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The colored graph isomorphism problem is a restricted version of the general graph isomorphism (GI)
problem that involves deciding the existence of a color preserving isomorphism between a pair of colored
graphs. In this report, we study this problem for graphs whose color multiplicity is bounded by 3 (3-GI).
We begin by formally defining the colored graph isomorphism problem and setup our notation. Next,
we study the general graph isomorphism problem and specialize its results for colored graphs. Then,
we use special properties of colored graphs with multiplicity bounded by 3 to prove that 3-GI is in the
deterministic-logarithmic-space complexity class L. Finally, we use this result to show that the problem
of deciding the existence of a non-trivial color preserving automorphism on a graph with color multi-
plicity bounded by 3 (3-GA) is in L as well. In previous work [1], a proof of 3-GI in symmetric logspace
SL (which we now know to be the same as L) has been given but the proof is incorrect and section 4
presents a counter example.

Definition 1. A colored graph G is a three-tuple (V,E, P ) where (V,E) specifies an undirected graph
and P = {Vi}ki=1 is a partition of the vertices into color sets (Vi ∩ Vj = Φ, i 6= j and (∪ki=1Vi) = V ). For
convenience, define color(v) = i if v ∈ Vi.

Definition 2 (Colored GI). The colored graph isomorphism problem is to decide the existence of a
color preserving isomorphism between a pair of colored graphs G = (V,E, P ) and G′ = (V ′, E′, P ′), i.e.,
a mapping φ : V → V ′ satisfying the following conditions.

1. φ is a bijection.

2. (v1, v2) ∈ E ⇔ (φ(v1), φ(v2)) ∈ E′ for all v1, v2 ∈ V ′.

3. color(v) = color(φ(v)) for all v ∈ V .

Also, let Iso(G,G′) denote the set of isomorphisms between graphs G and G′ and Isoc(G,G
′) denote the

set of color preserving isomorphisms between colored graphs G and G′.

1 Decomposing isomorphisms

For a graph G = (V,E) and a set V ′ ⊆ V , let GV ′ denote the graph induced by vertices V ′ and let EV ′

denote the edges of GV ′ . Also, for a subset of the edges E′ ⊆ E, let G−E′ be the graph G without the
edges in E′. Next, if φ1 : V1 → V ′

1 and φ2 : V2 → V ′

2 are bijections on disjoint domains (V1 ∩ V2 = Φ)
and disjoint co-domains (V ′

1 ∩ V
′

2 = Φ) then let φ1 × φ2 : (V1 ∪ V2)→ (V ′

1 ∪ V
′

2 ) be the bijection defined
as follows.

φ1 × φ2(v) =

{

φ1(v) if v ∈ V1

φ2(v) if v ∈ V2

The following lemma shows how we can use isomorphisms on smaller graphs to find isomorphisms on
larger graphs. The idea is that the edge-preserving condition of a graph isomorphism can be satisfied
locally by isomorphisms on smaller edge-disjoint subgraphs.

Lemma 1. Given a pair of graphs G = (V,E) and G′ = (V ′, E′) and partitions P = {Vi}ki=1 of V
and P ′ = {V ′

i }
k
i=1 of V ′, if there exist bijections φi : Vi → V ′

i for 1 ≤ i ≤ k such that φi × φj ∈
Iso(GVi∪Vj

, G′

V ′

i
∪V ′

j
) for all 1 ≤ i < j ≤ k then φ1 × φ2 × · · · × φk ∈ Iso(G,G′).
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Proof. Let φ = φ1 × φ2 × · · · × φk. Then

(v1, v2) ∈ E
⇔ (v1, v2) ∈ EVa∪Vb

where v1 ∈ Va, v2 ∈ Vb
⇔ (φa × φb(v1), φa × φb(v2)) ∈ E′

V ′

a∪V
′

b
(as φa × φb ∈ Iso(GVa∪Vb

, G′

V ′

a∪V
′

b
))

⇔ (φa(v1), φb(v2)) ∈ E′

V ′

a∪V
′

b

⇔ (φ(v1), φ(v2)) ∈ E′

V ′

a∪V
′

b

⇔ (φ(v1), φ(v2)) ∈ E′ ♦

The conditions required in Lemma 1 can be further simplified using the following Lemma. The idea is
to again find smaller edge-disjoint subgraphs.

Lemma 2. Given a pair of graphs G = (V,E) and G′ = (V ′, E′); disjoint subsets V1, V2 ⊆ V and
V ′

1 , V
′

2 ⊆ V
′ and bijections φ1 : V1 → V ′

1 and φ2 : V2 → V ′

2 , then φ1×φ2 ∈ Iso(GV1∪V2
, G′

V ′

1
∪V ′

2

) if and only

if φ1 ∈ Iso(GV1
, G′

V ′

1

), φ2 ∈ Iso(GV2
, G′

V ′

2

) and φ1×φ2 ∈ Iso(GV1∪V2
−(EV1

∪EV2
), G′

V ′

1
∪V ′

2

−(E′

V ′

1

∪E′

V ′

2

)).

Proof. The proof is similar to the one for Lemma 1. ♦

Using the above two Lemmas, we get the following important property about color preserving isomor-
phisms.

Theorem 1. Given a pair of colored graphs G = (V,E, {Vi}ki=1) and G′ = (V ′, E′, {V ′

i }
k
i=1), φ ∈

Isoc(G,G
′) if and only if φ can be written as φ1 × φ2 × · · · × φk where

1. φi ∈ Iso(GVi
, G′

V ′

i
), 1 ≤ i ≤ k and

2. φi × φj ∈ Iso(GVi∪Vj
− (EVi

∪EVj
), G′

V ′

i
∪V ′

j
− (E′

V ′

i
∪ E′

V ′

j
)), 1 ≤ i < j ≤ k.

Proof. Let φ ∈ Isoc(G,G
′). Then we must have color(v) = color(φ(v)) for all v ∈ V . This implies the

following.
v ∈ Vi

⇔ color(φ(v)) = i

⇔ φ(v) ∈ V ′

i

Now, define φi : Vi → V ′

i as simply φ restricted to the domain Vi. Then clearly, φ = φ1 × φ2 × · · · × φn.
Also, since φ is an isomorphism, we have φi × φj ∈ Iso(GVi∪Vj

, G′

V ′

i
∪V ′

j
), 1 ≤ i < j ≤ k. Using Lemma

2 on this, we get the forward direction of this theorem. For the reverse direction, use Lemma 2 to get
that φi ×φj ∈ Iso(GVi∪Vj

, G′

V ′

i
∪V ′

j
), 1 ≤ i < j ≤ k. Then use Lemma 1 to get that φ ∈ Iso(G,G′). Then

φ can be shown to preserve colors as each φi is color preserving by condition 1. ♦
Corollary 1. A pair of colored graphs G = (V,E, {Vi}ki=1) and G′ = (V ′, E′, {V ′

i }
k
i=1) are isomorphic if

and only if there are bijections φi : Vi → V ′

i satisfying conditions 1 and 2 mentioned in Theorem 1.

Corollary 2. A colored graph G = (V,E, {Vi}ki=1) has a non-trivial (color preserving) automorphism
if and only if there are bijections φi : Vi → Vi satisfying conditions 1 and 2 mentioned in Theorem 1
(with G′ = G) along with an additional constraint that at least one of the bijection φi is not the identity
mapping.

2 3-GI is in L

In this section, we show that 3-GI is in the complexity class L by reducing problem instances of 3-
GI in logspace to undirected graph reachability queries. So, given a pair of colored undirected graphs
G = (V,E, {Vi}ni=1) and G′ = (V ′, E′, {V ′

i }
n
i=1) with color multiplicity bounded by 3 (called 3-colored

graphs: |Vi| ≤ 3 and |V ′

i | ≤ 3 for all 1 ≤ i ≤ n), we will construct in logspace a single undirected graph
f(G,G′) and pose the isomorphism question as a reachability question on this graph. Before we describe
the construction of f(G,G′), let us examine theorem 1 in greater detail for 3-colored graphs.
Condition (1) of theorem 1 considers isomorphisms between the graphs GVi

and G′

V ′

i
both of which

have bounded size (≤ 3 vertices) for 3-colored graphs G and G′. So, we can enumerate Iso(GVi
, G′

V ′

i
) in
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constant time by considering all the bijections between Vi and V ′

i . If we define B(Vi, V
′

i ) to be all the
bijections between Vi and V ′

i , condition (1) can be posed as multiple constraints of the form

(α) φi 6= π

where π ∈ B(Vi, V
′

i )− Iso(GVi
, G′

V ′

i
). Note that there can be at most 6 such constraints per color i. The

reason why we have chosen to pose complementary constraints will become clear later when we construct
the graph f(G,G′). Next, condition (2) could also be broken down into constraints of the following form
through exhaustive case analysis.

(α) φi 6= π

(α) φj 6= π′

(β) φi = πi ⇔ φj = πj

where π, πi ∈ B(Vi, V
′

i ) and π′, πj ∈ B(Vj , V
′

j ). To further simplify this discussion, let (αi,π) denote
the constraint φi 6= π and (βi,j,π,π′) denote the constraint φi = π ⇔ φj = π′. These constraints are
over variables φi which together form an isomorphism between given graphs G and G′. πs denote fixed
bijections. Using theorem 1 we can say that any color preserving isomorphism has to be composed of
bijections φi that satisfy all the generated constraints and vice versa. An exhaustive case analysis is
provided in the appendix to find out all constraints but we present one case here for the continuity of
this section. Figure 2 shows the constraints generated for graphs shown in figure 1.

G’

A

B

C

D a

bE

F fc

e

d

G

Figure 1: Colored graphs G and G′ with two colors. Vertices {A,B,C, a, b, c} and {D,E, F, d, e, f} have
the same color

(α) φ1 6∈ {abc, acb, bac, cab}
(α) φ2 6∈ {def, dfe, edf, fde}
(β) φ1 = bca⇔ φ2 = efd

(β) φ1 = cba⇔ φ2 = fed

Figure 2: Constraints generated for the colored graph pair shown in figure 1. For φ1, abc is a shorthand
for {A 7→ a,B 7→ b, C 7→ c}. Similarly for φ2.

Another benefit obtained from 3-colored graphs is the restriction on the constraints that can be pro-
duced. In particular, we have the following property on the type of constraints we can have.

Lemma 3. For 3-colored graphs G and G′ (as defined in Theorem 1), if there is a constraint (βi,j,π,π′)
then,

1. For all ψi ∈ B(GVi
, G′

V ′

i
), either (αi,ψi

) is a constraint or (βi,j,ψi,π′′) is a constraint for some

π′′ ∈ B(GVj
, G′

V ′

j
).

2. For all ψj ∈ B(GVj
, G′

V ′

j
), either (αj,ψj

) is a constraint or (βi,j,π′′,ψj
) is a constraint for some

π′′ ∈ B(GVi
, G′

V ′

i
).
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Proof. Clear from the case analysis provided in the appendix. ♦

This Lemma basically says that whenever a (β) constraint is produced between two colors for some pair
of bijections, there would be (β) constraints between the colors for all bijections that do not have an (α)
constraint. This property will clearly show up when we construct the graph f(G,G′). Another important
inference we can make out from the generated constraints is the following.

Lemma 4. For 3-colored graphs G and G′ (as defined in Theorem 1), πi ∈ Iso(GVi
, G′

V ′

i
) if there are no

(αi,πi
) constraints and πi × πj ∈ Iso(GVi∪Vj

, G′

V ′

i ∪V
′

j
) if

1. There are no (αi,πi
) and (αj,πj

) constraints and

2. There is the constraint (βi,j,πi,πj
) or there are no (βi,j, , ) constraints.

The above Lemma shows how the (α) and (β) constraints capture the information required to determine
isomorphisms for a pair of colors. Now we will use the constraints to generate the graph f(G,G′).

2.1 The graph f(G, G′)

Given 3-colored graphs G = (V,E, {Vi}ki=1) and G′ = (V ′, E′, {V ′

i }
k
i=1), construct the graph f(G,G′)

as follows. The vertices of f(G,G′) are two-tuples of the form (i, π) where 1 ≤ i ≤ k is a color and
π ∈ B(Vi, V

′

i ) is a bijection. There is one additional vertex in f(G,G′) denoted by ⊥. The edges of this
graph are as follows.

1. (⊥, (i, π)) is an edge if (αi,π) is a constraint.

2. ((i, π), (j, π′)) is an edge if (βi,j,π,π′) is a constraint.

So, the edges of f(G,G′) directly encode the constraints. We can now use graph reachability as a res-
olution procedure for the constraints and find the required color preserving isomorphisms. Let CG(v)
denote the connected component of a vertex v in the graph G. We drop the subscript G when the graph
is clear from the context.

Theorem 2. 3-colored graphs G and G′ are isomorphic if and only if for all colors i, there is a vertex
v = (i, πi) in f(G,G′) s.t.

1. ⊥ 6∈ C(v) (⊥ is not reachable from v).

2. (j, π) ∈ C(v)⇒ (j, π′) 6∈ C(v) for all π′ 6= π (No two vertices of the same color are reachable from
v).

Each of the conditions in the above Theorem can be translated into graph reachability queries on f(G,G′).
Thus, by running reachability queries for each vertex in f(G,G′) (except ⊥) and keeping track of the fact
that we were able to find a vertex of each explored color that satisfied the conditions of the Theorem,
we can find out if G and G′ are isomorphic or not. This problem can in turn be converted to a single

reachability question (LL = L) which shows that 3-GI is in L. So, we are only left with the proof of
Theorem 2 which we state after the following useful Lemmas.

Lemma 5. If {vl = (il, πl)}ml=1 is a path in the graph f(G,G′) which does not include the vertex ⊥,
then we have the implied constraint (βi1,im,π1,πm

).
Proof. This follows straight from induction. The constraints (βi1,i2,π1,π2

) and (βi2,i3,π2,π3
) clearly imply

the constraint (βi1,i3,π1,π3
). ♦

Lemma 6. Connected components of f(G,G′) that don’t contain ⊥ either have the same colors or
completely different ones. Formally, if C(S) = {i | ∃πi, (i, πi) ∈ S} then for any two vertices v and v′ in
f(G,G′) that are not reachable from ⊥, C(C(v)) ∩ C(C(v′)) = Φ or C(C(v)) = C(C(v′)).
Proof. Suppose that this is not true for two vertices v and v′ that are not reachable from ⊥. Then
wlog C(C(v)) ∩ C(C(v′)) 6= Φ and C(C(v)) − C(C(v′)) 6= Φ. Now choose an edge in C(v) whose one
vertex has color in C(C(v)) − C(C(v′)) and the other vertex has color in C(C(v)) ∩ C(C(v′)). Such
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an edge would always exist because of the connectivity of C(v). Let this edge be ((j, π1), (i, π2)) with
i ∈ C(C(v)) ∩ C(C(v′)). Then there is a vertex (i, π3) ∈ C(v′). Now apply Lemma 3. Since there is
a constraint (βi,j,π2,π1

), there should also be a constraint (βi,j,π3,π4
) for some π4 as there is no (αi,π3

)
constraint (C(v′) does not have ⊥). So, there should be a j colored vertex in C(v′) which is not true.
This contradiction proves this Lemma. ♦

We are now setup to prove Theorem 2.

Proof of Theorem 2. First, suppose that G and G′ are isomorphic and π ∈ Isoc(G,G
′). Then by

Theorem 1 we have π = π1 × π2 × · · · × πk, πi ∈ Iso(GVi
, G′

V ′

i
) and πi × πj ∈ Iso(GVi∪Vj

− (EVi
∪

EVj
), G′

V ′

i
∪V ′

j
− (E′

V ′

i
∪E′

V ′

j
)). Now, consider C((i, πi)). If ⊥ ∈ C((i, πi)) then there is a path from (i, πi)

to some vertex (j, π′) which is connected to ⊥. This means that there are constraints (βi,j,πi,π′) (using
Lemma 5) and (αj,π′). These constraints imply φi 6= πi for any isomorphism that agrees with πi on color
i which is a contradiction. Hence, ⊥ 6∈ C((i, πi)). Now, if (j, π′), (j, π′′) ∈ C((i, πi)) for π′ 6= π′′, then
there are paths (i, πi) ; (j, π′) and (i, πi) ; (j, π′′). Using Lemma 5 again, we have the constraints
(βi,j,πi,π′) and (βi,j,πi,π′′). These imply that any isomorphism that agrees with πi on color i must agree
with both π′ and π′′ on color j which is not possible. However, an isomorphism does exist that agrees
with πi on color i. Hence we have a contradiction and the vertex (i, πi) satisfies the required properties
for Theorem 2 for all colors i.
For the reverse direction, we have at least one vertex vi for each color i whose connected component
C(vi) satisfies the mentioned properties. Now, use algorithm 1 to choose some of these vertices (at most
one per color) such that their connected components are color disjoint but span all the colors.

Algorithm 1: Choosing vertices
CC ← Φ
CV ← Φ
while (CC 6= {1, · · · , k})

Choose any vertex vj s.t. j 6∈ CC and C(vj) satisfies properties of Theorem 2.
CV ← CV ∪ C(vj)
CC ← CC ∪ C(C(vj))

return CV

Lemma 6 ensures that the connected components added to CV are disjoint with respect to each other.
Also, since each of C(vi) contains at most one vertex of each color and doesn’t contain ⊥, CV contains
exactly one vertex of each color and does not contain ⊥ . So, let CV = {(i, πi) | 1 ≤ i ≤ k}. Now, we
will show that π = π1 × π2 × · · · × πk is a color preserving isomorphism. For this, we only need to show
that πi × πj ∈ Iso(GVi∪Vj

, G′

V ′

i
∪V ′

j
), 1 ≤ i < j ≤ k. Lemma 2 and Theorem 1 complete the proof after

that. Now, if (i, πi) and (j, πj) lie in different connected components then there is no edge in f(G,G′)
between vertices of colors i and j as an edge would imply a (β) constraint between the colors which in
turn implies that there is a constraint (βi,j,πi,π′) for some π′ (because of Lemma 3). Since the connected
components were color disjoint, a vertex of color j cannot exist in the connected component of (i, πi).
Hence there is no edge between the colors. The absence of such an edge along with the absence of edges to
⊥ from (i, πi) and (j, πj) implies that πi×πj ∈ Iso(GVi∪Vj

, G′

V ′

i
∪V ′

j
) (using Lemma 4). Now suppose that

(i, πi) and (j, πj) lie in the same connected component. Since each connected component had at most
one vertex per color, we have that either (i, πi) is connected to (j, πj) or there is no edge between the
two colors using an argument similar to the one presented before for (i, πi) and (j, πj) lying in different
connected components. Again, using Lemma 4, πi×πj ∈ Iso(GVi∪Vj

, G′

V ′

i
∪V ′

j
). This completes the proof

to Theorem 2.

3 3-GA is in L

We can reduce 3-GA into 3-GI queries to prove that 3-GA is in L (using the same reduction as the
many-one reduction of GA into GI) but we can also directly show this by following the above technique.
For a 3-colored graph G = (V,E, {Vi}ki=1), construct the graph f(G,G) and then pose the following
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question for determining the existence of a non-trivial automorphism: for all colors i, there should be a
vertex v = (i, πi) in f(G,G) s.t.

1. ⊥ 6∈ C(v).

2. (j, π) ∈ C(v)⇒ (j, π′) 6∈ C(v) for all π′ 6= π.

Also, at least one of these vertices v should be something other than (i, id) where id is the identity
bijection.

4 Previous Work

In a previous paper by Koebler and Toran [1], a proof has been presented for 3-GI being in L but it has
a flaw. The proof proceeds by building the graph f(G,G′) (on the same vertex set as we have used) and
then converts 3-GI in to graph reachability queries on this graph. The construction of f(G,G′) is based
on the following rules. (G = (V,E, {Vi}

k
i=1) and G′ = (V ′, E′, {V ′

i }
k
i=1))

Rule 1. For every pair of colors i, j and every bijection φ ∈ B(Vi, Vj), include the edge ((i, φ),⊥)
in f(G,G′) if the edges between Vi and Vj in G and the edges between V ′

i and V ′

j in G′ imply that
no isomorphism in Iso(G,G′) can map nodes of Vi into V ′

i like φ, that is, for every ψ ∈ B(Vj , V
′

j ),
φ× ψ 6∈ Iso(GVi∪Vj

, G′

V ′

i
∪V ′

j
).

Rule 2. For every pair of colors i, j, and φ ∈ B(Vi, V
′

i ), if for a pair of nodes ia, ib ∈ Vi = {i1, i2, i3} and
a pair of nodes i′a′ , i

′

b′ ∈ V
′

i = {i′1, i
′

2, i
′

3} and two bijections η, π on the set {1, 2, 3}, the edges between
the sets of nodes {ia, ib} and {jη(a), jη(b)} are exactly the two edges {(ia, jη(a)), (ib, jη(b))} and the edges
between the sets of nodes {i′a′, i

′

b′} and {j′
π(a′), j

′

π(b′)} are exactly the two edges {(i′a′ , j
′

η(a′)), (i
′

b′ , j
′

η(b′))}

and φ× ψ ∈ Iso((GVi∪Vj
, G′

V ′

i
∪V ′

j
) for ψ = πφη−1 then we include in f(G,G′) the edge ((i, φ), (j, ψ)).

After constructing the graph f(G,G′), isomorphism of G and G′ is decided by looking for a set of nodes
in f(G,G′), one of each color, such that from this set no other node in f(G,G′) can be reached. This
result is based on the following Lemma which is the first place where the proof fails.

Lemma 4 of [1]. For each pair of colors i, j and bijection φ, ψ, if there is a path from (i, φ) in f(G,G′)
to (j, ψ) not having ⊥ as an intermediate node then every isomorphism in Iso(G,G′) that maps the nodes
of color i like φ, is forced to map the node of color j like ψ.

The proof for base case of this Lemma is incorrect. It assumes that if there is an edge between (i, φ)
and (j, ψ) then ψ = πφη−1 for some bijections η and π satisfying conditions of Rule 2 of the graph
construction. This is incorrect because there might be more than one pair of bijections η and π and then
ψ 6= πφη−1. Following is a counter example.

G’

A

B

C

D a

bE

F fc

e

d

G

Figure 3: Colored graphs G and G′ with two colors. Vertices {A,B,C, a, b, c} and {D,E, F, d, e, f} have
the same color

Figure 4 shows the graph f(G,G′). It clearly does not have a set of vertices, one of each color from
which no other vertex is reachable but the graphs G and G′ are isomorphic which contradicts the main
result of the paper. The graph does not satisfy Lemma 4 of the paper as well.
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fde

w

efd

edf dfe

def

fedcab

bca

bac acb

cba
abc

Figure 4: The graph f(G,G′) constructed according to the rules given in [1].

If we interpret Rule 2 to say that it can be used for each pair of colors i, j and bijection φ exactly once,
we would still end up constructing the same graph f(G,G′) as the rule would fire for colors 1 and 2 and
bijection abc and also for colors 1 and 2 and bijection def .
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5 Appendix

In this appendix, we present an exhaustive case-analysis to find out all (α) and (β) constraints for a
given pair of colored graphs and a given color. Let G = (V,E, {Vi}ki=1) and G′ = (V ′, E′, {V ′

i }
k
i=1)

be two colored graphs and φ : Vi → V ′

i , ψ : Vj → V ′

j be two bijections. From Lemma 2, φ × ψ ∈
Iso(GVi∪Vj

, G′

V ′

i
∪V ′

j
) if and only if φ ∈ Iso(GVi

, G′

V ′

i
), ψ ∈ Iso(GVj

, G′

V ′

j
) and φ×ψ ∈ Iso(GVi∪Vj

− (EVi
∪

EVj
), G′

V ′

i
∪V ′

j
− (E′

V ′

i
∪ E′

V ′

j
)). We assume that |Vi| = |Vj | = |V ′

i | = |V
′

j | = 3. The cases for smaller size

sets can be analyzed easily. Let Vi = {A,B,C}, Vj = {D,E, F}, V ′

i = {a, b, c} and V ′

j = {d, e, f}.
We use φ = abc as a shorthand for φ = {A 7→ a,B 7→ b, C 7→ c} and ψ = def as a shorthand for

ψ = {D 7→ d,E 7→ e, F 7→ f}. Figure 5 shows the constraints generated for φ ∈ Iso(GVi
, G′

V ′

i
) and Figure

6 shows the constraints generated for φ × ψ ∈ Iso(GVi∪Vj
− (EVi

∪ EVj
), G′

V ′

i
∪V ′

j
− (E′

V ′

i
∪ E′

V ′

j
)). As

notational convenience, we use φ(A) = b to denote the set of (α) constraint in which φmust map A to b i.e.
φ 6= abc, φ 6= acb, φ 6= cab, φ 6= cba. Also, we use β(π1, π2) to denote the (β) constraint φ = π1 ⇔ ψ = π2.
To reduce the number of cases we must consider, we make use of the fact that for any pair of graphs

H and H ′, Iso(H,H ′) = Iso(H,H
′

), where H and H
′

are complements of the respective graphs. This
shows that in order to consider the isomorphisms in Iso(GVi∪Vj

− (EVi
∪EVj

), G′

V ′

i
∪V ′

j
− (E′

V ′

i
∪E′

V ′

j
)), we

only need to consider graphs with at most 4 edges (cases with higher number of edges can be converted
into cases with at most 4 edges by taking complements). Figures 5 and 6 only show the cases when it is
possible to have an isomorphism.
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Case Constraints Case Constraints

C

b

c

aA

B ∅

aA

B

C

b

c

φ(C) = c

aA

B

C

b

c

φ(B) = b

aA

B

C

b

c

∅

Figure 5: Constraints generated for deciding if φ ∈ Iso(GVi
, G′

V ′

i
) where Vi = {A,B,C} and V ′

i = {a, b, c}.

Case Constraints Case Constraints
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d

e

f

φ(A) = a

ψ(D) = d

aA

B

C

D

E

F

b

c

d

e

f

φ(C) = c

ψ(F ) = f

β(abc, def)
β(bac, edf)

aA

B

C

D

E

F

b

c

d

e

f

φ(A) = a

ψ(F ) = f

aA

B

C

D

E

F

b

c

d

e

f

β(abc, def)
β(acb, dfe)
β(bac, edf)
β(bca, efd)
β(cab, fde)
β(cba, fed)

aA

B

C

D

E

F

b

c

d

e

f

φ(C) = c

ψ = def

aA

B

C

D

E

F

b

c

d

e

f

ψ(D) = d

aA

B

C

D

E

F

b

c

d

e

f

φ = abc

ψ = def

A

B

C

D

E

F

b

c

d

e

f

a
φ = abc

ψ = def

A

B

C

D

E

F

b

c

d

e

f

a φ(A) = a

ψ(F ) = f

β(abc, def)
β(acb, edf)

A

B

C

D

E

F

b

c

d

e

f

a
φ(A) = a

ψ(F ) = f

A

B

C

D

E

F

b

c

d

e

f

a
φ(A) = a

ψ = def

A

B

C

D

E

F

b

c

d

e

f

a
φ(C) = c

ψ(F ) = f

Figure 6: Constraints generated for deciding if φ×ψ ∈ Iso(GVi∪Vj
− (EVi

∪EVj
), G′

V ′

i
∪V ′

j
− (E′

V ′

i
∪E′

V ′

j
))

where Vi = {A,B,C}, V ′

i = {a, b, c}, Vj = {D,E, F}, V ′

j = {d, e, f}.
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