
1

CS640: Introduction to Computer NetworksAditya AkellaLecture 18 -The Web, Caching and CDNs
2

Announcements• PA 3 out today• HW 4 will be out some time next week• HW 3 due today• Sign up for PA 2 demo slot soon!
3

The Road Ahead• HTTP and TCP• HTTP caching• Content distribution networks

2

4
HTTP 0.9/1.0• One request/response per TCP connection– Simple to implement• Disadvantages– Multiple connection setups � three-way handshake each time• Several extra round trips added to transfer– Multiple slow starts• Why is this bad?

5
Single Transfer ExampleClient ServerSYNSYN SYNSYN ACKACK ACKACKACK DATDATDATDATFINACK0 RTT1 RTT2 RTT3 RTT4 RTT Server reads from diskFIN Server reads from diskClient opens TCP connectionClient sends HTTP request for HTMLClient parses HTMLClient opens TCP connectionClient sends HTTP request for imageImage begins to arrive

6
More Problems• Short transfers are hard on TCP– Stuck in slow start– Also, loss recovery is poor when windows are small• Lots of extra connections– Increases server state/processing• Server also forced to keep TIME_WAIT connection state– Tends to be an order of magnitude greater than # of active connections

3

7
Persistent Connection Solution• Multiplex multiple transfers onto one TCP connection• How to identify requests/responses– Delimiter � Server must examine response for delimiter string– Content-length and delimiter � Must know size of transfer in advance– Block-based transmission � send in multiple length-delimited blocks– Store-and-forward � wait for entire response and then use content-length– Solution� use existing methods and close connection otherwise

8
Persistent Connection ExampleClient ServerACK ACKDATDATACK0 RTT1 RTT2 RTT Server reads from diskClient sends HTTP request for HTMLClient parses HTMLClient sends HTTP request for imageImage begins to arrive DAT Server reads from diskDAT

9
Persistent HTTPNonpersistent HTTP issues:• Requires 2 RTTs per object• OS must work and allocate host resources for each TCP connection• But browsers often open parallel TCP connections to fetch referenced objectsPersistent HTTP• Server leaves connection open after sending response• Subsequent HTTP messages between same client/server are sent over connection Persistent without pipelining:• Client issues new request only when previous response has been received• One RTT for each referenced objectPersistent with pipelining:• Default in HTTP/1.1• Client sends requests as soon as it encounters a referenced object• As little as one RTT for all the referenced objects

4

10
HTTP Caching• Why caching?• Clients often cache documents– Challenge: update of documents– If-Modified-Since requests to check• HTTP 0.9/1.0 used just date• HTTP 1.1 has an opaque “entity tag” (could be a file signature, etc.) as well• When/how often should the original be checked for changes?– Check every time?– Check each session? Day? Etc?– Use “Expires” header• If no Expires, often use Last-Modified as estimate

11
Example Cache Check RequestGET / HTTP/1.1Accept: */*Accept-Language: en-usAccept-Encoding: gzip, deflateIf-Modified-Since: Mon, 29 Jan 2001 17:54:18 GMTIf-None-Match: "7a11f-10ed-3a75ae4a"User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)Host: www.intel-iris.netConnection: Keep-Alive

12
Example Cache Check ResponseHTTP/1.1 304 Not ModifiedDate: Tue, 27 Mar 2001 03:50:51 GMTServer: Apache/1.3.14 (Unix) (Red-Hat/Linux) mod_ssl/2.7.1 OpenSSL/0.9.5a DAV/1.0.2 PHP/4.0.1pl2 mod_perl/1.24Connection: Keep-AliveKeep-Alive: timeout=15, max=100ETag: "7a11f-10ed-3a75ae4a"

5

13
Caching Example (1)Assumptions• Average object size = 100,000 bits• Avg. request rate from institution’s browser to origin servers = 15/sec• Delay from institutional router to any origin server and back to router = 2 secConsequences• Utilization on LAN = 15%• Utilization on access link = 100%• Total delay = Internet delay + access delay + LAN delay= 2 sec + minutes + milliseconds originserverspublicInternetinstitutionalnetwork 10 Mbps LAN1.5 Mbps access link

14
Caching Example (2)Possible solution• Increase bandwidth of access link to, say, 10 Mbps• Often a costly upgradeConsequences• Utilization on LAN = 15%• Utilization on access link = 15%• Total delay = Internet delay + access delay + LAN delay= 2 sec + msecs + msecs originserverspublicInternetinstitutionalnetwork 10 Mbps LAN10 Mbps access link

15
Caching Example (3)Install cache• Suppose hit rate is .4Consequence• 40% requests will be satisfied almost immediately (say 10 msec)• 60% requests satisfied by origin server• Utilization of access link reduced to 60%, resulting in negligible delays• Weighted average of delays= .6*2 sec + .4*10msecs < 1.3 secs originserverspublicInternetinstitutionalnetwork 10 Mbps LAN1.5 Mbps access linkinstitutionalcache

6

16
Web Proxy Caches• User configures browser: Web accesses via cache• Browser sends all HTTP requests to cache– Object in cache: cache returns object – Else cache requests object from origin server, then returns object to client client Proxyserverclient HTTP requestHTTP requestHTTP responseHTTP response HTTP requestHTTP responseorigin serverorigin server

17
Problems• Over 50% of all HTTP objects are uncacheable – why?• Not easily solvable– Dynamic data � stock prices, scores, web cams– CGI scripts � results based on passed parameters– SSL � encrypted data is not cacheable• Most web clients don’t handle mixed pages well �many generic objects transferred with SSL– Cookies � results may be based on passed data– Hit metering � owner wants to measure # of hits for revenue, etc.• What will be the end result?

18
Content Distribution Networks & Server Selection• Replicate content on many servers• Challenges– Which content to replicate– How to replicate content– Where to place replicas– How to find replicated content– How to choose among know replicas– How to direct clients towards replica

7

19
Server Selection• Which server?– Lowest load � to balance load on servers– Best performance � to improve client performance• Based on Geography? RTT? Throughput? Load?– Any alive node � to provide fault tolerance• How to direct clients to a particular server?– As part of routing � anycast, cluster load balancing• Not covered today…– As part of application � HTTP redirect– As part of naming � DNS

20
Application-Based Redirection• HTTP supports simple way to indicate that Web page has moved (30X responses)• Server receives Get request from client– Decides which server is best suited for particular client and object– Returns HTTP redirect to that server• Can make informed application specific decision• May introduce additional overhead � multiple connection setup, name lookups, etc.

21
Naming Based• Client does name lookup for service• Name server chooses appropriate server address– A-record returned is “best” one for the client• What information can name server base decision on?– Server load/location � must be collected– Information in the name lookup request• Name service client � typically the local name server for client

8

22
Content Distribution Networks (CDNs)• The content providers are the CDN customers.Content replication• CDN company installs hundreds of CDN servers throughout Internet– Close to users• CDN replicates its customers’content in CDN servers. When provider updates content, CDN updates servers origin server

in North America

CDN distribution node

CDN server

in S. America CDN server

in Europe

CDN server

in Asia

23
How Akamai Works• Clients fetch html document from primary server– E.g. fetch index.html from cnn.com• “Akamaized” URLs for replicated content are replaced in html– E.g. replaced with <imgsrc=“http://a73.g.akamaitech.net/7/23/cnn.com/af/x.gif”>• Client is forced to resolve aXYZ.g.akamaitech.net hostname

24
How Akamai Works• How is content replicated?• Akamai only replicates static content (*)• Modified name contains original file name and content provider ID• Akamai server is asked for content– First checks local cache– If not in cache, requests file from primary server; caches file* (At least, the version we’re talking about today. Akamai actually lets sites write code that can run on Akamai’s servers, but that’s a different beast altogether!)

9

25
How Akamai Works• Root server gives NS record for akamai.net• Akamai.net name server returns NS record for g.akamaitech.net– Name server chosen to be in region of client’s name server• Out-of-band measurements to obtain this• G.akamaitech.net nameserver chooses server in region– Which server to choose?– Uses aXYZ name and hash

26
Simple Hashing• Given document XYZ, we need to choose a server to use• Suppose we use modulo• Number servers from 1…n– Place document XYZ on server (XYZ mod n)– What happens when a servers fails? n � n-1– Why might this be bad?

27
Consistent Hash• Desired features– Balanced – load is equal across buckets– Smoothness – little impact on hash bucket contents when buckets are added/removed– Spread – small set of hash buckets that may hold a set of object– Load – # of objects assigned to hash bucket is small

10

28
Consistent Hash – Example• Smoothness � addition of bucket does not cause movement between existing buckets• Spread & Load � small set of buckets that lie near object• Balance � no bucket is responsible for large number of objects• Construction• Assign each of C hash buckets to random points on mod 2n circle, where, hash key size = n.• Map object to random position on circle• Hash of object = closest clockwise bucket 0 4812 Bucket14

29
How Akamai WorksEnd-usercnn.com (content provider) DNS root server1 2 3 4 Akamai high-level DNS serverAkamai low-level DNS serverNearby matchingAkamai server11 678910Get index.html Get /cnn.com/foo.jpg12Get foo.jpg 5

30
Akamai – Subsequent RequestsEnd-usercnn.com (content provider) DNS root server1 2 Akamai high-level DNS serverAkamai low-level DNS server78910Get index.html Get /cnn.com/foo.jpg Nearby matchingAkamai server

11

31
Summary• HTTP: Simple text-based file exchange protocol – Support for status/error responses, authentication, client-side state maintenance, cache maintenance• Workloads– Typical documents structure, popularity– Server workload• Interactions with TCP– Connection setup, reliability, state maintenance– Persistent connections• How to improve performance– Persistent connections– Caching– Replication

