CS640: Computer Networks Aditya Akella Lecture 17 Naming and the DNS

The Road Ahead

- · DNS Design
- · DNS Today

Naming

- · Need naming to identify resources
- · Once identified, resource must be located
- · How to name resource?
 - Naming hierarchy
- How do we efficiently locate resources?
 DNS: name → location (IP address)
- · Challenge: How do we scale these to the wide

Obvious Solutions (1)

Lookup a Central DNS?

- Single point of failure
- · Traffic volume
- · Distant centralized database
- · Single point of update
- Doesn't scale!

4

Obvious Solutions (2)

Why not use /etc/hosts?

- · Original Name to Address Mapping
 - Flat namespace
 - Lookup mapping in /etc/hosts
 - SRI kept main copy
 - Downloaded regularly
- Count of hosts was increasing: machine per domain → machine per user
 - Many more downloads
 - Many more updates

5

Domain Name System Goals

- Basically a wide-area distributed database of name to IP mappings
- · Goals:
 - Scalability
 - Decentralized maintenance
 - Robustness
 - Global scope
 - · Names mean the same thing everywhere
 - Don't need
 - Atomicity
 - Strong consistency

Programmer's View of DNS

 Conceptually, programmers can view the DNS database as a collection of millions of host entry structures:

P DNS host entry structure '7
struct hostent {
 char 'h, name;
 char 'h, alisses;
 int h, addrype;
 int h, length;
 char 'h, addry.list;
 results of the structure of the struc

- in_addr is a struct consisting of 4-byte IP address
- Functions for retrieving host entries from DNS:
 - -gethostby name: query key is a DNS host name.
- -gethostbyaddr: query key is an IP address.

DNS Message Format

DNS Header Fields

- Identification
 - Used to match up request/response
- Flags
 - 1-bit to mark query or response
 - 1-bit to mark authoritative or not
 - 1-bit to request recursive resolution
 - 1-bit to indicate support for recursive resolution

DNS Records

- DB contains tuples called resource records (RRs)
 Classes = Internet (IN), Chaosnet (CH), etc.
 Each class defines value associated with type

RR format: (class, name, value, type, ttl)

FOR IN class:

- Type=A
 - **name** is hostname
- value is IP address
- Type=NS
- name is domain (e.g. foo.com)
 - value is name of authoritative name server for this domain value is
- Type=CNAME
 - name is an alias name for some "canonical" (the real) name
 - value is canonical name
 - - value is hostname of mailserver associated with

Properties of DNS Host Entries

- · Different kinds of mappings are possible:
 - Simple case: 1-1 mapping between domain name and IP addr:
 - kittyhawk.cmcl.cs.cmu.edu maps to 128.2.194.242
 - ${\it M}$ ultiple domain names maps to the same IP address:
 - eecs.mit.edu and cs.mit.edu both map to 18.62.1.6
 - Single domain name maps to multiple IP addresses: \bullet aol.com and www.aol.com map to multiple IP addrs.
 - Some valid domain names don't map to any IP address:
 - - for example: cs.wisc.edu

11

DNS Design: Hierarchy Definitions

- Each node in hierarchy stores a list of names that end with same suffix
 - · Suffix = path up tree
- \cdot E.g., given this tree, where would following be stored:
 - · Fred.com
 - Fred.edu
 - · Fred.wisc.edu
 - · Fred.cs.wisc.edu
 - Fred.cs.cmu.edu

DNS Design: Cont.

- Zones are created by convincing owner node to create/delegate a subzone
 - Records within zone store multiple redundant name servers
 - Primary/master name server updated manually
 - Secondary/redundant servers updated by zone transfer of name space
 - Zone transfer is a bulk transfer of the "configuration" of a DNS server - uses TCP to ensure reliability
- Example:
 - CS.WISC.EDU created by WISC.EDU administrators
 - Who creates WISC.EDU or .EDU?

14

DNS: Root Name Servers

- Responsible for "root" zone
- Approx. 13 root name servers worldwide
 - Currently {am}.root-servers.net
- Local name servers contact root servers when they cannot resolve a name
 - Configured with well-known root servers

	Root Servers esponsibility, and Locations
E-MSA Moffel Field CA F-ISC Woodside CA M-WIDE Kelo	HADROU Stechholm
B-DISA-USC Marina delRey CA L-DISA-USC Marina delRey CA	A-NSF-NSI Herndon VA C-PSI Herndon VA D-UMD College Pk MD G-DISA-Boeing Vienns VA H-USArmy Aberdeen MD J-NSF-NSI Herndon VA

Servers/Resolvers

- · Each host has a resolver
 - Typically a library that applications can link to
 - Resolves contacts name server
 - Local name servers hand-configured (e.g. /etc/resolv.conf)
- · Name servers
 - Either responsible for some zone or...
 - Local servers
 - · Do lookup of distant host names for local hosts
 - Typically answer queries about local zone

16

Typical Resolution

- · Steps for resolving www.wisc.edu
 - Application calls gethostbyname() (RESOLVER)
 - Resolver contacts local name server (S1)
 - S_1 queries root server (S_2) for (<u>www.wisc.edu</u>)
 - S_2 returns NS record for wisc.edu (S_3)
 - What about A record for S_3 ?
 - This is what the additional information section is for (PREFETCHING)
 - S_1 queries S_3 for <u>www.wisc.edu</u>
 - S₃ returns A record for <u>www.wisc.edu</u>
- Can return multiple A records

 → what does this mean?

17

Lookup Methods Recursive query: Server goes out and searches for more info (recursive) Only returns final answer or "not found" Iterative query: Server responds with as much as it knows (iterative) "I don't know this name, but ask this server" Workload impact on choice? Local server typically does recursive Roof / distant server does surf-eurecom.fr

Workload and Caching

- Are all servers/names likely to be equally popular?
 Why might this be a problem? How can we solve this problem?
- DNS responses are cached
 - Quick response for repeated translations
 - Other queries may reuse some parts of lookup
 - · NS records for domains
- DNS negative queries are cached

 - Don't have to repeat past mistakes
 E.g. misspellings, search strings in resolv.conf
- · Cached data periodically times out
 - Lifetime (TTL) of data controlled by owner of data
 - TTL passed with every record

Reliability

- · DNS servers are replicated
 - Name service available if ≥ one replica is up
 - Queries can be load balanced between replicas
- $\boldsymbol{\cdot}$ UDP used for queries
 - Need reliability → must implement this on top of UDP!
 - Why not just use TCP?
- · Try alternate servers on timeout
 - Exponential backoff when retrying same server
- · Same identifier for all queries
 - Don't care which server responds

22

Reverse DNS

- - Given IP address, find its name
 - When is this needed?
- Method

 - Maintain separate hierarchy based on IP names
 Write 128.2.194.242 as 242.194.2.128.in-addr.arpa
 Why is the address reversed?
- Managing
 - Authority manages IP addresses assigned to it
 - E.g., CMU manages name space 2.128.in-addr.arpa 23

Prefetching

- · Name servers can add additional data to response
- · Typically used for prefetching
 - CNAME/MX/NS typically point to another
 - Responses include address of host referred to in "additional section"

DNS Today: Root Zone

- · Generic Top Level Domains (gTLD) = .com, .net, .org, etc...
- · Country Code Top Level Domain (ccTLD) = .us, .ca, .fi, .uk, etc...
- Root server ({a-m}.root-servers.net) also used to cover gTLD domains
 - Load on root servers was growing quickly!
 - Moving .com, .net, .org off root servers was clearly necessary to reduce load → done Aug 2000

25

New gTLDs

- · .info → general info
- .biz \rightarrow businesses
- .aero → air-transport industry
- .coop → business cooperatives
- \cdot name \rightarrow individuals
- \cdot pro \rightarrow accountants, lawyers, and physicians
- .museum → museums
- · Only new one actives so far = .info, .biz, .name

26

DNS Performance

- · No centralized caching per site
 - Each machine runs own caching local server
 - Why is this a problem?
 - How many hosts do we need to share cache? → recent studies suggest 10-20 hosts
- Hit rate for DNS = 80% \rightarrow 1 (#DNS/#connections)
 - Is this good or bad?
- · Most Internet traffic is Web
 - What does a typical page look like? \rightarrow average of 4-5 imbedded objects \rightarrow needs 4-5 transfers
 - This alone accounts for 80% hit ratel
- Lower TTLs for A records does not affect performance
- DNS performance really relies more on NS-record caching

Summary

- Motivations → large distributed database
 Scalability
 Independent update
 Robustness
- · Hierarchical database structure

 - Zones How is a lookup done
- · Caching/prefetching and TTLs
- · Reverse name lookup