CS 640: Introduction to Computer Networks

Aditya Akella

Lecture 11 -Inter-Domain Routing -BGP (Border Gateway Protocol)

Intra-domain routing

- · The Story So Far...
 - Routing protocols generate the forwarding table
 - Two styles: distance vector, link state
 - Scalability issues:
 - · Distance vector protocols suffer from count-to-infinity
 - · Link state protocols must flood information through network
- · Today's lecture
 - How to make routing protocols support large networks
 - How to make routing protocols support business policies

Inter-domain Routing: Hierarchy

- "Flat" routing not suited for the Internet
 - Doesn't scale with network size
 - * Storage \rightarrow Each node cannot be expected to store routes to every destination (or destination network)
 - Convergence times increase
 - Communication \Rightarrow Total message count increases
 - Administrative autonomy
 - Each internetwork may want to run its network independently
 - E.g hide topology information from competitors
- · Solution: Hierarchy via autonomous systems

_			
-			
-			
_			
_			
_			
-			
_			
_			
_			
-			
-			
-			
_			
_			
_			
-			
_			
_			

Internet's Hierarchy

- What is an Autonomous System (AS)?
 - A set of routers under a single technical administration
 - Use an interior gateway protocol (IGP) and common metrics to route packets within the AS
 - · Connect to other ASes using gateway routers
 - Use an exterior gateway protocol (EGP) to route packets to other AS's
 - IGP: OSPF, RIP (last class)
 - Today's EGP: BGP version 4

4

Intra-AS routing algorithm + Inter-AS routing algorithm \rightarrow Forwarding table

5

The Problem

- Easy when only one link leading to outside AS
- Much harder when two or more links to outside ASes
 - Which destinations reachable via a neighbor?
 - Propagate this information to other internal routers
 - Select a "good route" from multiple choices
 - Inter-AS routing protocol
 - · Communication between distinct ASes
 - Must be the same protocol!

History

- Mid-80s: EGP
 - Reachability protocol (no shortest path)
 - Did not accommodate cycles (tree topology)
 - Evolved when all networks connected to NSF backbone
- Result: BGP introduced as routing protocol
 - Latest version = BGP 4
 - BGP-4 supports CIDR
 - Primary objective: connectivity not performance

7

BGP Preliminaries

- Pairs of routers exchange routing info over TCP connections (port 179)
 - One TCP connection for every pair of neighboring gateway routers
 - Routers called "BGP peers"
 - BGP peers exchange routing info as messages
 - TCP connection + messages $\rightarrow BGP$ session
- Neighbor ASes exchange info on which CIDR prefixes are reachable via them

8

Choices for Routing

- How to propagate routing information?
- · Link state or distance vector?
 - No universal metric policy decisions
 - Problems with distance-vector:
 - · Very slow convergence
 - Problems with link state:
 - Metric used by ISPs not the same \rightarrow loops
 - · LS database too large entire Internet
- · BGP: Path vector

AS Numbers (ASNs) ASNs are 16 bit values 64512 through 65535 are "private" Currently over 15,000 in use Genuity: 1 MIT 3 CMU: 9

· UC San Diego: 7377 • AT&T: 7018, 6341, 5074, ...

· UUNET: 701, 702, 284, 12199, ...

· Sprint: 1239, 1240, 6211, 6242, ...

ASNs represent units of routing policy

10

Distance Vector with Path

- Each routing update carries the entire AS-level path so far
 - "AS_Path attribute"
- · Loops are detected as follows:
 - When AS gets route, check if AS already in path

 - If yes, reject route
 If no, add self and (possibly) advertise route further
 Advertisement depends on metrics/cost/preference etc.
- Advantage:
 - Metrics are local AS chooses path, protocol ensures no loops

11

Hop-by-hop Model

- BGP advertises to neighbors only those routes that it uses
 - Consistent with the hop-by-hop Internet paradigm
 - Consequence: hear only one route from
 - · (although neighbor may have chosen this from a large set of choices)
 - · Could impact view into availability of paths

Policy with BGP

- BGP provides capability for enforcing various policies
- Policies are **not** part of BGP: they are provided to BGP as configuration information
- **Enforces** policies by
 - Choosing appropriate paths from multiple alternatives
 - Controlling advertisement to other AS's

13

Examples of BGP Policies

- · A multi-homed AS refuses to act as transit
 - Limit path advertisement
- · A multi-homed AS can become transit for some AS's
 - Only advertise paths to some AS's
- · An AS can favor or disfavor certain AS's for traffic transit from itself

14

BGP Messages

- · Open
 - Announces ASID
 - Determines hold timer interval between keep_alive or update messages, zero interval implies no keep_alive
- - Sent periodically (but before hold timer expires) to peers to
 - ensure connectivity.

 Sent in place of an UPD ATE message
- - Used for error notification
 TCP connection is closed *immediately* after notification

BGP UPDATE Message

- · List of withdrawn routes
- · Network layer reachability information
 - List of reachable prefixes
- Path attributes
 - Origin
 - Path
 - Local_pref
 - MED
 - Metrics
- All prefixes advertised in message have same path attributes

Path Selection Criteria

- · Attributes + external (policy) information
- Examples:
 - Policy considerations
 - Preference for AS
 - Presence or absence of certain AS
 - Hop count
 - Path origin

17

LOCAL PREF

 Local (within an AS) mechanism to provide relative priority among BGP exit points

 Prefer routers announced by one AS over another or general preference over routes

AS_PATH

· List of traversed AS's

Multi-Exit Discriminator (MED)

- Hint to external neighbors about the preferred path into an AS
 - Different AS choose different scales
- Used when two AS's connect to each other in more than one place
 - More useful in a customer provider setting
 - Not honored in other settings
 - · Will see later why

20

MED

- · Hint to R1 to use R3 over R4 link
- · Cannot compare AS40's values to AS30's

MED

- · MED is typically used in provider/subscriber scenarios
- ·It can lead to unfairness if used between ISP because it may force one ISP to carry more traffic

- ISP1 ignores MED from ISP2
- ISP2 obeys MED from ISP1
 ISP2 ends up carrying traffic most of the way

22

Decision Process (First cut)

- Rough processing order of attributes:
 - Select route with highest LOCAL-PREF
 - Select route with shortest AS-PATH
 - Apply MED (to routes learned from same neighbor)
- · How to set the attributes?
 - Especially local_pref?
 - Policies in action

23

A Logical View of the Internet

- · Tier 1 ISP
 - "Default-free" with global reachability info
- Tier 2 ISP
 - Regional or country-wide
 - Typically route through tier-1
 - · Customer
- Tier 3/4 ISPs
 - Local
 - Route through higher tiers
- - End network such as IBM or UW-Madison

Policy II: Valley-Free Route	:5
 "Valley-free" routing Number links as (+1, 0, -1) for provider, peer and custom In any walid path should only see sequence of +1, followed at most one 0, followed by sequence of -1 Why?	
 How to make these choices? Prefer-customer routing: LOCAL_PREF Valley-free routes: control route advertisements (see previous slide) 	
	30

BGP Route Selection Summary Highest Local Preference Enforce relationships E.g. prefer customer routes over peer routes Shortest ASPATH Lowest MED i-BGP < e-BGP Lowest IGP cost to BGP egress Lowest router ID Throw up hands and break ties

Internal vs. External BGP

- · BGP can be used by R3 and R4 to learn routes
- · How do R1 and R2 learn best routes?

- •Use I-B*G*P
- · Create a full mesh
- TCP connections
- · Use this to exchanged BGP route information

32

Link Failures

- · Two types of link failures:
 - Failure on an E-BGP link
 - Failure on an I-BGP Link
- These failures are treated completely different in BGP
- · Why?

Failure on an E-BGP Link

- ·If the link R1-R2 goes down ·The TCP connection breaks ·BGP routes are removed
- · This is the desired behavior

34

Failure on an I-BGP Link

- If link R1-R2 goes down, R1 and R2 should still be able to exchange traffic
 The indirect path through R3 must be used
 Thus, E-BGP and I-BGP must use different conventions with respect to TCP endpoints

35

Next Class

- Multicast
 - Service model
 - IGMP
 - IP Multicast routing protocols
 - Overlay-based multicast