CS640: Introduction to Computer Networks

Aditya Akella Lecture 15 TCP - II -Connection Set-up and Congestion Control

TCP Packet

Reliable, Connection oriented,

In-order, Byte stream abstraction

Flags from MSB to LSB: URG ACK PSH RST SYN FIN

Source port			Destination port		
Sequence number					
Acknowledgement					
HdrLen	0	Flags	Advertised window		
Checksum			Urgent pointer		
Options (variable)					
Data					

Sequence and Acknowledge Numbers

- Sequence number \rightarrow byte num of first byte in payload
- Acknowledgement number
 - TCP is full duplex
 - Sequence number of next byte expected in reverse direction

Advertised Window

- · Used for "flow control"
 - Different from "congestion control", which we will see in second half of today's lecture
- Both sender and receiver advertise window
 - Sender action:
 lastSent lastACK <= Receiver's advertised window

4

Establishing Connection: Three-Way handshake

- Each side notifies other of starting sequence number it will use for sending
 - Why not simply chose 0?
 - Must avoid overlap with earlier incarnation
 - Security issues
- Each side acknowledges other's sequence number
 - SYN-ACK: Acknowledge sequence number + 1
- Can combine second SYN with first ACK

SYN: SeqC ACK: SeqC+1 SYN: SeqS ACK: Seq5+1 Client Server

Tearing Down Connection

- Either side can initiate tear down
 - Send FIN signal
 - "I'm not going to send any more data"
- Other side can continue sending data
 - Half open connection
 - Must continue to acknowledge
- Acknowledging FIN
 - Acknowledge last sequence number + 1

Client FIN, SeqA	Server
ACK, SeqA+1	>
Data	_
ACK	
	_
FIN, SeqB	
ACK, SeqB+1	
•	

Causes & Costs of Congestion Four senders - multihop paths Timeout/re transmit Causes & Costs of Congestion Q: What happens as rate increases? Host D R1 R2 Host C

Causes & Costs of Congestion $\frac{C/2}{\lambda_{\text{in}}'}$ • When packet dropped, any upstream transmission capacity used for that packet was wasted!

Congestion "Collapse"

- Definition: Unchecked Increase in network load results in decrease of useful work done
 - Fewer and fewer useful packets carried in network
- Many possible causes
 - Spurious retransmissions of packets still in flight
 Classical congestion collapse
 - Undelivered packets
 - Packets consume resources and are dropped elsewhere in network

Congestion Control and Avoidance

- · A mechanism which:
 - Uses network resources efficiently
 - Preserves fair network resource allocation
 - Controls or Avoids congestion

13

Approaches Towards Congestion Control

- Two broad approaches towards congestion control:
- End-end congestion
 - control: - No explicit feedback
 - from network - Congestion inferred from end-system observed loss, delay
 - Approach taken by TCP
 - Problem: approximate, possibly inaccurate
- Network-assisted congestion control:
 - Routers provide feedback to end systems
 - Single bit indicating congestion (SNA, DECbit, TCP/IPECN, ATM)
 Explicit rate sender should send at
 - Problem: makes routers complicated

14

End-End Congestion Control

- So far: TCP sender limited by available buffer size at receiver $% \left(1\right) =\left(1\right) \left(1\right)$
 - Receiver flow control
 - "receive window" or "advertised window"
- To accommodate network constraints, sender maintains a "congestion window"

 Reflects dynamic state of the network

 - Max outstanding packets $\leq min$ (congestion window, advertised window)
- When receiver window is very large, congestion window determines how fast sender can send
 Speed = CWND/RTT (roughly)

TCP Congestion Control

- Very simple mechanisms in network
 - FIFO scheduling with shared buffer pool
 - Feedback through packet drops
- End-host TCP interprets drops as signs of congestion and slows down → reduces size of congestion window
- But then, periodically probes or increases congestion window
 - To check whether more bandwidth has become available

16

Congestion Control Objectives

- · Simple router behavior
- · Distributed-ness
- Efficiency: $\Sigma x_i(t)$ close to system capacity
- · Fairness: equal (or propotional) allocation
 - Metric = $(\Sigma x_i)^2 / n(\Sigma x_i^2)$
- · Convergence: control system must be stable

17

Linear Control

- Many different possibilities for reaction to congestion and probing
 - Examine simple linear controls
 - Window(t + 1) = a + b Window(t)
 - Different a_i/b_i for increase and a_d/b_d for decrease
- · Various reaction to signals possible
 - Increase/decrease additively
 - Increased/decrease multiplicatively
 - Which of the four combinations is optimal?
 - Consider two end hosts vying for network bandwidth

Additive Increase/Decrease

- Both X₁ and X₂ increase/ decrease by the same amount over time
 - Additive increase improves fairness and additive decrease reduces fairness

19

Multiplicative Increase/Decrease

- Both X₁ and X₂ increase by the same factor over time
 - Extension from origin constant fairness

20

User 2's Allocation x;

What is the Right Choice?

- Constraints limit us to AIMD
 - Can have multiplicative term in increase (MAIMD)
 - AIMD moves towards optimal point

25

Summary

- · Significance of fields in TCP packet
 - TCP is full duplex
 - Data can go in either direction
- TCP connection set-up three-way handshake
 - Also, teardown
- · Costs of congestion
 - Delay, loss, useless work...
 - Cure: congestion control
- TCP uses AIMD congestion control