CS640: Introduction to
Computer Networks

Aditya Akella

Lecture 14
TCP-TI-
Transport Protocols

The Road Ahead

+ Transport introduction
* Error recovery & flow control basics

+ TCP Flow Control basics

Transport Protocols

+ Lowest level end-
to-end protocol.

- Header generated 4 ‘ 4
by sender is 6 ‘ 6
interpreted only 5 ‘ 5

by the destination e— w

- Routers view » » ‘ i
transport header .
as part of the Datalink 2 2 .‘ Datalink
payload Physical 11 ‘ Physical

router

Functionality Split

* Network provides best-effort delivery
* End-systems implement many functions

- Reliability

- In-order delivery

- De-multiplexing

- Message boundaries

- Connection abstraction

- Congestion control

Transport Protocols

UDP provides just integrity and demux
+ TCPadds..

- Connection-oriented

- Reliable

- Ordered

- Point-to-point

- Byte-stream

- Full duplex

- Flow and congestion controlled

Request-reply service
- RPC-like
- Not covered here

UDP: User Datagram Protocol

"No frills,” "bare bones"
Internet transport

protocol

“Best effort” service, UDP Why is there a UDP?
segments may be: + No connection establishment
~ Lost (which can add delay)

Simple: no connection state at

- Delivered out of order to sender, receiver

app Small header
No congestion control: UDP
Connectionfess: can blast away as fast as
- No handshaking between desired

UDP sender, receiver

- Each UDP segment handled
independently of others

More on UDP

+ Often used for

streaming multimedia

apps
- Loss folerant
- Rate sensitive

+ Other UDP uses
(why?):
- DNS, SNMP

+ Reliable transfer over
uDP

- Must be at application
ayer

32 bits
Length, in Source port #| Dest port #
bytes of UDPT—Length Checksum
segment,
including
header
Application
data
(message)

- Application-specific

error recovery

UDP segment format

Reliable,
Connection oriented,

Flags: SYN
FIN
RESET
PUSH
URG
ACK

TCP

In-order,
Byte stream abstraction

Source port ‘ Destination port

Sequence number

Acknowledgement

Herer{ O‘ Flags | Advertised windol

Checksum Urgent pointer

Options (variable)

Reliability: Straw-man
approaches

+ Receiver sends

acknowledgement (ACK)
when it receives packet

- Sender waits for ACK and

Sender

timeouts if it does not arrive

within some time period

ACK arrives
- Problems?

Simplest version:
packet, stop and wait until

ACK

Send a

___Timeout

Time

Receiver

Recovering from Error

] Pa, | _Pa, | —Pa
5 % o s Y
54 8! ACK 5 ok
£l £ £}
Time| I | A S
: : b ket
Ly __Pa, | _Pa :
S = e N S ACK
o! Q! Qi
E | A E | acx g
b Fl— [
Packet lost ACK lost Early timeout
DUPLICATE
PACKETSII

10

How to Recognize Duplicates?

Use sequence numbers
- both packets and acks

Pkt o
Sequence # in packet is finite —0
f b o
- How big should it be? P~CL
. P
For stop and wait? k10
- One bit - won't send seq #1 until cK
received ACK for seq #0 {
. . ACKL
+ Problem with Stop and Wait: L

- Poor efficiency

How to Ensure Efficiency?

How to “keep the pipe full"?
- Answer: Pipelining

Send multiple packets without waiting for
first to be acked

How many such packets max?

- Suppose 10Mbps link, 4ms delay, 500byte pkts
- 12107 202

- Round trip delay * bandwidth = capacity of pipe

N/

+ Consequences:
- Cannot use a 1 bit sequence number any more
- Buffering may be required

- Range of sequence number and buffer size will

12
depend on loss recovery

Pipelining Implementation:
*Sliding Window"

- Sliding buffer at sender and receiver

- Packets in transit < sender buffer size

- Advance when sender and receiver agree packets at
beginning have been received

* Receiver has to buffer a packet until all prior packets
have arrived

+ Goal: provides reliable, ordered delivery
+ Two ways to do this:

- Go-Back-N
- Selective Repeat

GBN Window Sliding -

Common Case
* On reception of new ACK (i.e. ACK for
something that was not acked earlier)
- Increase sequence of max ACK received
- Send next packet

* On reception of new in-order data packet

(next expected)
- Hand packet to application
- Send cumulative ACK - acknowledges reception of
all in-sequence packets up to sequence number
- Increase sequence of max acceptable packet

Go-Back-N:
Sender/Receiver State

Receiver

Sender

Max ACK received Next seqnum Next expected Max acceptable

ARRRRNRNANNCTICH (OONON(ICOOOIT

“ Sent & Acked I Sent Not Acked D Received & Acked D Acceptable Packet

D Not Usable

“ OK to Send D Not Usable

Go-Back-N with Losses

* On reception of out-of-order packet
- Don't ACK (wait for source to timeout)
- Discard out of order packets
- Cumulative ACK (helps source identify loss)

+ Timeout (Go-Back-N recovery)
- Set timer upon transmission of packet
- Retransmit all unacknowledged packets

Go-Back-N With Losses

sender recelver

-Simple behavior

send pkiO \ *One timeout
rev pkiQ

send pkf1 send ACKO +Simple buffering
send pki2 —__ (oss NS)
send pki3 Performance during
(wai) rovpki3, iscard |0 recovery
» send ACKI
rcy ACKO
send pkid * No longer have an
rcv pkf4, discard - B H
adons — < send ACK entire window in
Kf5, ciscard i
ki fimeout e transit

send pkf2

send pki3 \ rev pkt2, deliver
send pki4 send ACK? + Can have much
send pkt& rcv pkf3, deliver

\ send ACK3 more clever loss

recovery 17

Selective Repeat

Receiver indlividually acknowledges all correctly
received pkts

- Buffers packets, as needed, for eventual in-order delivery to
upper layer

Sender only resends packets for which ACK not
received
- Sender timer for each unACKed packet

Sender window
- N consecutive seq #'s
- Again limits seq #s of sent, unACKed packets

Selective Repeat:
Sender, Receiver Windows

sen d,fass nextsegnum already usable, not

ack’ed I Vet sent
L L

yet dck'ed I] not usable
- window sze —24
PN

i (a) sender view of sequence numbers

H out of order
(buffered) but acceptable

T ey

not usable
yet received
 window size—4
N

rev_base

(b) receiver view of sequence numbers

Sequence Numbers

How large do sequence numbers need to be?
- Depends on sender/receiver window size
+ Must take wrap-around into account

* Eg.
- Max seq = 7, window_size = 7

- If pkts 0..6 are sent successfully and all acks lost
+ Receiver expects 7,0.5, sender retransmits old 0..6!ll

Max sequence must be = 2 * window_size

TCP uses 32 bit sequence numbers

20

TCP Flow Control

+ TCP is a sliding window protocol

- For window size n, can send up to n bytes without
receiving an acknowledgement

- When the data is acknowledged then the window
slides forward

+ Each packet advertises a window size

- Indicates number of bytes the receiver has space
for

* Original TCP always sent entire window
- Congestion control now limits this

21

TCP Sequence Numbers

+ Sequence Number Space
- Each byte in byte stream is numbered.
- 32 bit value
- Wraps around

+ Initial values selected at start up time
- TCP breaks up the byte stream in packets.

* Packet size is limited to the Maximum
Segment Size
- Each packet has a sequence number.
- Indicates where it fits in the byte stream

22

Window Flow Control: Send Side

Packet Sent Packet Received

Source Port Dest. Port Source Port Dest. Port

Sequence Number Sequence Number
Acknowledgment Acknowledgment

HL/Flags Window HL/Flags

Checksum Urgent Fointer Checksum Urgent Pointer
Options... Options. ..

App write
' |
acknowledged sent to be sent outside window

23

Summary

+ Transport service
- UDP - mostly just IP service
- TCP - congestion controlled, reliable, byte stream

- Types of ARQ protocols
- Stop-and-wait = slow, simple
- Go-back-n = can keep link utilized (except w/ losses)
- Selective repeat - efficient loss recovery

+ Sliding window flow control
- Addresses buffering issues and keeps link utilized
- TCP uses sliding window

- 32bit sequence numbers
24

