
EFFECTIVE CHEMISTRY FOR SYNCHRONY AND
ASYNCHRONY

Deepak Garg1, Akash Lal2, Sanjiva Prasad3

1Carnegie Mellon University, Pittsburgh
dg+@cs.cmu.edu

2University of Wisconsin, Madison
akash@cs.wisc.edu

3Indian Institute of Technology Delhi, New Delhi
sanjiva@cse.iitd.ernet.it

Abstract We study from an implementation viewpoint what constitutes a reasonable and
effective notion of structural equivalence of terms in a calculus of concurrent
processes and propose operational effectiveness criteria in the form of conflu-
ence, coherence and standardization properties on an oriented version of the
structural laws. We revisit Berry and Boudol’s Chemical Abstract Machine
(Cham) framework using operational effectiveness criteria. We illustrate our
ideas with a new formulation of a Cham for Tccs with external choice, one
which is operationally effective unlike previous Cham formulations, and demon-
strate that the new Cham is fully abstract with respect to the LTS semantics for
Tccs. We then show how this approach extends to the synchronous calculus
Sccs, for which a Cham had hitherto not been proposed.

1. Introduction
Most presentations of structural operational semantics (SOS) of concurrent languages nowadays
employ the notion of structural equivalence ≡ between terms. This notion can be thought of as
defining algebraic structure whereas transitions→ modulo this equivalence represent computa-
tion across such structures. Typically included is a rule

P ≡ P ′ P → Q Q ≡ Q′

STRUCT

P ′ → Q′

which allows a term P to be readjusted into a form P ′ to which a specified transition rule ap-
plies. At an implementation level, however, such a rule is not “effective”, in that it does not
specify appropriate selections of elements within an equivalence class, nor does it bound the
amount of “structural adjustment” to be performed. Indeed, there are few criteria for decid-
ing what constitute reasonable notions of structural equivalence, beyond Milner’s injunction
[Mil93] that “structural laws should be digestible without concern for the dynamics of actions”
and the obvious requirement that the notion be decidable. Relevant work on the latter issue

concerns decidability of structural equivalence for the π-calculus with the replication operator
[EG01].
In this paper, we propose formal conditions that ensure reasonable and effective notions of struc-
tural equivalence. These operational effectiveness conditions, discussed in §3, are in the form of
confluence and coherence properties for an oriented version of the structural rules, which yield
a “standardization” result for execution sequences. Our conditions are closely related to the
notions of coherence developed in the context of term rewriting modulo equivalence relations
[Vir95]. Also related is Noll’s work exploring the notion of coherence while expressing finite
ccs (calculus of communicating systems) with SOS inference rules in a conditional rewriting
framework [Nol99].
Operational effectiveness ensures correct and complete (abstract) implementations of the spec-
ified semantics. Taken together with termination of the oriented structural rules, these con-
ditions yield a simple but complete implementation strategy. The import of these conditions
is that they simplify establishing adequacy and/or full abstraction results. Confluence and co-
herence of oriented “administrative” transitions are also useful in analysis and verification of
encodings of concurrent systems, since they vastly reduce the state space that needs exploration
(see [AP98, GS95] for use of this idea). The connection with rewriting theory has additional
benefits — while establishing confluence and coherence, standard rewriting techniques such as
completion help ensure that there are “enough” structural rules.
We motivate, develop and present our ideas in the chemical abstract machine (cham) frame-
work proposed by Berry and Boudol [BB90, BB92], which was the inspiration for Milner’s
formulation of the notion of structural equivalence in [Mil90]. The cham framework is an in-
tuitive style of presenting operational semantics (presumably also an abstract implementation),
where components of a parallel system are likened to molecules, and interaction between them
is likened to a chemical reaction between ions. It exploits the commutative monoidal (AC1)
properties of parallel composition to present systems as solutions, essentially finite multisets
of molecules, within which reactions are specified locally in the form of conditional rewriting
rules. “Structural adjustments”, accomplished via the so-called heating-cooling and clean-up
rules and permutations on molecules in a solution via a magical mixing mechanism (which can
be seen as a prototypical treatment of mobility), allow distant components to react, thus dis-
mantling the bureaucratic rigidity imposed by syntax. We argue that operational effectiveness
provides an important criterion for assessing a cham specification, and for realizing an ab-
stract implementation from it. It is central in our articulation of a new perspective on the cham

framework, namely that the essence of chams is that they define operationally effective rewrite
systems modulo an AC equational theory. We must clarify that though our presentation is in the
cham framework, the notion of operational effectiveness applies to any style of specification
based on rewriting.
Our alternative perspective on the cham framework makes possible using a uniform disciplined
cham idiom for expressing constructs involving non-local interaction, such as external choice,
which are problematic in an asynchronous system with purely local interaction [NP96, Pal97].
Several distributed systems and protocols employ non-local interaction via some infrastructure
or exhibit some degree of synchrony with the environment, and we believe that it is important for
a robust framework for specifying concurrent behaviour to be able to express such mediated or
catalyzed interaction at an appropriate level of abstraction. Roughly speaking, our alternative
formulation trades the simplicity of autarkic asynchronous computation for applicability of the
cham idea to more complex interactions. The confluence and coherence conditions provide the
necessary discipline for structuring computation and controlling the effects of non-local inter-
action. We illustrate this idea by focussing on concurrency combinators such as external choice
in a variant of ccs and synchronous parallel composition in Milner’s synchronous calculus of
communicating systems (Sccs) [Mil83].

Organization of the Paper. In §2 we introduce the cham framework and our notation. The
idea of operational effectiveness for chams is described in §3. The original cham in [BB90,
BB92] for the variant of ccs called Tccs [NH87] fails to satisfy the confluence-coherence
properties, and accordingly we present a reworked cham for Tccs in §4. We believe that this
cham also suffices for the π-calculus, at least the part without name-matching, since it imple-
ments scope extrusion and the other structural equivalences. Further, we show that this cham

is in full agreement with the standard labelled transition system (LTS) semantics for Tccs,
with bisimilarity as the notion of equivalence. This result improves on the full abstraction result
sketched by Boudol [Bou94] in that it works for external choice contexts as well. The proof
technique we use seems to be widely applicable, and relies on the confluence and coherence
properties of structural rules.
We then explore a “chemistry for synchrony” in §5, providing a cham for a version of Sccs.
This is the first synchronous cham of which we are aware (hitherto all chams were for cal-
culi with asynchronous process execution). Paucity of space prevents us from presenting here
a treatment of choice in Sccs, which appears in the full version of this paper. The proof of
correctness follows the same template as that for the Tccs cham. The main analysis required
in all our example chams involves showing that various rules commute. The Tccs and Sccs

cham examples use mechanisms based on information-carrying tags for capturing non-local
interactions in external choice and synchronous parallel composition. These tags are, however,
manipulated by local rules, giving workable implementations of these constructs that involve
non-local interaction. We believe that this model can be extended to distributed settings be-
cause of its compositional nature. The concluding section (§6) comments on the essence of this
alternative view on chams, extensions and future directions of work. The full version of this
paper can be obtained from http://www.cse.iitd.ac.in/˜sanjiva.

2. Preliminaries
A cham consists of a specification of its molecules, solutions and transformation rules on solu-
tions. The rewriting semantics is that a rule l → r may be applied to any solution that contains
substitution instances of the molecules of l, which are replaced by the instances under the same
substitution of the molecules in r. Consider the following sub-language (called ccs

−) of ccs,
where p denotes a typical process term and α a typical action defined over a set Act = N ∪N
where N is a set of names and N = {x | x ∈ N} is the set of “co-names”. The “co” operation
is involutive, i.e., x = x.

p ::= 0 | α.p | νx.p | p|p | . . .

Here 0 stands for inaction, “.” denotes action prefixing, “|” parallel composition and “ν” the
restriction operation (written in the notation favoured in the π-calculus).
A cham solution, typically denoted S or {|m1, . . . , mk|}, consists of a finite multiset of molecules
mi, delimited by the membrane brackets “{| |}”. In the cham framework, all transformations
are specified on solutions. Molecules are basically terms, extended to allow solutions within
them, and certain constructions on solutions. Molecules for ccs

− (typically m) are defined as
follows:

m ::= p | νx.S S ::= {|m1, . . . , mk|} (k ≥ 0)

Let] denote multiset union on solutions, i.e.,

{|m1, . . . , mk|}] {|m
′
1, . . . , m

′
l|} = {|m1, . . . , mk, m′

1, . . . , m
′
l|}.

Rules peculiar to a calculus consist of: (a) Reaction rules, presented as conditional rewrite rules
on solutions, which are of the form {|m1, . . . , mk|} 7→ {|m

′
1, . . . , m

′
l|}. These basic computa-

tional steps, which may be non-deterministic, are denoted using the arrow “ 7→”, possibly sub-

scripted by a rule label. (b) Structural rules, which are either the reversible “heating-cooling”
rules S
 S ′ or oriented “clean-up” rules S ; S ′ that get rid of inert terms. Heating rules
usually are of the form {|m|} ⇀ {|m′

1, . . . m
′
k|} and intuitively are intended to prepare a so-

lution for reaction. Cooling rules, the inverses of the heating ones, usually are of the form
{|m′

1, . . . m
′
k|} ⇁ {|m|}. We use the symbol ⇁ to denote ⇀−1, the symmetric inverse of the

heating relation. Clean-up transitions will be denoted by ;. Clean-up rules are distinguished,
as a matter of taste, from heating rules in that they do not increase the ability of a solution to
react, and their orientation is obvious.
Laws common to a variety of calculi include: (a) The Chemical Law, which permits rewriting
within a solution according to a locality principle that allows reactions and adjustments to occur
independently of the other molecules in a solution (here “→” denotes any rewriting, whether
reaction or structural):

S → S ′

S] S ′′ → S ′] S ′′

(b) The Membrane Law, which permits reactions to occur within reduction contexts:
S → S ′

{|C[S]|} → {|C[S ′]|}

A reduction context C[] is a molecule with a solution-shaped hole in it, that is only a so-
lution may be placed in such a hole. Berry and Boudol also employed an Airlock Law in
some chams, particularly for implementing choice. It allows particles to be isolated from
a solution, to support restricted interaction with the external context: {|m, m1, · · · , mn|}

{|m / {|m1, · · · , mn|}|}. In our treatment, we drop such a law, since it does not have the desired
confluence properties.

Notation. The symbol → will be used to denote the union of (i.e., any of) the relations ⇀,
⇁, ;, and 7→, whereas the symbol →A abbreviates ⇀ ∪ ;. The symbol ↔A denotes the
symmetric closure of→A, and =A its reflexive-transitive-symmetric closure. For any relation
R, let R↔, R+ and R∗ denote its symmetric, its transitive, and its reflexive-transitive clo-
sures, respectively. The different rewrite rules are labelled, and we will often subscript these
reaction/heating/cooling/clean-up relations with the labels of the rules of interest.
The operational rules for ccs

− are specified as follows. Communication is specified through
the irreversible reaction rule (schema): (R) {|x.p, x.q|} 7→ {|p, q|}

For the ccs
− subset the structural rules are:

(P) {|p|q|}
 {|p, q|} (0c) {|0|} ; {| |}
(M) {|νx.p|}
 {|νx.{|p|}|} (νc) {|νx.S|} ; S x /∈ fv(S)
(E) {|νx.S, p|}
 {|νx.({|p|}] S)|} x /∈ fv(p)

All these rules are applicable whenever permitted by the Chemical and Membrane laws. The
contexts to be considered are:

C ::= [] | C] S | {|νx.C|}

The structural rules are adapted from the cham given by Boudol for the π-calculus [Bou94],
rather than the Tccs cham given in [BB92]. The main difference is that the airlock mechanism
is not used and instead the rule (E) is introduced which allows scope extrusion. Note that in
this specification we identify terms upto α-renaming of bound variables and swapping of con-
secutive restriction membranes. The rules apply modulo an equational theory E (on solutions)
induced by the following equalities (here M denotes a molecule or a solution):

(α−cnv) νx.M = νy.M [y/x] (y /∈ fv(M))
(ν−swap) νx.{|νy.S|} = νy.{|νx.S|}

The first equality expresses the essence of what is meant by a term with bound variables. We
will outline (in §3) how the second equality can be treated by oriented rewriting modulo an AC

theory.

Proposition 1. For any two ccs
− terms p and q, p ≡ q iff {|p|} =A {|q|}, where ≡ denotes the

standard notion of structural equivalence on ccs
− terms.

3. Effective Structural Transformations
The above-mentioned intuitions for the heating-cooling and clean-up rules suggest that the rules
should be oriented (rightwards) in the direction of heating and clean-up. If these oriented→A-
moves are confluent, they may be applied in any order and (if terminating) yield unique normal
forms, which are more reactive than all other structurally equivalent forms. Note that con-
fluence of heating implies the following commutation, which allows cooling to be postponed:
⇁∗; ⇀∗⊆⇀∗; ⇁∗. Further, if heating/clean-up moves are not to prune away a potential re-
action, then a series of heating/clean-up steps and any reaction step can commute. Combining
these intuitions, we arrive at the following definition of operational effectiveness.

Definition 2 (Operational Effectiveness). A set of oriented structural rules (heating and clean-
up rules of a cham) is said to be operationally effective if the following two properties hold:

1 (→A-confluence) The relation→A is Church-Rosser: if S →∗
A S1 and S →∗

A S2, then
S1 →

∗
A S3 and S2 →

∗
A S3 for some S3.

2 (→∗
A − 7→-commutation or coherence) For all S,S1,S2 if S →∗

A S1 and S 7→ S2, then
there exists S3 such that S1 →

∗
A 7→ S3 and S2 →

∗
A S3.

The coherence condition may seem more general than needed for many instances, but even in
our example ccs

−
cham, several suggested stronger versions are unable to handle adequately,

e.g., extrusion of the scope of a restriction by the (E) rule. Confluence is an essential require-
ment since without it, coherence is ineffective.
Immediate consequences of operational effectiveness are =A ⊆→

∗
A; (→−1

A)∗ and
(→−1

A)∗; 7→ ⊆ →∗
A; 7→; (→−1

A)∗, from which follows a standardization for reduction se-
quences.

Theorem 3 (Standardization). If a set of oriented structural rules is operationally effective
then ∀n ≥ 0, (=A; 7→; =A)n ⊆→∗

A; (7→;→∗
A)n; (→−1

A)∗

Proposition 4. The cham for ccs
− is operationally effective.

This result follows from showing that the various rules commute as required. In fact, most pairs
of structural rules commute strongly (strong diamond property), with the exception of the (E)
rule.

We propose operational effectiveness as an important criterion for assessing a cham specifi-
cation. We observe that some chams in the literature (for the π-calculus and the Join cal-
culus [FG96]) seem reasonable (effective), whereas the Tccs and the γ-calculus chams in
[BB90, BB92] are not, since the laws for restriction and the airlock law in the first, and the
hatching and membrane laws in the second, lead to non-confluent heating.

Termination and strategy for implementation. In the ccs
−

cham given above, we can show
that the administrative→A-moves are strongly normalizing. The nontrivial aspect here involves
treating extrusion of the scope of restriction by the rule (E).

Proposition 5 (Strong Normalization). The relations →A (heating+clean-up) and ⇁ (cool-
ing) are strongly normalizing in the cham for ccs

−.

Standardization and termination yield a fairly simple but complete implementation strategy
(even with guarded recursion): heat/clean-up a solution as much as possible using rules other
than the recursion rule, then unfold once each recursive term, and then heat/clean-up as much
as possible using the other rules.

3.1 Rewriting modulo equivalence
A crucial question is whether it is semantically correct to work with reduction (reaction) modulo
oriented structural rules instead of reduction modulo structural equivalence. Our confluence-
coherence conditions ensure that it is indeed so for effective chams. We later found that in
[Vir95], Viry has studied this issue in the general setting of oriented rewrite theories (ORTs).
Technically, an equational theory is decomposed into a “core” notion of equality E (with re-
spect to which matching is tractable) and a collection of oriented rewrite rules A. The question
is “when canRmodulo E∪A↔ (the semantics) be simulated by (A)∗R(A)∗ modulo E (the im-
plementation)?” For chams, E should capture only the essential equational theory for solutions.
Viry has identified coherence conditions which suffice to establish that the implementation re-
lations are complete with respect to the specified semantics (the other direction, soundness, is
trivial). In the figure below, we depict (with solid lines quantified universally and dotted lines
existentially) the following properties: (a) confluence of the orientedA rules, (b) our coherence
property, and (c) Viry’s strong coherence property.

A* A*

A*

A*(a)

A*

A*

A*

(b)
R

R A*

A*

A*
A*

A*

(c)
R

R

Our coherence property implies Viry’s strong coherence property, and therefore, ensures com-
pleteness of the implementation with respect to the semantics. Indeed, it does not need the
extra A∗ moves after the R move on the lower (existential) branch to complete the diagram.
This stronger property slightly simplifies implementation and reasoning, e.g., the proofs of full
abstraction. Note that coherence does not require →A, to be terminating (modulo E) as, for
instance, Noll does in his formalization of ccs [Nol99].
Next, we argue that the essence of an effective cham is that it defines an operationally effective
rewrite system modulo an AC equational theory. Rewriting modulo arbitrary equational theories
may not be tractable [Nol99]. Viry has given conditions for checking the coherence conditions
(under the assumption thatA is terminating), by checking a finite number of critical pairs mod-
ulo E when an instance of a generic permutation lemma holds for E . Instances of this lemma
are known for E = ∅, E = A (associativity) and E = AC (associativity and commutativity).
The last of these theories agrees well with the notion of multiset rewriting which is at the core
of the cham framework. In the sequel, we illustrate that the salient concurrency combinators
— restriction, external choice and synchronous parallel composition — can all be treated within
an AC framework.
The identity laws for parallel composition and non-deterministic choice, and idempotence for
the latter combinator are treated as rules in A, namely as clean-up rules in the cham. The con-
ditions on these clean-up rules ensure that there are no problematic critical pairs, thus avoiding
the termination and completion related problems that may arise in rewriting modulo identity.
Idempotence is dealt with a fairly simple commutation argument.
If we disregard α-conversion, which is uncontroversial and can anyway be treated in a first-order
theory using an indexing scheme, the only equality that is not an AC property is the (ν-swap)
equation introduced §1 for the ccs

−
cham. This was necessary to ensure commutation when

using the (E) rule. It can be eliminated by the following mildly different treatment of restric-
tion, one that highlights that restriction in some sense satisfies AC properties (based on those of

set union).

Factoring the (E) rule. Instead of molecules of the form νx.S , we will write instead SX ,
where X is a set of names, which are considered bound in S . The (M) rule is recast as
{|νx.p|}
 {|{|p|}{x}|}. Now the (E) rule can now be factored into the two rules:

{|SX , p|}
EM {|(S] {|p|})X |} X ∩ fv(p) = ∅

{|SX ,S ′
Y |}
EF {|(S] S

′)X+Y |} X ∩ fv(S ′) = Y ∩ fv(S) = ∅

With this factoring, the strong normalization property is preserved, and stronger statements can
be made regarding rule commutation — (EF) commutes strongly, whereas (EM) commutes,
but possibly weakly, with other rules.

3.2 Agreement with LTS semantics
What is the relationship between a calculus P equipped with a labelled transition system (LTS)
→α, and its purported cham formulation C? We outline the key notions and a template for prov-
ing the correctness of the chams in §4 and §5. First, we equip C with a labelled transition rela-
tion 7→α based on a suitable notion of observability for solutions. Let =⇒α =→∗

A; 7→α;→∗
A.

This will be the transition relation on C.

Definition 6. Given a LTS 〈G,→2〉, a symmetric relationR ⊆ G×G is called a bisimulation on
G if whenever (p, q) ∈ R and p→α p′, there exists q′ ∈ G such that q →α q′ and (p′, q′) ∈ R.

Suppose ∼p and ∼c stand for bisimulation equivalence in P and C respectively. A translation
〈.〉 : P → C is called adequate (sound) if 〈p〉 ∼c 〈q〉 implies p ∼p q, and fully abstract
if p ∼p q implies 〈p〉 ∼c 〈q〉 as well. (These properties also apply to reasonable notions of
equivalence other than bisimulation.)

Lemma 7. If→A-moves of a cham are operationally effective, then =A is a bisimulation on
cham configurations.

The crucial fact used here is that due to coherence, the (eventual) possibility of a reaction is
preserved across→A-moves.

Definition 8 (Forward and Backward Simulation). cham C forward simulates P if for
all process p, q ∈ P such that p →α q, there exists a cham configuration S such that
〈p〉 =⇒α S =A 〈q〉. cham C backward simulates P if for any process p and cham con-
figuration S , such that 〈p〉 =⇒α S , there is a process p′ such that 〈p′〉 =A S and p→α p′.

Theorem 9 (Bisimulation). Let cham C be operationally effective and both forward and back-
ward simulate P . Then the following two relations are bisimulations on C-configurations and
processes in P respectively.

1 Bc = {(S1,S2) |∃p, q s.t . p ∼p q,S1 =A 〈p〉,S2 =A 〈q〉}

2 Bp = {(p, q) |∃S1,S2 s.t . 〈p〉 =A S1, 〈q〉 =A S2,S1 ∼c S2}

The forward and backward simulation conditions relate the →α moves of a process and the
=⇒α-moves of its image under the translation. Lemma 7 allows us to find a suitable =⇒α-
derivative of a given cham configuration to fulfil the bisimilarity requirements.

Corollary 10 (Full Abstraction). If the conditions of Theorem 9 hold for a cham, then 〈p〉 ∼c

〈q〉 if and only if p ∼p q.

4. An Effective CHAM for TCCS
We now extend ccs

− with external choice, and guarded recursion, i.e., in fix i(~x = ~p), every
occurrence of a process variable xi in the pi’s is within an action-prefixed term. Guardedness
is a vital condition for providing an effective treatment in the presence of recursion.

p ::= . . . | p[]p | fix i(~x = ~p)

The standard semantics for Tccs is:

α.p 7→α p
p1 7→

α p′
1 p2 7→

α p′
2

p1|p2 7→ p′
1|p

′
2

p1 7→ p′
1

p1|p2 7→ p′
1|p2

p2 7→ p′
2

p1|p2 7→ p1|p
′
2

p1 7→
α p′

1

p1|p2 7→
α p′

1|p2

p2 7→
α p′

2

p1|p2 7→
α p1|p

′
2

p 7→ p′

νx.p 7→ νx.p′
p 7→α p′ (α 6∈ {x, x})

νx.p 7→α νx.p′

p1 7→ p′
1

p1[]p2 7→ p′
1[]p2

p2 7→ p′
2

p1[]p2 7→ p1[]p
′
2

p1 7→
α p′

1

p1[]p2 7→
α p′

1

p2 7→
α p′

2

p1[]p2 7→
α p′

2

fix i(~x = ~p) 7→ pi[fix j(~x = ~p) / xj]
n
j=1

In [BB90, BB92], external choice was implemented using reversible rules for airlocks and heavy
ions, which carry tags (l or r) memo-ing the component of a choice from which an action
originated. Once choice is resolved by the context, irreversible projection rules eliminate the
other alternatives. This treatment is quite awkward: it introduces a great deal of new syntax, and
is rigid in tagging the heavy choice ions, contrary to the AC properties of choice. Furthermore
the airlock law leads to non-confluence.
We generalize the tagging approach to a compositional treatment, while presenting an effec-
tive cham rewrite system. Tccs external choice is implemented using “speculative concurrent
execution”, i.e., running the various (tagged) alternatives concurrently, until one is selected.
Thereupon the others are culled away, using the tags to determine which components to retain
or kill. Given any two sub-processes in a Tccs term, they are either in exclusive choice or in
parallel with each other. We use an unordered, finitely branching tree of nodes alternatingly
marked P and C (for parallel composition and choice respectively) to represent such relations
between processes. The leaves are marked with the tags. This abstract data structure, called an
exclusion tree, serves as a catalyst that mediates the non-local interaction necessary for external
choice. While we present it as a “global” component, its manipulation may admit some paral-
lelism. Let L = {a1, a2, . . .} be an infinite set of labels. An exclusion tree, denoted by T , is
defined by the following grammar.

T ::= Tp Tp ::= a | P(Tc, . . . , Tc) Tc ::= a |C(Tp, . . . , Tp)

P and C denote internal nodes of the tree with finite non-zero arity. Given an exclusion tree T ,
arbitrary nodes and subtrees rooted at those nodes are denoted by n and its decorated variants.
Given a node n, the type of n is P (respectively C) if the subtree rooted at n was produced from
the non-terminal Tp (resp. Tc). Contexts for exclusion trees are denoted by CT .

CT ::= Cp Cp ::= [] | P(Cc, Tc, . . . , Tc) Cc ::= [] | C(Cp, Tp, . . . , Tp)

cham configurations are pairs, written T ` S , where T is an exclusion tree and S is a solution.
It is assumed that all leaves in T are distinct; this property is preserved by the rewriting rules.
Tccs terms in the solution S are labeled from the set L. Molecules may now be redefined.

m ::= pa | νx.S

A molecule pa is termed active if its tag a is a leaf in the tree T . Only active molecules are
allowed to take part in a reaction. The rest may be garbage collected.
The equational theory E on configurations T ` S is obtained by “lifting” to configurations the
equational theory E defined earlier for solutions, and adding the equations

or

subsplita1,a5,a6
 (T)

splitP,a1,a5,a6
 (T)

P

C C

1a 3a 4aa2

6a5a

P

C C

3a 4aa2P5a 6a

P

C C

3a 4aa2

or
splitC,a1,a5,a6

 (T)

split (T)a1,a5,a6

Figure 1. The split and subsplit operations

CT

4a a5

1a 2a 6a 7a

P

C

1a 2a

4a a5 a8

CT

6a 7a

P

C C C

P Pa3

1,a6
reacta (T)

Figure 2. The react operation

P(. . . , Ti, . . . , Tj , . . .) = P(. . . , Tj , . . . , Ti, . . .)

C(. . . , Ti, . . . , Tj , . . .) = C(. . . , Tj , . . . , Ti, . . .)

to emphasize the unordered (AC) nature of the tree. In addition, E also contains the following
renaming equality for labels.

T ` S = T [a2/a1] ` S[a2/a1] a2 6∈ T,S

Let C denote a solution context with a “solution-shaped” hole.

C ::= [] | C] S | {|νx.C|}

We say that a ∈ T if the tree T has a leaf labeled a. Also, (n1 ← n2) ∈ T if the parent of
node n1 in T is the node n2. If n is a node with only one child n1, removen(T) is the tree
T with the nodes n, n1 removed and the children of n1 connected to parent(n); if n1 is itself
a leaf, it is connected to parent(n). T − (n1 ← n2) denotes tree T with the node n1 and
all its children removed provided (n1 ← n2) ∈ T . If n2 ∈ T , T + (n1 ← n2) is the tree
T with the additional subtree n1 added below n2. Define splita,a1,a2

(T) = ((T − (a ←
n)) + (a1 ← n)) + (a2 ← n) when (a ← n) ∈ T and a1, a2 ∈ L are not in T . Also,
subsplita,a1,a2

(T) = ((T − (a ← n)) + (n′ ← n)) + (a1 ← n′) + (a2 ← n′) if
(a ← n) ∈ T . n′ is a new internal node having a type different from n and a1, a2 ∈ L are
labels not in T . Figure 1 depicts these operations graphically.
For t ∈ {P, C} define

T ` C[{|(p|q)a|}]
P splitP,a,a1,a2
(T) ` C[{|pa1 , qa2 |}] (a ∈ T)

T ` C[{|(νx.p)a|}]
M T ` C[{|νx.{|pa|}|}] (a ∈ T)

T ` C[{|m, νx.S|}]
E T ` C[{|νx.(S] {|m|})|}] (x 6∈ fv(m))

T ` C[{|(p[]q)a|}]
C splitC,a,a1,a2
(T) ` C[{|pa1 , qa2 |}] (a ∈ T)

T ` C[{|fix i(~x = ~p)a|}]
F T ` C[{|(pi[fix j(~x = ~p) / xj]
n
j=1)

a|}] (a ∈ T)

T ` C[{|pa|}] ;gc T ` C[{| |}] if a 6∈T

T ` C[{|νx.S|}] ;νc T ` C[S] if x 6∈ fv(S)

T ` C[{|0a|}] ;0c T − (a← n) ` C[{| |}] (a← n) ∈ T

T + (n1 ← n) ` S ;aL removen(T) ` S if n has only one child n1 in T

T ` C[{|(α.p)a1 , (α.q)a2 |}] 7→R reacta1,a2
(T) ` C[{|pa1 , qa2 |}]

if a1, a2 ∈ T and reacta1,a2
(T) is defined

Figure 3. Rules for the Tccs cham.

splitt,a,a1,a2
(T) =



splita,a1,a2
(T) if t = type(parent(a))

subsplita,a1,a2
(T) otherwise

Let LCAT (a1, a2) be the least common ancestor of the leaves a1 and a2 in T . Let a1, a2 ∈ T
and n = LCAT (a1, a2). Let n have type P and T = CT [T ′] where T ′ is the subtree
of T rooted at n and CT is the rest of the tree T . Define reacta1,a2

(T) to be the tree
CT [P(a1, a2, T1, T2, . . .)] where T1, T2, . . . are all the subtrees of T whose roots were chil-
dren of nodes of type P occurring on the unique paths from a1 to n and a2 to n in T . The react
operation is depicted graphically in Figure 2, with the subtrees T1, T2, . . . circled.
The rewriting rules for Tccs cham configurations are given in Figure 3. The rules are pre-
sented as context-embedded rewrites, rather than specifying elementary rewrites and inductively
propagating these steps via Chemical and Membrane laws. This is just a matter of technical
convenience. Such an approach is often used for specifying reduction semantics for λ-calculi
instead of inference rules for induction cases.
The heating-cooling rules (M), (E) are as before, except for the tag management. The (P) rule
splits the leaf corresponding to the term where it is applied. The (C) rule deals with external
choice and allows a term p[]q to decompose into p and q tagged with leaves occurring as separate
children of a C node. The rule (F) for fix-points allows recursive definitions to be unfolded in
the heating direction, and is standard. The (gc) clean-up rule allows one to “garbage collect”
inactive molecules, those whose tags are not in T . The (aL) clean-up rule removes nodes that
represent a singleton term in a choice or parallel context. The rules (0c) and (νc) are as before.
The proviso on the reaction rule ensures that both reagent molecules are active, and not in
mutual exclusion. The reaction eliminates from the exclusion tree all tags that marked terms
mutually exclusive of either reacting molecule.
We define the administrative moves of the Tccs cham as the heating and cleanup rules:
→A = ⇀ ∪ ; . With a small extension of the earlier treatment, it is not difficult to show
that→A is strongly normalizing (since recursion is guarded, the use of ⇀F is bounded).

Definition 11 (LTS). A labelled transition relation 7→α can be defined as:
T ` C[{|(α.p)a|}] 7→α T ′ ` C[{|pa|}] if a ∈ T and C[] does not restrict α. Here
T ′ = P(a, T1, T2, . . .) where T1, T2, . . . are all the subtrees of T whose root is a child of a

node of type P occurring on the path from a to the root of T .

Definition 12 (Translation). For p in Tccs, define 〈p〉 = a ` {|pa|} a ∈ L

Lemma 13 (Tccs-Administrative Moves). The administrative moves →A of Tccs cham

are operationally effective for both the LTS (7→α) and reduction (7→R).

Lemma 14 (Tccs-Simulation). The Tccs cham satisfies the properties of forward and back-
ward simulation with respect to both the LTS and the reduction semantics.

The proof of this lemma employs an alternative formulation of the cham, which is closer to
the inductive style followed in LTS semantics of Tccs. In fact, the cham we have presented
was systematically derived from the equivalent alternative “inductive” LTS presentation. That
formulation was first “closed” with contexts to yield a reduction system with inductive laws,
and then “flattened” with respect to contexts to yield the present rewrite-rule form.

Theorem 15 (Standardization and Full Abstraction).

1 For the Tccs cham, (=A;→α; =A)n ⊆→∗
A; (→α;→∗

A)n; (→−1

A)∗

2 For the Tccs cham, (=A; 7→R; =A)n ⊆→∗
A; (7→R;→∗

A)n; (→−1

A)∗

3 The Tccs cham is a fully abstract implementation.

We note in passing that in [Vir95], Viry had specified LOTOS semantics (which is closely
related to ccs) as an oriented rewriting theory. We believe that his formulation is somewhat
unsatisfactory since it includes the “Expansion Theorem” [Mil89] in the oriented structural rules
A. This amounts to embedding a particular notion of observation and program equivalence
into the structural equivalence, which seems to run contrary to Milner’s injunction on keeping
structural equivalence independent of the dynamics.

5. An Effective CHAM for SCCS
We now consider a variant of Sccs [Mil83], a calculus in which process execution is syn-
chronous. Assume that the set of actions Act forms an Abelian monoid, under the operation
·, with 1 denoting the identity element. Let α ∈ Act , a set of actions, and let X ⊆ Act . For
brevity, we write αβ for α · β.
The syntax of the subset of Sccs we consider is given by the abstract grammar:

p ::= 0 | α.p | p1|p2 | νX.p | fix i(~x = ~p)

0 represents inability to execute, “.” denotes prefixing, and “|” is now synchronous parallel
composition. Due to space restrictions, in this paper, we omit the choice operator considered
by Milner in his original presentation of Sccs. Further we assume that we have only guarded
recursion. We must clarify that for continuity with the previous section, we employ a restriction
operator νX similar in spirit to that in ccs. Our νX.p can be defined as p o (Act − X) in
Milner’s syntax.
The LTS semantics for this Sccs subset are:

α.p 7→α p
p1 7→

α1 p′
1 p2 7→

α2 p′
2

p1|p2 7→
α1α2 p′

1|p
′
2

p 7→α p′

νX.p 7→α νX.p′ α 6∈ X
(pi[fix j(~x = ~p) / xj]

n
j=1) 7→

α p′

fix i(~x = ~p) 7→α p′

In a synchronous calculus, all processes act in concert. At first blush, this suggests an alternative
chemical law of the form:

S1 → S
′
1 S2 → S

′
2

S1] S2 → S
′
1] S

′
2

In a cham, however, the processes must be structurally adjusted to be ready for synchronizing
with one another. Since the number of administrative→A moves can vary for different com-
ponents, they cannot be performed in lockstep. Thus we continue with the old chemical law,
at least for the structural rules, though we discuss below an alternative chemical law for the
synchronization steps.
Since all terms in a Sccs process act together to produce a composite action, their individual
actions need to be propagated upward on the structure of the term, and only at the top level is
it decided whether an action can take place. Our cham implementation mimics this idea, but
several implementation-level rewrite steps are needed to accomplish a semantic transition. We
use tags to propagate actions. Let ◦ be an element not in Act (we call this element “Notag”, and
it is used to mark molecules prior to ionization or after action propagation). Tags are elements
of Act ∪ {◦}. We denote tags by the letter t and its decorated variants.

Molecules and solutions. Solutions (denoted by S) and molecules (denoted by m) are defined
by the following grammar.

m ::= p | νX.St S ::= {|mt1
1 , . . . , mtn

n |} n ≥ 0

Tagged solutions and tagged molecules are solutions and molecules with a tag on them. The
tag is written as a superscript on the solution or molecule. We define contexts for (untagged)
solutions by the following grammar.

C ::= []t | ({|(νX.C)t1 |}] S)t2

Rules. The heating/cooling rules given below can be freely applied wherever permitted by
a Chemical Law or Membrane Law. The (I) rule describes ionization of a prefixed term.

{|(α.p)◦|}
I {|p
α|} {|(νX.p)◦|}
M {|(νX.{|p◦|}◦)◦|}

{|(p|q)◦|}
P {|p
◦, q◦|} {|fix i(~x = ~p)◦|}
F {|(pi[fix j(~x = ~p) / xj]

n
j=1)

◦|}

Reaction. Reaction in Sccs is a LTS move Sα 7→α
R S

◦. Reaction is a top level rewrite, to
which the Membrane Law and Chemical Law do not apply.

Propagation Rules. The propagation rules given below propagate actions on molecules and so-
lutions upwards on the structure of the system. Synchronisation is facilitated by the rule (PU).
The rule (νU) allows actions to be propagated past a restriction.

{|mα1

1 , . . . , mαn

n |}
◦ ↪→PU {|m

◦
1, . . . , m

◦
n|}

α1···αn

{|(νX.Sα)◦|} ↪→νU {|(νX.S◦)α|} α 6∈ X

Both the chemical and membrane law may be used in conjunction with (νU). Observe that
the rule (PU) works on tagged solutions. The usual chemical law does not apply to this rule.
However the membrane law does. Contexts for tagged solutions are defined as follows.

Ct ::= [] | ({|(νX.Ct)
t1 |}] S)t2

Alternative Chemical Law for (PU). As the (PU) rule is essentially about synchronizing ac-
tions from different components, the usual chemical law does not apply. However, the following
alternative chemical law achieves (piecemeal) the synchronization of actions and upward prop-
agation done by (PU):

{|mα|}◦ ↪→PU {|m
◦|}α

S◦
1 ↪→PU (S ′

1)
α1 S◦

2 ↪→PU (S ′
2)

α2

(S1] S2)
◦ ↪→PU (S ′

1] S
′
2)

α1·α2

Results. The Sccs cham given here is also operationally effective, and is in agreement
with its LTS semantics. This supports our case that synchronous operations can be dealt with in

a disciplined cham framework.

Definition 16 (Administrative Moves). For the Sccs cham, →A = ⇀ ∪ ↪→ .

Definition 17 (Translation). For a Sccs process p, we define 〈p〉 = {|p◦|}◦.

Lemma 18 (Sccs-Administrative Moves). The administrative moves→A of the Sccs cham

are operationally effective for the LTS (7→α
R).

Lemma 19 (Sccs Simulation). The Sccs cham forward and backward simulates the LTS
semantics of Sccs.

Theorem 20 (Standardization and Full Abstraction).

1 For the Sccs cham, (=A; 7→α
R; =A)n ⊆→∗

A; (7→α
R;→∗

A)n; (→−1

A)∗

2 The Sccs cham is a fully abstract implementation.

6. Conclusion
We have argued that operational effectiveness is an important criterion for assessing any struc-
tural congruence or cham specification, since it ensures that the implementation is reasonable
and in agreement with the intended semantics. The critical notions are those of confluence and
coherence, which turn out to be valuable tools for reasoning about systems and in proofs of
adequacy and full abstraction. We believe that the cham framework is worth extending beyond
asynchronous systems to accommodate non-local interactions and (partial) synchronous oper-
ators. Accordingly, we have proposed an alternative “artificial chemistry” in which reactions
are “mediated”, and in which operational effectiveness provides a vital discipline. Indeed, we
contend that the locality principle articulated by Banâtre, Boudol and others should relate not
merely to the particular Chemical Law they presented (which works well for asynchronous sys-
tems) but to these notions of confluence and coherence, which are at the heart of any reasonable
cham treatment.
In our two examples, we have considered limited subsets of Tccs and Sccs to illustrate the
ideas, and for establishing standardization and full abstraction. This is not a serious limitation.
For instance, internal choice can be treated by adding the following reaction rules. Since inter-
nal choice leads to non-confluent behaviour, it should not be a structural rule. These rules do
not affect the properties of operational effectiveness.

T ` {|(p1 ⊕ p2)
a|} 7→IC T ` {|pa

i |} if a ∈ T i ∈ {1, 2}

τ actions are invisible moves which resolve internal choice but not external choice. They can
be treated by adding an extra reaction rule.

T ` {|(τ.p)a|} 7→R T ` {|pa|} if a ∈ T

It is intuitive and satisfying that reasonable notions of structural equivalence arise from rule
commutations. We believe that structural equivalences arise from permitted commutations in a
framework such as rewriting logic. Indeed, the semantic foundations of chams in conditional
rewriting logic deserve greater study ([Mes92] shows how chams can be expressed in that
framework, though properties such as coherence of those rewriting rules have not been studied
further there or in subsequent related work, e.g., [VM00]). We also feel that rewriting logic
can provide a framework for exploring the connections between asynchronous and synchronous
calculi, since it can express both kinds of chemistry.
In summary, we tacitly identify the essential mechanism of a cham as being oriented rewriting
modulo a collection of AC equational theories. We may posit that the essential aspects of good

cham formulations are: (a) The structural rules are factored into a “core” AC equality theory
and an orientable set of rewrite rules. (b) The oriented structural rules→A satisfy commutation
properties, thus exhibiting confluence and strong coherence of →A with 7→. (c) Establishing
strong coherence is kept relatively simple by avoiding problematic critical pairs, particularly in
non-superposition cases, e.g., by disallowing reactions within molecules that are heatable.

Acknowledgement. This work was supported in part by MHRD projects RP01425 and
RP01432 and a grant from SUN Microsystems.

References
[AP98] R. Amadio and S. Prasad. Modelling IP mobility. In Proceedings of CONCUR’98,

LNCS vol. 146: 301–316. Springer, 1998.
[BB90] G. Berry and G. Boudol. The chemical abstract machine. In Proceedings of PoPL’90,

pages 81–94. ACM, 1990.
[BB92] G. Berry and G. Boudol. The chemical abstract machine. TCS, 96:217–248, 1992.
[Bou94] G. Boudol. Some chemical abstract machines. In A Decade of Concurrency, LNCS

vol. 803: 92–123. Springer, 1994.
[EG01] J. Engelfriet and T. Gelsema. Structural inclusion in the pi-calculus with replication.

TCS, 258(1-2):131–168, 2001.
[FG96] C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the join-

calculus. In Proceedings of PoPL’96, pages 372–385. ACM, 1996.
[GS95] J. F. Groote and J. Springintveld. Focus points and convergent process operators.

Logic Group Preprint Series 142, Department of Philosophy, Utrecht University,
1995.

[Mes92] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. TCS,
96(1):73–155, 1992.

[Mil83] R. Milner. Calculi for synchrony and asynchrony. TCS, 25:267–310, 1983.
[Mil89] R. Milner. Communication and Concurrency. Prentice Hall International, 1989.
[Mil90] R. Milner. Functions as processes. In Proceedings of ICALP’90, LNCS vol. 443:

167–180. Springer-Verlag, 1990.
[Mil93] R. Milner. The polyadic π-calculus: A tutorial. In W. Brauer, F.L. Bauer, and

H. Schwichtenberg, eds, Logic and Algebra of Specification. Springer, 1993.
[NH87] R. De Nicola and M. Hennessy. CCS without τ ’s. In Proceedings of TAPSOFT’87,

LNCS vol. 249: 138–152. Springer, 1987.
[Nol99] T. Noll. On coherence properties in term rewriting models of concurrency. In Pro-

ceedings of CONCUR’99, LNCS vol. 1664: 478–493, Springer, 1999.
[NP96] U. Nestmann and B. C. Pierce. Decoding choice encodings. In Proceedings of

CONCUR’96, LNCS vol. 1119: 179–194. Springer, 1996.
[Pal97] C Palamidessi. Comparing the expressive power of the synchronous and the asyn-

chronous pi-calculus. In Proceedings of PoPL’97, pages 256–265. ACM, 1997.
[VM00] A. Verdejo and N. Martí-Oliet. Implementing CCS in Maude. In Proceedings of

FORTE 2000, pages 351–366, Kluwer, 2000.
[Vir95] P. Viry. Rewriting modulo a rewrite system. Technical Report TR-95-20, Diparti-

mento di Informatica, Univ. Pisa, Dec 1995.

