nf ∈ N (representing the crash site of a program);
a set of critical nodes B⊆ N (representing the bug predictors); and a functionµ :
B→ R (representing predictor scores), find a path in the control flow graph that first
maximizes∑n∈Sµ(n) where S⊆ B is the set of critical nodes that the path touches and
then minimizes its length. Furthermore, restrict the search for this optimal path to only
those paths that satisfy the following constraints:

1. Stack trace.Given a stack trace, consider only those paths that reach nf with un-
finished calls exactly in the order they appear in the stack trace.

2. Ordering.Given a list of node pairs(ni ,mi) where ni ,mi ∈B and0≤ i ≤ k for some
k, consider only those paths that do not touch node mi before node ni .

3. Dataflow. Given a dataflow analysis framework, consider only those paths that
are not ruled out as infeasible by the dataflow analysis. The requirements on the
dataflow analysis framework are specified in Section 3.4.

Finding a feasible path through a program when one exists is, in general, undecid-
able. Therefore, even with powerful dataflow analysis, BTRACE can return a path that
will never appear in any real execution of the program. We consider this acceptable
as we judge the usefulness of a path by how much it helps a programmer debug her
program, rather than its feasibility.

The key contributions of this paper are as follows:

– We present an algorithm that optimizes path selection in a program according to the
criteria described above. We use weighted pushdown systems to provide a common
setting under which all of the mentioned optimization constraints can be satisfied.

– We describe a hybrid static/dynamic system that combines optimal path selection
with CBI bug predictors to support debugging.

The remainder of the paper is organized as follows: Section 2 presents a formal
theory for representing paths in a program. Section 3 derives our algorithm for finding
an optimal path. Section 4 considers how path optimization can be used in conjunction
with CBI for debugging programs and presents experimental results demonstrating that
the approach is feasible. Section 5 discusses some of the related work in this area, and
Section 6 concludes with some final remarks.

2 Describing Paths in a Program

This section introduces the basic theory behind our approach. In Section 2.1, we formal-
ize the set of paths in a program as a pushdown system. Section 2.2 introduces weighted
pushdown systems that have the added ability to associate a value with each path.



emain

n1: x = 5

n3: call p

n7: ret from p

exitmain

n2: y = 1

n6: y = 3

ep

n5: y = 2

exitp

n4: if (. . .)

n8: call p

n9: ret from p

(a)

r1 = 〈p,emain〉 ↪→ 〈p,n1〉
r2 = 〈p,n1〉 ↪→ 〈p,n2〉
r3 = 〈p,n2〉 ↪→ 〈p,n3〉
r4 = 〈p,n3〉 ↪→ 〈p,ep n7〉
r5 = 〈p,n7〉 ↪→ 〈p,n8〉
r6 = 〈p,n8〉 ↪→ 〈p,ep n9〉
r7 = 〈p,n9〉 ↪→ 〈p,exitmain〉
r8 = 〈p,exitmain〉 ↪→ 〈p,ε〉
r9 = 〈p,ep〉 ↪→ 〈p,n4〉

r10 = 〈p,n4〉 ↪→ 〈p,n5〉
r11 = 〈p,n4〉 ↪→ 〈p,n6〉
r12 = 〈p,n5〉 ↪→ 〈p,exitp〉
r13 = 〈p,n6〉 ↪→ 〈p,exitp〉
r14 = 〈p,exitp〉 ↪→ 〈p,ε〉

(b)

Fig. 2: (a) A control flow graph. Theeandexitnodes represent entry and exit points of procedures,
respectively. Dashed edges represent interprocedural control flow. (b) A pushdown system that
models the control flow graph shown in (a). It uses a single statep and has one rule per CFG
edge. Rulesr4 andr6 correspond to procedure calls and save the return site on the stack. Rulesr8
andr14 simply pop-off the top of the stack to reveal the most recent return site.

2.1 Paths in a Program

A control flow graph (CFG) of a program is a graph where nodes are program statements
and edges represent possible flow of control between statements. Figure 2a shows the
CFG of a program with two procedures. We adopt the convention that each procedure
call in the program is represented by two nodes: one is the source of an interprocedural
call edge to the callee’s entry node and the second is the target of an interprocedural
return edge from the callee’s exit node back to the caller. In Figure 2a, nodesn3 andn7

represent one call frommainto p; nodesn8 andn9 represent a second call.
Not all paths (sequences of nodes connected by edges) in the CFG are valid. For

example, the path[emain n1 n2 n3 ep n4 n5 exitp n9] is invalid because the call at noden3

should return to noden7, not noden9. In general, the valid paths in a CFG are described
by a context-free language of matching call/return pairs: for each call, only the matching
return edge can be taken at the exit node. For this reason, it is natural to use pushdown
systems to describe valid paths in a program [2, 5].

Definition 1. A pushdown system(PDS) is a tripleP = (P,Γ ,∆) of finite sets where
P is the set of states,Γ is the set of stack symbols and∆ ⊆ P×Γ ×P×Γ ∗ is the set of
pushdown rules. A rule r= (p,γ,q,u) ∈ ∆ is written as〈p,γ〉 ↪→ 〈q,u〉.

A PDS is a finite automaton with a stack (Γ ∗). It does not take any input, as we are
interested in the transition system it describes, not the language it generates.



Definition 2. A configuration of a pushdown systemP = (P,Γ ,∆) is a pair 〈p,u〉
where p∈ P and u∈ Γ ∗. The rules of the pushdown system describe atransition re-
lation ⇒ on configurations as follows: if r= 〈p,γ〉 ↪→ 〈q,u〉 is some rule in∆ , then
〈p,γu′〉 ⇒ 〈q,uu′〉 for all u′ ∈ Γ ∗.

The construction of a PDS to represent paths in a CFG is fairly straightforward
[2]. An example is shown in Figure 2b. The transition system of the constructed PDS
mimics control flow in the program. A sequence of transitions in the transition system
ending in a configuration〈p,n1 n2 · · ·nk〉, whereni ∈ Γ , is said to have astack trace
of 〈n1, · · · ,nk〉: it describes a path in the CFG that is currently atn1 and has unfinished
calls corresponding to the return sitesn2, · · · ,nk. In this sense, a configuration stores
an abstract run-time stack of the program, and the transition system describes valid
changes that the program can make to it.

2.2 Weighted Pushdown Systems

A weighted pushdown system (WPDS) is obtained by associating aweightwith each
pushdown rule. The weights must come from a set that satisfies bounded idempotent
semiring properties [2, 6].

Definition 3. A bounded idempotent semiringis a quintuple(D,⊕,⊗,0,1), where D is
a set whose elements are calledweights, 0 and1 are elements of D, and⊕ (the combine
operation) and⊗ (the extend operation) are binary operators on D such that

1. (D,⊕) is a commutative monoid with0 as its neutral element, and where⊕ is
idempotent (i.e., for all a∈ D, a⊕a = a).

2. (D,⊗) is a monoid with1 as its neutral element.
3. ⊗ distributes over⊕, i.e., for all a,b,c∈ D we have

a⊗ (b⊕c) = (a⊗b)⊕ (a⊗c) and(a⊕b)⊗c = (a⊗c)⊕ (b⊗c) .
4. 0 is an annihilator with respect to⊗, i.e., for all a∈ D, a⊗0 = 0 = 0⊗a.
5. In the partial orderv defined by:∀a,b∈D, av b iff a⊕b= a, there are no infinite

descending chains.

Definition 4. A weighted pushdown systemis a triple W = (P,S , f ) whereP =
(P,Γ ,∆) is a pushdown system,S = (D,⊕,⊗,0,1) is a bounded idempotent semiring
and f : ∆ → D is a map that assigns a weight to each pushdown rule.

The⊗ operation is used to compute the weight of concatenating two paths and the
⊕ operation is used to compute the weight of merging parallel paths. Ifσ is a sequence
of rules[r1, r2, · · · , rn]∈ ∆ ∗, then define the value ofσ asval(σ) = f (r1)⊗ f (r2)⊗·· ·⊗
f (rn). In Definition 3, item 3 is required by WPDSs to efficiently explore all paths, and
item 5 is required for termination of WPDS algorithms.

For sets of pushdown configurationsS andS′, let path(S,S′) be the set of all rule
sequences that transform a configuration inS to a configuration inS′. Let nΓ ∗ ⊆ Γ ∗

denote the set of all stacks that start withn. Existing work on WPDSs allows us to solve
the following problems [2]:

Definition 5. LetW = (P,S , f ) be a weighted pushdown system withP = (P,Γ ,∆)
and let c∈ P×Γ ∗ be a configuration. Thegeneralized pushdown predecessor (GPPc)
problemis to find for each regular set of configurations S⊆ (P×Γ ∗):



– δ (S) def=
⊕
{val(σ) | σ ∈ path(S,c)}

– a witness setof pathsω(S)⊆ path(S,c) such that
⊕

σ∈ω(S)
val(σ) = δ (S).

Thegeneralized pushdown successor (GPSc) problemis to find for each regular set of
configurations S⊆ P×Γ ∗:

– δ (S) def=
⊕
{val(σ) | σ ∈ path(c,S)}

– a witness setof pathsω(S)⊆ path(c,S) such that
⊕

σ∈ω(S)
val(σ) = δ (S).

For the above definition, we avoid defining aregular set of configurations by re-
stricting S to be either a single configuration{c′} or nΓ ∗ for somen ∈ Γ . The above
problems can be considered as backward and forward reachability problems, respec-
tively. Each aims to find the combine of values of all paths between given pairs of
configurations (δ (S)). Along with this value, we can also find a witness set of paths
ω(S) that together justify the reported value forδ (S). This set of paths is always finite
because of item 5 in Definition 3. Note that the reachability problems do not require
finding thesmallestwitness set, but the WPDS algorithms always find a finite set.

3 Finding an Optimal Path
In this section we solve the specific BTRACE problem defined in Section 1. We begin
by developing a solution to the basic path optimization problem without considering
dataflow or ordering constraints and then add them back one by one.

3.1 Creating a WPDS

Let (N,E) be a CFG andP = (P,Γ ,∆) be a pushdown system representing its paths,
constructed as described in Section 2.1. LetB⊆ N be the set of critical nodes. We will
use this notation throughout this section. We now construct a WPDSW = (P,S , f )
that can be solved to find the best path.

For each path, we need to keep track of its length and also the set of critical nodes it
touches. LetV = 2B×N be a set whose elements each consist of a subset ofB (the crit-
ical nodes touched) and a natural number (the length of the path). We want to associate
each path with an element ofV. This is accomplished by defining a weight, which will
summarize a set of paths, as a set of elements fromV. The combine operation simply
takes a union of the weights, but eliminates an element if there is a better one around,
i.e., if there are elements(b,v1) and(b,v2), the one with shorter path length is chosen.
This drives the WPDS to only consider paths with shortest length. The extend operation
takes a union of the critical nodes and sums up path lengths for each pair of elements
from the two weights. This reflects the fact that when a path with lengthv1 that touches
the critical nodes inb1 is extended with a path of lengthv2 that touches the critical
nodes inb2, we get a path of lengthv1 + v2 that touches the critical nodes inb1∪b2.
The semiring constant0 denotes an infeasible path, and the constant1 denotes an empty
path that touches no critical nodes and crosses zero graph edges. This is formalized in
the following definition.

Definition 6. Let S = (D,⊕,⊗,0,1) be a bounded idempotent semiring where each
component is defined as follows:



– The set of weights D is2V , the power set of V .
– For w1,w2 ∈ D, define w1⊕w2 as reduce(w1∪w2), where

reduce(A) = {(b,v) ∈ A | @(b,v′) ∈ A with v′ < v}
– For w1,w2 ∈ D, define w1⊗w2 as

reduce({(b1∪b2,v1 +v2) | (b1,v1) ∈ w1,(b2,v2) ∈ w2})
– The semiring constants0,1∈ D are0 = /0 and1 = {( /0,0)}.

To complete the description of the WPDSW , we need to associate each pushdown
rule with a weight. Ifr = 〈p,n〉 ↪→ 〈p,u〉 ∈ ∆ , then associate it with the weightf (r) =
{({n}∩B,1)}. Whenever the ruler is used, the length of the path is increased by one
and the set of critical nodes grows to includen if n is a critical node. It is easy to see
that for a sequence of rulesσ ∈ ∆ ∗ that describes a path in the CFG,val(σ) = {(b,v)}
whereb is the set of critical nodes touched by the path andv is its length.

3.2 Solving the WPDS

An optimal path can be found by solving the generalized pushdown reachability prob-
lems on this WPDS. We consider two scenarios here: when we have the crash site but
do not have the stack trace of the crash, and when both the crash site and stack trace are
available. We start with just the crash site. Letne∈N be the entry point of the program,
andnf ∈ N the crash site.

Theorem 1. In W , solving GPS〈p,ne〉 gives usδ (nf Γ
∗) = {(b,v) ∈V | there is a path

from ne to nf that touches exactly the critical nodes in b, and the shortest such path has
length v}. Moreover,ω(nf Γ

∗) is a set of paths from ne to nf such that there is at least
one path for each(b,v) ∈ δ (nf Γ

∗) that touches exactly the critical nodes in b and has
length v.

The above theorem holds becausepaths(〈p,ne〉,〈p,nf Γ
∗〉) is exactly the set of

paths fromne to nf , which may or may not have unfinished calls. Taking a combine
over the values of such paths selects, for some subsetsb ⊆ B, a shortest path that
touches exactly the critical nodes inb, and discards the longer ones. The witness set
must record paths that justify the reported value ofδ (nf Γ

∗). Since the value of a path
is a singleton-set weight, it must have at least one path for each member ofδ (nf Γ

∗).
When we have a stack trace available as somes∈ (nf Γ

∗), with nf being the top-
most element ofs, we can use eitherGPSor GPP.

Theorem 2. In W , solving GPS〈p,ne〉 (GPP〈p,s〉) gives us the following values for Wδ =
δ (〈p,s〉) (δ (〈p,ne〉)) and Wω = ω(〈p,s〉) (ω(〈p,ne〉)): Wδ = {(b,v) ∈ V | there is a
valid path from ne to nf with stack trace s that touches all critical nodes in b, and the
shortest such path has length v}. Wω = a set of paths from ne to nf , each with stack
trace s such that there is at least one path for each(b,v) ∈Wδ that touches exactly the
critical nodes in b and has length v.

The above theorem allows us to find the required values using eitherGPSor GPP.
The former uses forward reachability, starting fromne and going forward in the pro-
gram, and the latter uses backward reachability, starting from the stack traces and
going backwards. Appendix A presents a detailed discussion on the complexity of solv-
ing these problems on our WPDS. The worst-case complexity is exponential in the



number of critical nodes and (practically) linear in the size of the program. The expo-
nential complexity in critical nodes is, unfortunately, unavoidable. The reason is that
the path optimization problem we are trying to solve is a strict generalization of the
traveling salesman problem: our objective is to find a shortest path between two points
that touches a given set of nodes. However, we did not find this complexity to be a
limitation in our experiments.

Having obtained the aboveWδ andWω values, we can find an optimal path easily.
Let µ : B → R be a user-defined measure that associates a score with each critical
node. We compute a score for each(b,v) ∈Wδ by summing up the scores of all critical
nodes inb and then choose the pair with highest score. Extracting a path corresponding
to that pair inWω gives us an optimal path. Some advantages of having such a user-
defined measure are that the user can specify bug predictor scores given by CBI, or
make up his own scores. The user can also give a negative score to critical nodes that
should beavoidedby the path. Critical nodes with zero score can be added and used for
specifying ordering constraints (Section 3.3). This lets our tool work interactively with
the user to find a suitable path. More generally, we can allow the user to give a measure
µ̂ : (2B×N)→R that directly associates a score with a path. Using such a measure, the
user can decide to choose shorter paths instead of paths that touch more critical nodes.

3.3 Adding Ordering Constraints

We now add ordering constraints to the path optimization problem. Suppose that we
have a constraint “noden must be visited before nodem,” which says that we can only
consider paths that do not visitm before visitingn. It is relatively easy to add such
constraints to the WPDS given above. The extend operation is used to compute the
value of a path. We simply change it to yield0 for paths that do not satisfy the above
ordering constraint. Forw1,w2 ∈ D, redefinew1⊗w2 asreduce(A) where

A = {(b1∪b2,v1 +v2) | (b1,v1) ∈ w1,(b2,v2) ∈ w2,¬(m∈ b1,n∈ b2)}
If we have more than one ordering constraint, then we simply add more clauses, one

for each constraint, to the above definition of extend.
These constraints do not change the worst case asymptotic complexity of solving

reachability problems in WPDS. However they do help prune down the paths that need
to be explored, because each constraint cuts down on the size of weights produced by
the extend operation.

3.4 Adding Dataflow Analysis

So far we have not considered interpreting the semantics of the program other than its
control flow. This implies that the WPDS can find infeasible paths: ones that cannot
occur in any execution of the program. An example is a path that assignsx := 1
and then follows the true branch of the conditionalif (x == 0) . In general, it is
undecidable to restrict attention to paths that actually occur in some program execution,
but if we can rule out many infeasible paths, we increase the chances of presenting a
feasible or near-feasible path to the user. This can be done using dataflow analysis.

Dataflow analysis is carried out to approximate, for each program variable, the set
of values that the variable can take at each point in the program. When a dataflow
analysis satisfies certain conditions, it can be integrated into a WPDS by designing an
appropriate weight domain [2, 5]. Examples of such dataflow analyses include linear



constant propagation [7] and affine relation analysis [8, 9]. In particular, we can use any
bounded idempotent semiring weight domainSd = (Dd,⊕d,⊗d,0d,1d) provided that
when given a functionfd : ∆ → Dd that associates each PDS rule (CFG edge) with a
weight, it satisfies the following property: given any (possibly infinite) setΣ ⊆ ∆ ∗ of
paths between the same pair of program nodes, we have

⊕
σ∈Σ vald(σ) = 0d only if all

paths inΣ are infeasible, wherevald( [r1, · · · , rk] ) = fd(r1)⊗d · · ·⊗d fd(rk). In partic-
ular this means thatvald(σ) = 0d only if σ is an infeasible path. This imposes a sound-
ness guarantee on the dataflow analysis: it can only rule out infeasible paths. Details
on how classical dataflow analysis frameworks [1] can be encoded as weight domains
can be found in Reps et al. [2]. The basic idea is to encode dataflow transformers that
capture the effect of executing a program statement, or a sequence of statements, as
weights. The extend operation composes transformers and the combine operation takes
theirmeetin the dataflow value lattice.

Such a translation from dataflow transformers to a weight domain allows us to talk
about the meet-over-all-paths between configurations of a pushdown system. For exam-
ple, solvingGPS〈p,ne〉 on this weight domain gives usδ (〈p,n1n2 · · ·nk〉) as the combine
(or meet) over the values of all paths fromne to n1 that have the stack tracen1n2 · · ·nk.
This is a unique advantage that we gain over conventional dataflow analysis by using
WPDSs.

GivenSd and fd as above, we change the weight domain of our WPDS as follows.

Definition 7. Let S = (D,⊕,⊗,0,1) be a bounded idempotent semiring where each
component is defined as follows:

– The set of weights D is22B×N×Dd , the power set of the set2B×N×Dd.
– For w1,w2 ∈ D, define w1⊕w2 as reduced(w1∪w2) where reduced(A) is defined

as{(b,min{v1, · · ·vn},d1⊕d · · ·⊕d dn) | (b,vi ,di) ∈ A,1≤ i ≤ n}
– For w1,w2 ∈ D, define w1⊗w2 as reduced(A) where A is the set{

(b1∪b2,v1 +v2,d1⊗d d2)
∣∣∣∣ (b1,v1,d1) ∈ w1,(b2,v2,d2) ∈ w2,d1⊗d d2

6= 0d,(b1,b2) satisfy all ordering constraints

}
– The semiring constants0,1∈ D are0 = /0 and1 = {( /0,0,1d)}.

Here (b1,b2) satisfy all ordering constraints iff for each constraint “visit n before m,”
it is not the case that m∈ b1 and n∈ b2.

The weight associated with each ruler = 〈p,n〉 ↪→ 〈p,u〉 ∈ ∆ is given by f (r) =
{({n}∩B,1, fd(r))}. Each path is now associated with the set of predictors it touches,
its length, and its dataflow value. Infeasible paths are removed during the extend opera-
tion as weights with dataflow value0d are discarded. More formally, for a pathσ ∈ ∆ ∗

in the CFG,val(σ) = {(b,v,wd)} if wd = vald(σ) 6= 0d is the dataflow value associated
with the path,v is the length of the path,b is the set of critical nodes touched by the
path, and the path satisfies all ordering constraints. Ifσ does not satisfy some ordering
constraint or ifvald(σ) = 0d, thenval(σ) = /0 = 0. Analysis using this weight domain
is similar to the “property simulation” used in ESP [10], where a distinct dataflow value
is maintained for each property-state. We maintain a distinct dataflow weight for each
subset of critical nodes.

Instead of repeating Theorems 1 and 2, we just present the case of usingGPSwhen
the stack traces∈ (nf Γ

∗) is available. Results for other cases can be obtained similarly.



Theorem 3. In the WPDS obtained from the weight domain defined in Definition 7,
solving GPS〈p,ne〉 gives us the following values:

– δ (〈p,s〉) = {(b,v,wd) | there is a path from ne to nf with stack trace s that visits
exactly the critical nodes in b, satisfies all ordering constraints, is not infeasible
under the weight domainSd, and the shortest such path has length v}.

– ω(〈p,s〉) contains at least one path for each(b,v,wd) ∈ δ (〈p,s〉) that goes from
ne to nf with stack trace s, visits exactly the predictors in b, satisfies all order-
ing constraints and has length v. More generally, for each(b,v,wd) ∈ δ (〈p,s〉) it
will have pathsσi ,1≤ i ≤ k for some constant k such that val(σi) = {(b,vi ,wi)},
min{v1, · · · ,vk}= v, and w1⊕d · · ·⊕d wk = wd.

The worst case time complexity in the presence of dataflow analysis increases by a
factor ofHd(Cd +Ed) whereHd is height ofSd, Cd is time required for applying⊕d,
andEd is the time required for applying⊗d.

Theorem 3 completely solves the BTRACE problem mentioned in Section 1. The
next section presents the dataflow weight domain that we used for our experiments.

3.5 Example and Extensions for Using Dataflow Analysis

Copy Constant Propagation We now give an example of a weight domain that can
be used for dataflow analysis. We encode copy-constant propagation [11] as a weight
domain. A similar encoding is used by Sagiv, Reps, and Horwitz [7]. Copy-constant
propagation aims to determine if a variable has a fixed constant value at some point in
the program. It interprets constant-to-variable assignments (x := 1 ) and variable-to-
variable assignments (x := y ) and abstracts all other assignments asx := ⊥, which
says thatx may not have a constant value. We ignore conditions on branches for now.

Let Var be the set of all global (integer) variables of a given program. LetZ>
⊥ =

Z∪{⊥,>} and(Z>
⊥,u) be the standard constant propagation meet semilattice obtained

from the partial order⊥vcp cvcp> for all c∈Z. Then the set of weights of our weight
domain isDd = Var→ (2Var×Z>

⊥). Here,τ ∈Dd represents a dataflow transformer that
summarizes the effect of a executing a sequence of program statements as follows:
if env: Var → Z is the state of the program before the statements are executed and
τ(x) = ({x1, · · · ,xn},c) for c∈ Z>

⊥, then the value of a variablex after the statements
are executed isenv(x1)uenv(x2) · · ·uenv(xn)uc. Let τv (x) be the first component of
τ(x) andτc (x) be the second component. Then we can define the semiring operations
as follows: the combine operation is a concatenation of expressions and the extend
operation is substitution. Formally, forτ1,τ2 ∈ Dd,

τ1⊕d τ2 = λx .(τv
1 (x)∪ τ

v
2 (x),τc

1 (x)u τ
c
2 (x))

τ1⊗d τ2 = λx .(
⋃

y∈τv
2 (x)

τ
v
1 (y),τc

2 (x)u (
y∈τv

2 (x)
τ

c
1 (y)))

The semiring constants are given by0d = λx .( /0,>) and1d = λx .({x},>).

Handling Conditionals Handling branch conditions is problematic because dataflow
analysis in the presence of conditions is usually very hard. For example, finding whether
a branch condition can ever evaluate to true, even for copy-constant propagation, is



PSPACE-complete [12]. Therefore, we have to resort to approximate dataflow analy-
sis, i.e., we give up on computing meet-over-all-paths. This translates into relaxing the
distributivity requirement on the weight domainSd. Fortunately, WPDSs can handle
non-distributive weight domains [2] by relaxing Definition 3 item 3 as follows. IfD is
the set of weights, then for alld1,d2,d3 ∈ D,

d1⊗ (d2⊕d3)v (d1⊗d2)⊕ (d1⊗d3); (d1⊕d2)⊗d3 v (d1⊗d3)⊕ (d2⊗d3)
wherev is the partial order defined by⊕ : d1 v d2 iff d1⊕d2 = d1. Under this weaker
property, the generalized reachability problems can only be solved approximately, i.e.,
instead of obtainingδ (c) for a configurationc, we only obtain a weightw such that
w v δ (c). For our path optimization problem, this inaccuracy will be limited to the
dataflow analysis. We would only eliminate some of the paths that the dataflow analysis
can find infeasible and might find a pathσ such thatvald(σ) = 0d. This is acceptable
because it is not possible to rule out all infeasible paths anyway. Moreover, it allows us
the flexibility of putting in a simple treatment for conditions in most dataflow analyses.
The disadvantage is that we lose a strong characterization of the type of paths that will
be eliminated.

For copy-constant propagation, we extend the set of weights by{ρe | e is an arith-
metic condition}. We associate weightρe with the rule〈p,n〉 ↪→ 〈p,m〉 (n,m∈ Γ ) if
the corresponding CFG edge can only be taken wheneevaluates to true on the program
state atn. For example, we associate the weightρx=0 with the true branch of the con-
ditional if (x == 0) and weightρx 6=0 with its false branch. The extend operation
is modified such that forτ ∈Dd, τ⊗ρe evaluates the conditioneunder the information
provided byτ and results to0d if e evaluates to false. Otherwise, the extend is simply
τ. More details can be found in a companion technical report [13].

Handling Local Variables A recent extension to WPDSs [5] shows how local variables
can be handled by usingmerge functionsthat allow for local variables to be saved before
a call and then merged with the information returned by the callee to compute the effect
of the call. This treatment for local variables allows us to restrict each weight to manage
the local variables of only one procedure. Details of the construction of these merge
functions are given in a companion technical report [13].

4 Integrating BT RACE and CBI

The formalisms of Section 3 may be used for solving a variety of optimization problems
concerned with touching key program points along some path. BTRACE represents one
application of these ideas: an enhancement to the statistical debugging analysis per-
formed by the Cooperative Bug Isolation Project (CBI).

4.1 A Need for Failure Paths

CBI uses runtime instrumentation and statistical modeling techniques to diagnose bugs
in widely deployed software. CBI identifies suspect program behaviors, calledbug pre-
dictors, that are strongly associated with program failure. Candidate behaviors may
include branch directions, function call results, values of variables, and other dynamic
properties [14]. Each bug predictor is assigned a numerical score inR+ that balances
two key factors: (1) how much this predictor increases the probability of failure, and (2)
how many failed runs this predictor accounts for. Thus, high-value predictors warrant



close examination both because they are highly correlated with failure and because they
account for a large portion of the overall failure rate seen by end users [4].

A key strength of CBI is that it samples behavior for the entire dynamic lifetime of
a run; however, interpreting the resulting predictors, which may be located anywhere in
the program prior to the failure point, can be very challenging. Rather than work with
isolated bug predictors, the programmer would like to navigate forward and backward
along the path that led to failure. BTRACE constructs a path that hits several high-ranked
predictors. This can help the programmer draw connections between sections of code
that, though seemingly unrelated, act in concert to bring the program down.

4.2 BTRACE Implementation

We have implemented BTRACE using the WPDS++ library [15]. To manage the ex-
ponential complexity in the number of bug predictors, we efficiently encode weights
using abstract decision diagrams (ADDs) provided by the CUDD library [16]. Addi-
tional details on how the semiring operations are implemented on ADDs may be found
in a companion technical report [13].

A BTRACE debugging session starts with a list of related bug predictors, believed
by CBI to represent a single bug. We designate this list (or some high-ranked prefix
thereof) as the critical nodes and insert them at their corresponding locations in the
CFG. Branch predictors, however, may be treated as a special case. These predictors
associate the direction of a conditional with failure, and therefore can be repositioned
on the appropriate branch. This can be seen as one example of exploiting not just the
location but also the semantic meaning of a bug predictor; branch predicates make this
easy because their semantic meaning directly corresponds to control flow.

For dataflow analysis, we track all integer- and pointer-valued variables and struc-
ture fields. We do not track the contents of memory and any write to memory via
a pointer is replaced with assignments of⊥ to all variables whose address was ever
taken. Direct structure assignments are expanded into component-wise assignments to
all fields of the structure.

4.3 Case Studies: Siemens Suite

We have applied BTRACE to three buggy programs from the Siemens test suite [17]:
TCAS v37, REPLACEv8, andPRINT_TOKENS2 v6. These programs do not crash; they
merely produce incorrect output. Thus our analysis is performed without a stack trace,
instead treating the exit frommain() as the “failure” point. We find that BTRACE can
be useful even for non-fatal bugs.

TCAS has an array index error in a one-line function that contains no CBI instrumen-
tation and thus might easily be overlooked. Without bug predictors, BTRACE produces
the shortest possible path that exitsmain() , revealing nothing about the bug. After
adding the top-ranked predictor, BTRACE isolates lines with calls to the buggy func-
tion.

REPLACE has an incorrect function return value. BTRACE with the top two pre-
dictors yields a path through the faulty statement. Each predictor is located within one
of two disjoint chains of function calls invoked frommain() , and neither falls in the
same function as the bug. Thus, while the isolated predictors do not directly reveal the
bug, the BTRACE failure path through these predictors does.



PRINT_TOKENS2 has an off-by-one error. Again, two predictors suffice to steer
BTRACE to the faulty line. Repositioning of branch predictors is critical here. Even
with all nineteen CBI-suggested predictors and dataflow analysis enabled, a correct
failure path only results if branch predictors are repositioned to steer the path in the
proper direction.

4.4 Case Studies:CCRYPT and BC

We have also run BTRACE on two small open source utilities:CCRYPT v1.2 andBC

v1.06.CCRYPT is an encryption/decryption tool andBC is an arbitrary precision calcu-
lator. Both are written in C. Fatal bugs in each were first characterized in prior work
by Liblit et al. [14]. More detailed discussion of experimental results can be found in a
companion technical report [13].

CCRYPT has an input validation bug. Reading end-of-file yields aNULL string
(char * ) that is subsequently dereferenced without being checked first. If given only
a stack trace, BTRACE builds an infeasible path that takes several impossible shortcuts
through initialization code. These shortcuts also yieldNULL values, but in places that
are properly checked before use and therefore cannot be the real bug. The path remains
the same if we add dataflow analysis (but no bug predictors), or if we add up to fourteen
bug predictors (but no dataflow analysis).

However, if BTRACE uses both dataflow analysis and at least eleven bug predictors,
the failure path changes to a feasible path that correctly describes the bug: non-NULL
values in the well-checked initialization code, and a fatal uncheckedNULLvalue later
on. This feasible path also arises from just a stack trace if one manually inserts order-
ing constraints to require that bug predictors appear after initialization code, e.g. if the
initialization code were assumed to be bug-free. The combination of dataflow analysis
and bug predictors make such manual, a priori assumptions unnecessary.

BC has a buffer overrun: a bad loop index inmore_arrays() silently trashes
memory. The program keeps running but may eventually crash during a subsequent call
to bc_malloc() . The stack trace at the point of failure suggests heap corruption but
provides no real clues as to when the corruption occurred or by what piece of code.
CBI-identified bug predictors are scattered across several files and their relationship
may not be clear on first examination.

Using one bug predictor, BTRACE builds a path that callsmore_arrays() early
in execution. This path is feasible but misleading:more_arrays() is always called
early in execution, and only a second or subsequent call tomore_arrays() can
cause failure. Using two or more bug predictors forces the path to include a fatal second
call to more_arrays() , correctly reflecting the true bug. By reading in-progress
calls out of the failure trace, we can easily reconstruct the entire stack at the call to
more_arrays() or any other point of interest and thereby give deeper context to the
frontier of the bad code.

CBI actually produces two ranked lists of related bug predictors forBC, suggesting
two distinct bugs. BTRACE produces the same path using either list, suggesting that they
correspond to a single bug. BTRACE is correct: the two lists do correspond to a single
bug. CBI can be confused by sampling noise, statistical approximation, incompleteness
of dynamic data, and other factors. BTRACE is a useful second check, letting us unify
equivalent bug lists that CBI has incorrectly held apart.



Section 3.2 mentioned that solving the WPDS may require time exponential in the
number of bug predictors. We find that the actual slowdown is gradual and that the abso-
lute performance of BTRACE is good. As expected, theGPSphase dominates; creating
the initial WPDS and extracting a witness path from the solved system take negligi-
ble time. The smallCCRYPTapplication has 13,661 CFG nodes, with about 1,300 on a
typical failure path. BTRACE requires 0.10 seconds to find a path using zeroCCRYPT

predictors, increasing gradually to 0.97 seconds with fifteen predictors. Adding more
predictors slows the analysis gradually, amplified only when adding a predictor forces
BTRACE to build a longer failure path.BC is larger at 45,234 CFG nodes, and a typical
failure path produced by BTRACE is about 3,000 nodes long. The complete analysis
takes from two to four seconds with up to four predictors.

Adding dataflow analysis slows the analysis by a factor of between four and twelve,
depending on configuration details. Analysis with dataflow and realistic numbers of bug
predictors takes about thirteen seconds forBC and less than two seconds forCCRYPT.

5 Related Work

The CodeSurfer Path Inspector tool [18, 19] uses weighted pushdown systems for veri-
fication: to see if a program can drive an automaton, summarizing a program property,
into a bad state. If this is possible, it uses witnesses to produce a faulty program path. It
can also use dataflow analyses by encoding them as weights to rule out infeasible paths.
We use WPDSs for optimizing a property instead of verifying it, which has not been
previously explored.

Liblit and Aiken directly consider the problem of finding likely failure paths through
a program [20]. They present a family of analysis techniques that exploit dynamic infor-
mation such as failure sites, stack traces, and event logs to construct the set of possible
paths that a program might have taken. They could not, however, optimize path length
or the number of events touched when all of them might be unreachable in a single path.
Our approach is, therefore, more general. BTRACE incorporates these techniques, along
with dataflow analysis, within the unifying framework of weighted pushdown systems.
Another difference is that instead of using event logs, we use the output of CBI to guide
the path-finding analysis. The theory presented in Section 3 can be extended to incor-
porate event logs by adding ordering constraints to appropriately restrict the order in
which events must be visited by a path.

PSE is another tool for finding failing paths [21]. It requires a user-provided descrip-
tion of how the error could have occurred, e.g., “a pointer was assigned the valueNULL,
and then dereferenced.” This description is in the form of a finite state automaton, and
the problem of finding a failing run is reduced to finding a backward path that drives
this automaton from itserror state to its initial state. PSE solves this in the presence of
pointer-based data structures and aliasing. Our work does not require any user descrip-
tion of the bug that might have caused the crash, but we do not yet handle pointer-based
structures. Like PSE, we can use pointer analysis as a preprocessing step to produce
more accurate dataflow weights.

In Definitions 6 and 7, we define semirings that are the power set of the values we
want to associate with each path. This approach has been presented in a more general
setting by Lengauer and Theune [22]. The power set operation is used to add distribu-



tivity to the semiring, and a reduction function, such as ourreduce, ensures that we
never form sets of more elements than necessary.

Our lists of bug predictors are derived using the iterative ranking and elimination
algorithm of Liblit et al. [4]. Several other statistical debugging algorithms for CBI-
style data have been proposed, including ones based on regularized curve fitting [23],
sparse disjunction learning [24], probability density function estimation [25], support
vector machines [26], and random forests [26]. BTRACE path reconstruction can use
predictors arising from any of these techniques; we require only a list of predictors and
numerical scores reflecting their importance. Further study may reveal whether certain
statistical debugging algorithms yield more useful BTRACE paths than others.

6 Conclusions

We have presented a static analysis technique to build BTRACE, a tool that can find
an optimal path in a program under various constraints imposed by a user. Using bug
predictors produced by CBI, BTRACE can perform a postmortem analysis of a program
and reconstruct a program path that reveals the circumstances and causes of failure.
The paths produced by BTRACE might not be feasible, but we intend for them to help
programmers understand the bug predictors produced by CBI and locate bugs more
quickly. BTRACE provides user options to supply additional constraints in the form
of stack traces and ordering constraints, the latter of which allow the user to guide
the tool interactively while locating a bug. Our case studies show that the BTRACE

path can isolate the chain of events leading to failure, and, given enough predictors,
has the ability to lead the programmer directly to the faulty code. More experiments
are required to prove the utility of BTRACE in debugging larger software systems, but
initial results look promising.
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A Complexity of Solving the WPDS
In this section, we discuss the worst-case running time complexity of solving the WPDS
constructed with the weight domain defined in Definition 6. Each of the methods out-
lined in Theorems 1 and 2 require solving eitherGPSor GPPand then reading the value
of δ (c) for some configurationc. We do not consider the time required for reading the
witness value as it can be factored into these two steps. Let|∆ | be the number of push-
down rules (or the size of the CFG),|Proc| the number of procedures in the program,
ne the entry point of the program,|B| the number of critical nodes, andL the length of



a shortest path to the most distant CFG node fromne. The height (length of the longest
descending chain) of the semiring we use isH = 2|B|L and the time required to perform
each semiring operation isT = 2|B|.

To avoid requiring more WPDS terminology, we specialize the complexity results
of solving reachability problems on WPDS [2] to our particular use.GPS〈p,ne〉 can be
solved inO(|∆ | |Proc| H T) time andGPP〈p,s〉 requiresO(|s| |∆ | H T) time. Reading
the value ofδ (〈p,ne〉) is constant time andδ (〈p,s〉) requiresO(|s| T) time. We can
now put these results together.

When no stack trace is available, the only option is to use Theorem 1. Obtaining
an optimal path in this case requires timeO(|∆ | |Proc| 22|B| L). When a stack trace is
available, Theorem 2 gives us two options. Suppose we havek stack traces available to
us (corresponding to multiple failures caused by the same bug). In the first option, we
solveGPS〈p,ne〉, and then ask for the value ofδ (〈p,s〉) for each stack trace available.

This has worst-case time complexityO(|∆ | |Proc| 22|B| L + k |s| 2|B|) where|s| is the
average length of the stack traces. The second option requires a stack traces, solves
GPP〈p,s〉 and then asks for the value ofδ (〈p,ne〉). This has worst-case time complexity

O(k |s| |∆ | 22|B| L). As is evident from these complexities, the second option should
be faster, but its complexity grows faster with an increase ink. Note that these are only
worst-case complexities, and comparisons based on them need not hold for the average
case. In fact, in WPDS++ [15], the WPDS implementation that we use, solvingGPSis
usually faster than solvingGPP.1

Let us present some intuition into the com-

n5
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n4

Fig. 3: A simple control flow graph

plexity results stated above. Consider the CFG
shown in Figure 3. If noden2 is a critical node,
then a path fromn1 to n6 that takes the left branch
at n2 has length 4. The path that takes the right
branch has length 3, and touches the same critical
nodes as the first path. Therefore, atn6, the first
path can be discarded and we only need to re-
member the second path. In this way, branching
in the program, which increases the total num-
ber of paths through the program, only increases
the complexity linearly (|∆ |). Now, if noden3 is
also a critical node, then atn6 we need to remem-
ber both paths: one touches more critical nodes
and the other has shorter length. (For a path that
comes in atn1, and has already touchedn3, it is
better to take the shorter right branch atn2.) In general, we need to remember a path
for each subset of the set of all critical nodes. This is reflected in the design of our
weight domain and is what contributes to the exponential complexity with respect to
the number of critical nodes.

1 The implementation does not take advantage of the fact that the PDS has been obtained from
a CFG. Backward reachability is easier on CFGs as there is at most one known predecessor of
a return-site node.


