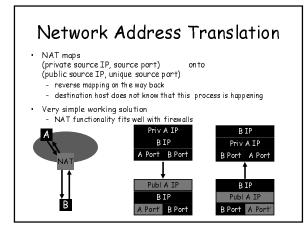
CS 640: Introduction to Computer Networks

Aditya Akella


Lecture 12 -IP-Foo

The Road Ahead

 \cdot NAT

• IPv6

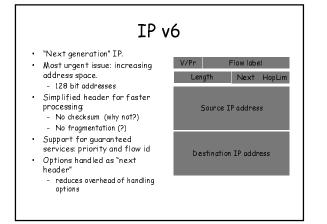
- Tunneling / Overlays
- Network Management

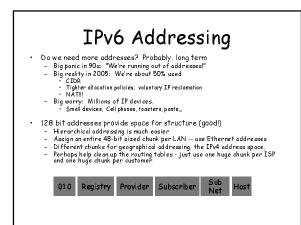
Types of NATs

- Bi-directional NAT: 1 to 1 mapping between internal and external addresses. E.g., 128.237.0.0/16 -> 10.12.0.0/16 External hosts can directly contact internal hosts .

 - External hosts can an external control of the second second

• "Traditional" NAT: Unidirectional


- Basic NAT: VoldIrecTional
 Basic NAT: Pool of external addresses
 Translate source IP address (*checksum,etc) only
 Network Address Port Translation (NAPT): What most of
 us use at home
 - Translate ports
 - E.g., map. (10.00.5 port 5555 -> 18.31.0.114 port 22) to (128.237.233.137 port 5931 -> 18.31.0.114 port 22)
 Lets you share a single IP address among multiple computers


NAT Considerations

- NAT has to be consistent during a session. - Set up mapping at the beginning of a session and maintain it during the session
 - Recycle the mapping at the end of the session
 May be hard to detect
 Use DHCP (at home)
 Usually static, though
- NAT only works cleanly for certain applications.
 Some applications (e.g. ftp) pass IP information in payload
 Need application level gateways to do a matching translation
 Dirty!!

NAT Considerations

- NAT is loved and hated
 - Breaks a lot of applications.
 - Inhibits new applications like p2p.
 - Little NAT boxes make home networking simple.
 Saves addresses (Address reuse)
 Makes allocation simple.

- Common case: Switched in silicon ("fast path") - Most actions
- Special cases: Handed to CPU ("slow path", or "process switched")
 - Fragmentation
- TTL expiration (traceroute) - IP option handling
- Considered evil: slows routers down; avenue for attacks

IPv6 Header Cleanup

• No checksum

- Why checksum just the IP header?
 Efficiency: If packet corrupted at hop 1, don't waste downstream b/w
 - Useful when corruption frequent, b/w expensive
 Today: Corruption rare, b/w cheap

• Different options handling

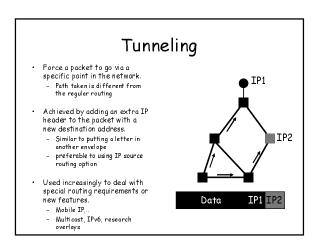
- IPv4 options: Variable length header field. 32 different options. • Rarely used
- Karely used
 Processed in "slow path".
 IPv6 options: "Next header" pointer
 Combines "protocol" and "options" handling

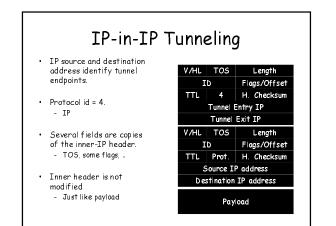
 Next header: "TCP", "UDP", etc.
 Extensions header: Chained together
 Makes it easy to implement host-based options

 - One value "hop -by-hop" examined by intermediate routers

 Things like "source route" implemented only at intermediate hops

IPv6 Fragmentation Cleanup


- Discard packets, send ICMP "Packet Too Big" Similar to IPv4 "Don't Fragment" bit handling Sender must support Path MTU discovery
 Receive "Packet too Big" messages and send smaller packets
- Increased minimum packet size
 Link must support 1280 bytes - 1500 bytes if link supports variable sizes
- Reduced packet processing and network complexity.
- Increased MTU a boon to application writers
- Hosts can still fragment - Routers don't deal with it any more


Migration from IPv4 to IPv6

- Interoperability with IPv4 is necessary for gradual deployment.
- Two complementary mechanisms:
 - Dual stack operation: IP v6 nodes support both address types
 - Tunneling: tunnel IP v6 packets through IP v4 clouds
- Alternative is to create "IPv6 islands", e.g. enterprise networks, private interconnections,...
 - Use NAT to connect to the outside world
 - NAT translates addresses and also translate between $\ensuremath{\mathsf{IPv4}}$ and IPv6 protocols

IPv6 Discussion

- IPv4 Infrastructure got better
 - Address efficiency
 Co-opted IPv6 ideas: IPSec, diffserv, autoconfiguration via DHCP, etc.
- Massive challenge - Huge installed base of IPv4-speaking devices - Tussle
 - Who's the first person to go IPv6-only?
- Slow but steady progress in deployment Most hosts & big routers support
 Long-term: The little devices will probably force IPv6

Tunneling Considerations

Performance

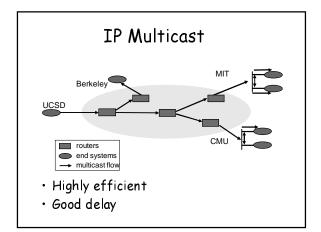
- Tunneling adds (of course) processing overhead
- Tunneling increases the packet length, which may cause fragmentation
 - BIG hit in performance in most systems
 - Tunneling in effect reduces the MTU of the path, but end-points often do not know this
- Security issues: - Should verify both inner and outer header

• Dealing with NATs

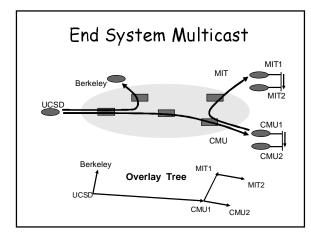
- Good or bad?

Overlay Networks

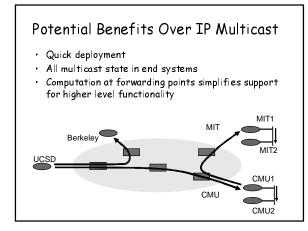
- A network "on top of the network". - E.g., initial Internet deployment
 - Internet routers connected via phone lines
 - An overlay on the phone network
 - Use tunnels between nodes on a current network

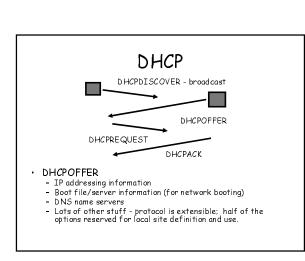

• Examples:

- The IPv6 "6bone", the multicast "Mbone" ("multicast backbone").
- · But not limited to IP-layer protocols... - Can do some pretty cool stuff


Overlay Networks

- Application-layer Overlays
 - Application Layer multicast (more later) Transmit data stream to multiple recipients
 - Peer-to-Peer networks
 - Route queries (Gnutella search for "briney spars")
 - Route answers (Bittorrent, etc.)
 - Anonymizing overlays
 - Route data through lots of peers to hide source
 (google for "Tor" "anonymous")


 - Improved routing Detect and route around failures *faster* than the underlying network does.


Network Management

- Two sub-issues:
 - Configuration management
 - How do I deal with all of these hosts?!
 - Network monitoring
 - What the heck is going on on those links?

Auto-configuration

- IP address, netmask, gateway, hostname, etc., etc. - Type by hand!!!
- IPv4 option 1: RARP (Reverse ARP) - Data-link protocol

 - Uses ARP format. New opcodes: "Request reverse", "reply reverse"
 Send query: Request-reverse [ether addr], server responds with IP
 Used primarily by diskless nodes, when they first initialize, to find their Internet address
- IPv4 option 2: DHCP
 - Dynamic Host Configuration Protocol
 - ARP is fine for assigning an IP, but is very limited
 DHCP can provide all the info necessary

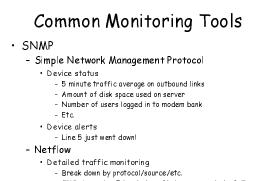
DHCP Features

• Lease-based assignment

- Clients can renew: Servers really should preserve this information across client & server reboots.

- Provide host configuration information - Not just IP address stuff.
 - NTP servers, IP config, link layer config,...

• Use:


- Generic config for desktops/dial-in/etc. • Assign IP address/etc., from pool
- Specific config for particular machines
 Central configuration management

IPv6 Auto-configuration

- Serverless ("Stateless"). No manual config at all. - Only configures addressing items, NOT other host things • Use DHCP for such things
- Link-local address
 - 1111 1110 10 :: 64 bit interface ID (usually from Ethernet addr)
 - (fe80::/64 prefix)
 - Uniqueness test ("anyone using this address?")
 - Router contact (solicit, or wait for announcement)
 - Contains globally unique prefix
 - Usually: Concatenate this prefix with local ID -> globally unique IPv6 ID

Network Monitoring

- Identifying and localizing problems Loss of connectivity, low throughput, ..
- Network operational and infrastructure status Where are the bottlenecks, is it time for an upgrade, redirect traffic, ...
- Trouble-shooting - Somebody attacking a subnet, scanning, host initiating an attack
- Common requirements: Must track two sets of info "Static" information: what is connected to what? - Dynamic information: what is the throughput on that link?

- ("Who's serving 5 terabytes of briney spars photos??")
- Usually sampled, coarse-grained

Simple Network Management Protocol (SNMP)

- Protocol that allows clients to read and write management information on network elements
 - Routers, switches, access points - Network element is represented by an SNMP agent
- Information is stored in a management information base (MIB) Have to standardize the naming, format, and interpretation of each item of information
 - Ongoing activity: MIB entries have to be defined as new technologies are introduced
 Lots of MIBs today!
- Different methods of interaction supported Query response interaction: SNMP agent answers questions
 Traps: agent notifies registered clients of events
- · Need security: authentication and encryption.

Next Class

- Mid-term review on 10/18 - Room 7331

 - 5:30PM
 - Suggestions for topics to review welcome • By noon, 10/18
- Mid-term
 - Will cover lectures 1—12 primarily
 - 2 points on 40 from lecture 13
 - Closed book!
 - 75 mins