CS640: Introduction to
Computer Networks

Aditya Akella

Lecture 20 -
Queuing and Basics of QoS

11/15/2006

The Road Ahead

* Queuing Disciplines
* Fair Queuing

+ Token Bucket

Queuing Disciplines

+ Each router must implement some queuing discipline
- Scheduling discipline
- Drop policy

*+ Queuing allocates both bandwidth and buffer space:

- Bandwidth: which packet to serve (transmit) next
- Buffer space: which packet to drop next (when required)

* Queuing also affects latency

+ Important for QoS:; also for best effort

Typical Internet Queuing

+ FIFO + drop-tail

- Simplest choice

- Used widely in the Internet
- FIFO: scheduling discipline
- Drop-tail: drop policy

+ FIFO (first-in-first-out)

- Implies single class of traffic, no priority

+ Drop-tail
- Arriving packets get dropped when queue is full regardless
of flow or importance

11/15/2006

FIFO + Drop-tail Problems

* Lock-out problem
- Drop-tail routers treat bursty traffic poorly
- Traffic gets synchronized easily > allows a few
flows to monopolize the queue space

* Full queues
- Routers are forced to have have large queues to
maintain high utilizations
- TCP detects congestion from loss
+ Forces network to have long standing queues in steady-
state

FIFO + Drop-tail Problems

* No policing: send more packets > get more

service
- Lack of isolation among flows

+ Synchronization: end hosts react to same

events
- Full queue - empty > Full > empty...

* Poor support for bursty traffic
- Almost always see burst lossesl

11/15/2006

Active Queue Management

+ Design "active" router queue management to
facilitate better behavior under congestion

* Objectives: solve FIFO problems, better

support for QoS

- Keep throughput high and delay low
+ High power (throughput/delay)

- Accommodate bursts
+ Queue size should reflect ability to accept bursts rather

than steady-state queuing
- Research focus: Improve TCP performance with

minimal hardware changes

Lock-out Problem
* Random drop

- Packet arriving when queue is full causes
some random packet to be dropped

* Drop front
- On full queue, drop packet at head of queue

* Random drop and drop front solve the
lock-out problem but not the full-queues

problem

Full Queues Problem

- Drop packets before queue
becomes full (early drop)

* Intuition: notify senders of
incipient congestion
- Example: early random drop (ERD):
* If glen > drop level, drop each new
packet with fixed probability p
* Does not control misbehaving users

Random Early Detection (RED)

+ Detect incipient congestion

* Assume hosts respond to lost packets
- Compliant congestion control

+ Avoid window synchronization
- Randomly mark packets

+ Avoid bias against bursty traffic

11/15/2006

RED Algorithm

* Maintain running average of queue length

+ If avg < miny, do nothing
- Low queuing, send packets through

+ If avg > maxy,, drop packet
- Protection from misbehaving sources

+ Else mark packet in a manner proportional to
queue length
- Notify sources of incipient congestion

RED Operation

Max thresh Min thresh

A Length
picron) verage Queue Leng

maxp |
. .
miny, max, Avg queue length
12

Fair Queuing: Goals

How do you protect the most important packets?
- How do you provide some isolation in general?
- Simple priority queuing does not help

Two approaches:
- Fair Queuing
- Leaky bucket (with other techniques which we will cover next class)

FQ key goal: Allocate resources "fairly”
- Keep separate queue for each flow

Isolate ill-behaved users
- Router does not send explicit feedback to source
- Still needs e2e congestion control

Still achieve statistical muxing
- One flow can fill entire pipe if no contenders

- Work conserving > scheduler never idles link if it has a packet o

11/15/2006

What is "Fairness"?

* At what granularity?
- Flows, connections, domains?

+ What if users have different RTTs/links/etc.
- TCP is "RTT-Fair"
+ BW inversely proportional to RTT of flow
- Should they share a link fairly or be TCP-fair?

+ Maximize fairness index?
- Fairness = (£x,)2/n(2x;%?) O«fairness<1

* Basically a tough question to answer
- Typically design mechanisms instead of policy
« Local notion of fairness, as we will see next
- User = arbitrary granularity

Max-min Fairness

+ Allocate user with "small* demand what
it wants, evenly divide unused resources
to "big" users

* Formally:
+ Resources allocated in terms of increasing
demand
+ No source gets resource share larger than its
demand

+ Sources with unsatisfied demands get equal
share of resource

Implementing Max-min Fairness

+ Generalized processor sharing
- Fluid fairness
- Bitwise round robin among all queues

* Why not simple round robin?
- Variable packet Ieng‘rh - can get more
service by sending bigger packets
- Unfair instantaneous service rate

+ What if arrive just before/after packet
departs?

11/15/2006

Bit-by-bit RR

- Single flow: clock ticks when a bit is
transmitted. For packet i
- P, = length, A, = arrival time, S, = begin transmit
time, F; = finish transmit time
- Fi= S#P; = max (Fi4, A) +P;

+ Multiple flows: clock ticks when a bit from all
active flows is transmitted = round number
- Can calculate F; for each packet if number of flows
is know at all times

+ Why do we need to know flow count? - need to know A -
This can be complicated

Bit-by-bit RR Illustration

+ Not feasible to
interleave bits on
real networks
- FQ simulates bit- -
by-bit RR

Fair Queuing

* Mapping bit-by-bit schedule onto packet
transmission schedule

* Transmit packet with the lowest F; at any
given time

- How do you compute F;? As we saw before, this is
hard.

I ‘I

11/15/2006

FQ Illustration

, Flow1
;
.
L Flow 2 ~o
,
o |-~-
(J\\]M]
N
N
N
. — 1
N
N ,

N ’

I/p

Variation: Weighted Fair Queuing (WFQ) = Flows can have weight

Key to QoS, as we will see in next class. 2

Bit-by-bit RR Example

Flow 1 Flow 2 Output

F=1
F=8
F=5 Flow 1 Flow 2
(arriving) transmitting Output
Cannot preempt packe‘r. F=1
currently being transmitted
F=2
21

Fair Queuing Tradeoffs

FQ can control congestion by monitoring flows
- Non-adaptive flows can still be a problem - why?

+ Complex state
- Must keep queue per flow
* Hard in routers with many flows (e.g., backbone routers)
+ Flow aggregation is a possibility (e.g. do fairness per domain)

+ Complex computation
- Classification into flows may be hard
- Must keep queues sorted by finish times
- Must track number of flows at fine time scales

22

11/15/2006

Token Bucket for Traffic Policing

Tokens

!
Tokens enter /
bucket at rate r Overflow
J Tarevs

Bucket depth Packet
b: capacity of Enough tokens >

tokens removed

[Packet]

Not enough

tokens > wait

for tokens to 23
accumulate

bucket Tokens packet goes through,

Token Bucket Characteristics

* Onthe long run, rate is limited to r

+ On the short run, a burst of size b can be
sent

+ Amount of traffic entering at interval T is
bounded by:
- Traffic=b+r*T
- Can provide a lose sense of isolation mong flows.

24

