CS640: Introduction to
Computer Networks

Aditya Akella

Lecture 18 -
The Web, Caching and CDNs

Announcements
* PA 3 out today

+ HW 4 will be out some time next week
* HW 3 due today

+ Sign up for PA 2 demo slot soon!

The Road Ahead
« HTTP and TCP

» HTTP caching

+ Content distribution networks

HTTP 0.9/1.0

* One request/response per TCP
connection
- Simple to implement

+ Disadvantages
- Multiple connection setups - three-way
handshake each time
+ Several extra round trips added to transfer
- Multiple slow starts
+ Why is this bad?

Single Transfer Example

Client Server

ORTT———
Client opens TCP

connection 1R
Client sends HT TP request
for HTML

disk

2 RT’T—[
Client parses HTML

Client opens TCP
connection

3RTT—

Client sends HT TP reguest
for image oy
isl

4RTF——
Image begins to arrive

More Problems

Short transfers are hard on TCP
- Stuck in slow start
- Also, loss recovery is poor when windows are small

Lots of extra connections
- Increases server state/processing

Server also forced to keep TTIME_WAIT
connection state

lSer'ver' reads from

lSer'ver' reads from

- Tends to be an order of magnitude greater than #

of active connections

Persistent Connection Solution

+ Multiplex multiple transfers onto one TCP connection

+ How to identify requests/responses

string

in advance

blocks
content-length

otherwise

Delimiter - Server must examine response for delimiter
Content-length and delimiter - Must know size of transfer
Block-based transmission - send in multiple length-delimited
Store-and-forward - wait for entire response and then use

Solution - use existing methods and close connection

Persistent Connection Example

Client Server
TP
OR DAT
Client sends HTTP request ACK l Server reads from
For HTML pAT| dis
1 RTT—[ACK
Client parses HTML DAT
y l Server reads from
Client sends HT TP request !
Chien ACK ot dis
or image
2RTF—
Image begins to arrive

Persistent HTTP

Nonpersistent HTTP issues:

+ Requires 2 RTTs per object
0S5 must work and allocate
host resources for each TCP
connection
But browsers often open
parallel TCP connections to
fetch referenced objects

Persistent HTTP

+ Server leaves connection
open after sending response
Subsequent HTTP messages
between same client/server
are sent over connection

Persistent without pipelining:
Client issues new request only
when previous response has
been received
One RTT for each referenced
object

Persistent with pipelining:
Default in HTTP/1.1
Client sends requests as soon
as it encounters a referenced
object
As little as one RTT for all the
referenced objects

HTTP Caching
+ Why caching?

+ Clients often cache documents
- Challenge: update of documents
- If-Modified-Since requests to check
+ HTTP 0.9/1.0 used just date

+ HTTP 1.1 has an opaque “entity tag” (could be a file signature,
etc.) as well

+ When/how often should the original be checked for
changes?
- Check every time?
- Check each session? Day? Etc?
- Use "Expires” header
+ If no Expires, often use Last-Modified as estimate

Example Cache Check Request

GET / HTTP/1.1

Accept: */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

If-Modified-Since: Mon, 29 Jan 2001 17:54:18
GMT

If-None-Match: "7al1f-10ed-3a75ae4a"

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5;
Windows NT 5.0)

Host: www.intel-iris.net
Connection: Keep-Alive

Example Cache Check Response

HTTP/1.1 304 Not Modified
Date: Tue, 27 Mar 2001 03:50:51 GMT

Server: Apache/1.3.14 (Unix) (Red-Hat/Linux)
mod_ssl/2.7.1 OpenSSL/0.9.5a DAV/1.0.2
PHP/4.0.1pl2 mod_perl/1.24

Connection: Keep-Alive
Keep-Alive: timeout=15, max=100
ETag: "7al1f-10ed-3a750e4a"

Caching Example (1)

Assumptions

+ Average object size = 100,000
bits
Avg. request rate from
institution's browser to origin
servers = 15/sec
Delay from institutional router o
any origin server and back to
router =2 sec

Consequences
Utilization on LAN = 15%
Utilization on access link = 100%
Total delay = Internet delay +
access delay + LAN delay

= 2 sec+ minutes + milliseconds

origin
servers

i
public ﬁﬂ

Internet
15 Mbps
access link

.

institutional
network

B

10 Mbps LAN

Caching Example (2)

Possible solution
Increase bandwidth of access
link to, say, 10 Mbps
Often a costly upgrade

Consequences
+ Utilization on LAN = 15%
+ Utilization on access link =
15%
Total delay =Internet delay
+access delay + LAN delay
= 2 sec + msecs + msecs

origin
servers

6
g

Internet
10 Mbps
access link

.

institutional

e 10 Mbps LAN

Caching Example (3)

Install cache
Suppose hit rate is .4

Consequence

+ 40% requests will be satisfied
almost immediately (say 10
msec)
60% requests satisfied by
origin server
Utilization of access link
reduced to 60%, resulting in
negligible delays
Weighted average of delays

= 6%2 sec + 4*10msecs < 1.3

secs

origin
servers

i 6

Internet
15 Mbps
access link

i

institutional

TR 10 Mbps LAN

institutional
cache 5

Web Proxy Caches

+ User configures
browser: Web

accesses via cache origin

server
(7
Prox
* Browser sends all Hr Y s
e, Server e
HTTP requests to clientF 5y e o
cache

%
- Object in cache: cache wc&s A
) <® g
returns object W N pn
Else cache requests @ \x((?
object from origin

server, then returns client origin
object to client server

16

Problems
+ Over 50% of all HTTP ob jects are uncacheable - why?

+ Not easily solvable
- Dynamic data = stock prices, scores, web cams
- €61 scripts - results based on passed parameters
- SSL - encrypted data is not cacheable

+ Most web clients don't handle mixed pages well >many generic
objects fransferred with SSL

- Cookies = results may be based on passed data

- Hit metering - owner wants to measure # of hits for
revenue, etfc.

+ What will be the end result?

Content Distribution Networks &

Server Selection
* Replicate content on many servers

* Challenges
- Which content to replicate
- How to replicate content
- Where to place replicas
- How to find replicated content
- How to choose among know replicas
- How to direct clients towards replica

Server Selection

+ Which server?
- Lowest load = to balance load on servers

- Best performance = to improve client performance
* Based on Geography? RTT? Throughput? Load?
- Any alive node - to provide fault tolerance

+ How to direct clients to a particular server?
- Aspart of routing - anycast, cluster load balancing
+ Not covered today...
- Aspart of application > HTTP redirect
- As part of naming - DNS

Application-Based Redirection

+ HTTP supports simple way to indicate that
Web page has moved (30X responses)

+ Server receives Get request from client

- Decides which server is best suited for particular
client and object

- Returns HTTP redirect to that server

+ Can make informed application specific
decision

* May introduce additional overhead - multiple
connection setup, name lookups, etc.

20

Naming Based

+ Client does name lookup for service

* Name server chooses appropriate server
address
- A-record returned is "best" one for the client

+ What information can name server base
decision on?
- Server load/location = must be collected
- Information in the name lookup request

+ Name service client - typically the local name server for
client 2

Content Distribution Networks
(CDNs)

The content providers are the

origin server
CDN customers.

in North America

Content replication

+ CDN company installs hundreds
of CDN servers throughout CDN distribution node
Internet

- Close to users

5=

CDN replicates its customers' / \
content in CDN servers. When l
provider updates content, CON @
updates servers

CDN server

in S. America CDN server

- CDNserver Asia
in Europe
22

How Akamai Works

Clients fetch html document from primary
server
- E.g. fetch index.html from cnn.com

+ "Akamaized" URLs for replicated content are
replaced in html
- E.g. replaced
with

+ Client is forced to resolve
aXYZ.g.akamaitech net hostname »

How Akamai Works

+ How is content replicated?
+ Akamai only replicates static content (*)

+ Modified name contains original file name and content
provider ID

+ Akamai server is asked for content

- First checks local cache

- If not in cache, requests file from primary server: caches file
* (At least, the version we're talking about today. Akamai actually lets sites

write code that can run on Akamai's servers, but that's a different beast
altogetherl)

24

How Akamai Works

* Root server gives NS record for akamai.net
- Akamai.net name server returns NS record

for g.akamaitech.net

- Name server chosen to be in region of client's
name server

+ Out-of-band measurements to obtain this

+ G.akamaitech.net nameserver chooses server

in region
- Which server to choose?
- Uses aXYZ name and hash

25

Simple Hashing

+ Given document XYZ, we need to choose a
server 1o use

* Suppose we use modulo

+ Number servers from 1..n

- Place document XYZ on server (XYZ mod n)
- What happens when a servers fails? n > n-1
- Why might this be bad?

26

Consistent Hash

+ Desired features
- Balanced - load is equal across buckets

- Smoothness - little impact on hash bucket
contents when buckets are added/removed

- Spread - small set of hash buckets that may hold a
set of object

- Load - # of objects assigned to hash bucket is
small

27

Consistent Hash ~ Example

+ Construction

Assign each of € hash buckets to 0
random points on mod 27 circle, where, 14
hash key size = n.

+ Map object to random position on 1 4

circle

+ Hash of object = closest clockwise
bucket

+ Smoothness > addition of bucket does not cause
movement between existing buckets

+ Spread & Load > small set of buckets that lie near
object

+ Balance > no bucket is responsible for large number of
objects 28

How Akamai Works

cnn.com (content provider) DNS root server

| Akamai high-level
1! DNS server

" Akamai low-level DNS
il server

Nearby
matching
“Akamai server

Get
/enn.com/foo.jpg 29

Akamai ~ Subsequent Requests

cnn.com (content provider) DNS root server
L LU
Get
index.)
htmly |5 . Akamai high-level
% DNS server
7 ~ Akamai low-level DNS
Wl server
8 o Nearby
matching
9 Akamai server
10
Get i

/enn.com/foo. jpg

10

Summary

HTTP: Simple text-based file exchange protocol

- ?por‘r for status/error responses, authentication, client-
side state maintenance, cache maintenance

Workloads

- Typical documents structure, popularity

- Server workload

Interactions with TCP
- Connection setup, reliability, state maintenance
- Persistent connections

How to improve performance
- Persistent connections

- Caching
- Replication

11

