
1

CS640: Introduction to Computer NetworksAditya AkellaLecture 14TCP – I -Transport Protocols
2

The Road Ahead• Transport introduction• Error recovery & flow control basics• TCP Flow Control basics
3

Transport Protocols• Lowest level end-to-end protocol.– Header generated by sender is interpreted only by the destination– Routers view transport header as part of the payload 765765TransportIPDatalinkPhysical TransportIPDatalinkPhysicalIProuter2 21 1

2

4
Functionality Split• Network provides best-effort delivery• End-systems implement many functions– Reliability– In-order delivery– De-multiplexing– Message boundaries– Connection abstraction– Congestion control– …

5
Transport Protocols• UDP provides just integrity and demux• TCP adds…– Connection-oriented– Reliable– Ordered– Point-to-point– Byte-stream– Full duplex– Flow and congestion controlled• Request-reply service– RPC-like– Not covered here

6
UDP: User Datagram Protocol• “No frills,” “bare bones”Internet transport protocol• “Best effort” service, UDP segments may be:– Lost– Delivered out of order to app• Connectionless:– No handshaking between UDP sender, receiver– Each UDP segment handled independently of others Why is there a UDP?• No connection establishment (which can add delay)• Simple: no connection state at sender, receiver• Small header• No congestion control: UDP can blast away as fast as desired

3

7
More on UDP• Often used for streaming multimedia apps– Loss tolerant– Rate sensitive• Other UDP uses (why?):– DNS, SNMP• Reliable transfer over UDP– Must be at application layer– Application-specific error recovery Source port # Dest port #32 bitsApplicationdata (message)UDP segment formatLength ChecksumLength, inbytes of UDPsegment,includingheader

8
TCPSource port Destination portSequence numberAcknowledgementAdvertised windowHdrLen Flags0Checksum Urgent pointerOptions (variable)DataFlags: SYNFINRESETPUSHURGACK Reliable, In-order,Connection oriented, Byte stream abstraction

9
Reliability: Straw-man approachesTime PacketACKTimeout• Receiver sends acknowledgement (ACK) when it receives packet– Sender waits for ACK and timeouts if it does not arrive within some time period• Simplest version: Send a packet, stop and wait until ACK arrives– Problems? Sender Receiver

4

10
Recovering from ErrorPacketACKTimeout PacketACKTimeoutPacketTimeout PacketACKTimeoutTime Packet lost Early timeoutPacketACKTimeout PacketACKTimeout ACK lostDUPLICATEPACKETS!!!

11
How to Recognize Duplicates?• Use sequence numbers– both packets and acks• Sequence # in packet is finite � How big should it be? • For stop and wait?– One bit – won’t send seq #1 until received ACK for seq #0• Problem with Stop and Wait:– Poor efficiency Pkt 0ACK 0Pkt 0ACK 1Pkt 1ACK 0

12
How to Ensure Efficiency?• How to “keep the pipe full”?– Answer: Pipelining• Send multiple packets without waiting for first to be acked• How many such packets max?– Suppose 10Mbps link, 4ms delay, 500byte pkts– 1? 10? 20?– Round trip delay * bandwidth = capacity of pipe• Consequences:– Cannot use a 1 bit sequence number any more– Buffering may be required – Range of sequence number and buffer size will depend on loss recovery

5

13
Pipelining Implementation:“Sliding Window”• Sliding buffer at sender and receiver– Packets in transit ≤ sender buffer size – Advance when sender and receiver agree packets at beginning have been received• Receiver has to buffer a packet until all prior packets have arrived• Goal: provides reliable, ordered delivery• Two ways to do this:– Go-Back-N– Selective Repeat

14
GBN Window Sliding –Common Case• On reception of new ACK (i.e. ACK for something that was not acked earlier)– Increase sequence of max ACK received– Send next packet• On reception of new in-order data packet (next expected)– Hand packet to application– Send cumulative ACK – acknowledges reception of all in-sequence packets up to sequence number– Increase sequence of max acceptable packet

15ReceiverSender Go-Back-N:Sender/Receiver State… …Sent & Acked Sent Not AckedOK to Send Not Usable … …Max acceptableReceiver window Max ACK received Next seqnum Received & Acked Acceptable PacketNot UsableSender window Next expected

6

16
Go-Back-N with Losses• On reception of out-of-order packet– Don’t ACK (wait for source to timeout)– Discard out of order packets– Cumulative ACK (helps source identify loss)• Timeout (Go-Back-N recovery)– Set timer upon transmission of packet– Retransmit all unacknowledged packets

17
Go-Back-N With Losses•Simple behavior•One timeout•Simple buffering•Performance during loss recovery• No longer have an entire window in transit• Can have much more clever loss recovery

18
Selective Repeat• Receiver individually acknowledges all correctly received pkts– Buffers packets, as needed, for eventual in-order delivery to upper layer• Sender only resends packets for which ACK not received– Sender timer for each unACKed packet• Sender window– N consecutive seq #’s– Again limits seq #s of sent, unACKed packets

7

19
Selective Repeat: Sender, Receiver Windows

20
Sequence Numbers• How large do sequence numbers need to be?– Depends on sender/receiver window size• Must take wrap-around into account• E.g.– Max seq = 7, window_size = 7– If pkts 0..6 are sent successfully and all acks lost• Receiver expects 7,0..5, sender retransmits old 0..6!!!• Max sequence must be ≥ 2 * window_size• TCP uses 32 bit sequence numbers

21
TCP Flow Control• TCP is a sliding window protocol– For window size n, can send up to n bytes without receiving an acknowledgement – When the data is acknowledged then the window slides forward• Each packet advertises a window size– Indicates number of bytes the receiver has space for• Original TCP always sent entire window– Congestion control now limits this

8

22
TCP Sequence Numbers• Sequence Number Space– Each byte in byte stream is numbered. – 32 bit value – Wraps around • Initial values selected at start up time – TCP breaks up the byte stream in packets. • Packet size is limited to the Maximum Segment Size – Each packet has a sequence number. – Indicates where it fits in the byte stream

23acknowledged sent to be sent outside windowSource Port Dest. PortSequence NumberAcknowledgmentHL/Flags WindowChecksum Urgent PointerOptions… Source Port Dest. PortSequence NumberAcknowledgmentHL/Flags WindowChecksum Urgent PointerOptions...Packet Sent Packet ReceivedApp writeWindow Flow Control: Send Side

24
Summary• Transport service– UDP � mostly just IP service– TCP � congestion controlled, reliable, byte stream• Types of ARQ protocols– Stop-and-wait � slow, simple– Go-back-n � can keep link utilized (except w/ losses)– Selective repeat � efficient loss recovery• Sliding window flow control– Addresses buffering issues and keeps link utilized– TCP uses sliding window– 32bit sequence numbers

